Some tempered distributions on semisimple groups of real rank one

By James Arthur

Introduction

The Selberg trace formula leads naturally to the study of certain tempered distributions on reductive groups defined over local fields. An important problem is to calculate the Fourier transforms of these distributions. We shall consider this question for the case that the local field is \(\mathbb{R} \) and the group \(G \) is semisimple and has real rank one. In this context the notion of the Fourier transform of a tempered distribution has been defined in \([1(a)]\).

A distribution \(T \) is said to be invariant if

\[
T(f^y) = T(f)
\]

for every \(f \in C_0^\infty(G) \) and \(y \in G \), where

\[
f^y(x) = f(yxy^{-1}), \quad x \in G.
\]

The invariant distributions which appear in the trace formula have recently been examined by Sally and Warner. However, the trace formula also contains some interesting noninvariant distributions. In this paper we shall calculate the Fourier transforms of the restriction of these distributions to \(\mathcal{C}_c(G) \), the space of cusp forms on \(G \).

For the case that \(G = \text{PSL}(2, \mathbb{R}) \) these noninvariant distributions have already been dealt with. Here one utilizes the known formula for a matrix coefficient of a discrete series representation of \(G \). This enables one to calculate the required Fourier transform (see, for example, [21]). For the general case, however, new methods are needed.

The basic distributions that we shall consider are the ones which appear in term (9.1) of \([1(b)]\). They are parametrized by the \(\mathbb{R} \)-regular points

\[
\{a, h; t \in \mathbb{R}, \ t \neq 0, \ a_i \in A_i\}
\]

of the noncompact Cartan subgroup of \(G \), and will be denoted by \(T(t, a_i) \).

In Section 5 we show that \(T(t, a_i) \) satisfies a second order nonhomogeneous differential equation, which becomes homogeneous if we restrict \(T(t, a_i) \) to

* Partially supported by NSF Grants GP-24943 and GP-33893.
This reduces our problem to a search for boundary conditions.

At first glance, the study of the point \(t = \infty \) might seem promising. This in fact would work if we were to calculate the Fourier transform of \(T(t, a) \) on \(\mathcal{C}(G) \), the space of functions in \(\mathcal{C}(G) \) that are orthogonal to \(\mathcal{C}_0(G) \). The boundary condition can be expressed by means of the constant term of the Eisenstein integral. The Fourier transform turns out to be a sum of two components, one which is not invariant and involves the derivative of the constant term, and another which is invariant but rather complicated. We shall give the details in another paper.

However, the asymptotic behavior of functions in \(\mathcal{C}_0(G) \) is not yet well enough understood for us to obtain a suitable boundary condition at \(t = \infty \). Instead, we take the limit as \(t \) approaches 0 of a certain distribution that involves the derivative of \(T(t, a) \) with respect to \(t \). As we show in Corollary 6.3, this limit defines an invariant distribution. We obtain from it a boundary condition which eventually allows us to compute our Fourier transform on \(\mathcal{C}(G) \) in Theorem 7.2. In the process we derive a rather curious Jacobian formula (Theorem 6.4).

In Section 4 we introduce a distribution \(T(a) \) which is closely related to \(T(t, a) \). We obtain the Fourier transform of \(T(a) \) in Corollary 7.3. Distributions of the form \(T(a) \) also appear in the trace formula. They are the noninvariant components of term (9.2) in \([1(b)]\).

Contents

Introduction

§1. Preliminaries

§2. A function on \(\mathcal{C}(G) \)

§3. The distributions \(T(t, a) \)

§4. The behavior for \(t \) near 0

§5. A differential equation

§6. An integral formula

§7. The Fourier transforms on \(\mathcal{C}_0(G) \)

1. Preliminaries

Suppose that \(G \) is a connected semisimple Lie group of real rank one. We shall assume that \(G \) is contained in \(G_C \), a simply connected complexification of \(G \). Let \(\mathfrak{g} \) be the Lie algebra of \(G \), and let

\[\mathfrak{g} = \mathfrak{f} + \mathfrak{p} \]

be a fixed Cartan decomposition of \(G \) with Cartan involution \(\theta \). Let \(K \) be the analytic subgroup of \(G \) corresponding to \(\mathfrak{f} \). Then \(K \) is compact.

Let \(\mathfrak{a} \) be a fixed maximal abelian subspace of \(\mathfrak{p} \). Then the dimension of
\(a \) is one. Let \(A = \exp a \). Fix an abelian subspace \(a_i \) of \(f \) such that
\[b = a_i + a \]
is a Cartan subalgebra of \(g \). Let \(m \) and \(M \) be the centralizers of \(a \) in \(f \) and \(K \) respectively. Then \(a_i \) is a Cartan subalgebra of \(m \). If \(A_i \) is the centralizer of \(b \) in \(K \), \(A_i \) is a Cartan subgroup of \(M \).

Fix compatible ordering on the real dual spaces of \(a \) and \(a + i a_1 \). Let \(P \) be the set of positive roots of \((g_c, b_c)\) with respect to this ordering. Let \(P_+ \) be the set of roots in \(P \) which do not vanish on \(a \) and let \(P_{21} \) be the complement of \(P_+ \) in \(P \). \(P_{2} \) can be regarded as a set of positive roots of \((m_c, a_c)\).

Let \(\mu' \) be the linear functional on \(a \) which equals one half the largest positive restricted root of \((g, a)\). Extend the definition of \(\mu' \) to \(b \) by defining it to be zero on \(a_1 \). Let us fix an element \(H' \) in \(a \) such that \(\mu'(H') = 1 \). Decompose \(b \) with respect to the adjoint action of \(a \). Then
\[b = g_1 \oplus g_2 \oplus g_0 \oplus g_{-1} \oplus g_{-2} \]
where if \(X \in g_n \), \(-2 \leq n \leq 2\),
\[[H', X] = nX \]
Let
\[r_1 = \dim g_1 = \dim g_{-1} , \]
\[r_2 = \dim g_2 = \dim g_{-2} . \]

Let \(B \) be the Killing form of \(g_c \). The restriction of \(B \) to \(b_c \) is non-degenerate, so we can lift \(B \) to the complex dual space of \(b_c \). Then
\[B(H', H') = B(\mu', \mu')^{-1} = r^2 , \]
if \(r^2 = 2(r_1 + 4r_2) \).

The Cartan involution \(\theta \) lifts to an automorphism of \(G \) which we shall also denote by \(\theta \). Let \(u = g_1 \oplus g_2 \) and let \(N = \exp u \). Then
\[\theta(N) = \exp \theta(u) = \exp(g_{-1} \oplus g_{-2}) . \]
For an element \(u \) in \(N \) we shall sometimes write \(\bar{u} \) for \(\theta(u) \). Then
\[n \longrightarrow \bar{u} \]
is an isomorphism from \(N \) onto \(\bar{N} = \theta(N) \).

From now on we shall write
\[h_t = \exp tH' , \quad t \in \mathbb{R} . \]
This identifies the group \(A \) with the additive real numbers. We shall also write
\[\xi_\alpha(\exp H) = e^{\alpha(H)}, \quad \alpha \in P, \ H \in \mathfrak{h}_C. \]

\(\xi_\alpha \) is a quasi-character on the Cartan subgroup \(\exp \mathfrak{h}_C \) of \(G_C \). In particular it defines a quasi-character on \(A \cdot A \).

There are two possibilities for \(\mathfrak{g} \). Either any Cartan subalgebra of \(\mathfrak{g} \) is \(G \)-conjugate to \(\mathfrak{b} \) or there exists a second \(G \)-conjugacy class of Cartan subalgebras, which has a representative contained in \(\mathfrak{t} \).

Lemma 1.1. There is a Cartan subalgebra \(\mathfrak{b} \) of \(\mathfrak{g} \) with \(\mathfrak{b} \subseteq \mathfrak{t} \) if and only if there exists a root \(\beta \) in \(P_- \) which vanishes on \(\mathfrak{a}_c \).

Proof. Let \(\varepsilon = \text{rank} \, \mathfrak{g} - \text{rank} \, \mathfrak{t} \). Then \(\varepsilon \) equals 0 or 1 depending on whether \(\mathfrak{b} \) exists or not. By the Iwasawa decomposition
\[
\dim \mathfrak{g} - \dim \mathfrak{t} = [P_-] + 1.
\]
For any root \(\alpha \) in \(P_+ \), define
\[
\alpha^\vee(H) = \alpha(\theta H), \quad H \in \mathfrak{h}.
\]
Then \(-\alpha^\vee \) is also a root in \(P_+ \). \(\alpha = -\alpha^\vee \) if and only if \(\alpha \) vanishes on \(\mathfrak{a}_c \). Therefore \([P_-] \) is odd or even, depending on whether a root \(\beta \) in \(P_- \) which vanishes on \(\mathfrak{a}_c \) exists or not. Since the number of roots of a reductive Lie algebra is always even,
\[
(d \dim \mathfrak{g} - \text{rank} \, \mathfrak{g}) - (d \dim \mathfrak{t} - \text{rank} \, \mathfrak{t})
\]
is an even integer. Therefore
\[
[P_-] + 1 - \varepsilon
\]
is an even integer. This proves the lemma. \(\square \)

Lemma 1.2. Suppose that there exists a root \(\beta \) in \(P_- \) which vanishes on \(\mathfrak{a}_c \). Then \(\beta = 2\mu' \).

Proof. Suppose that \(\beta = \mu' \). Choose a root \(\alpha \) of the form \(2\mu' + \alpha_i \) for some linear functional \(\alpha_i \) on \(\mathfrak{h}_C \) which vanishes on \(\mathfrak{a}_C \). We shall show that \(\alpha_i \) can be chosen to be zero.

Notice that
\[
\frac{2B(\alpha, \beta)}{B(\beta, \beta)} = \frac{2B(2\mu' + \alpha_i, \mu')}{B(\mu', \mu')} = \frac{4B(\mu', \mu')}{B(\mu', \mu')} = 4.
\]
Therefore
\[
\mu' + \alpha_i, \quad \alpha_i, \quad -\mu' + \alpha_i, \quad -2\mu' + \alpha_i
\]
are all roots of \((\mathfrak{g}_C, \mathfrak{h}_C)\). We also have
\[
\frac{2B(\alpha, \alpha)}{B(\alpha, \alpha)} = \frac{2B(2\mu' + \alpha, \alpha)}{B(\alpha, \alpha)} = 2.
\]
This implies that \(\alpha - \alpha_i = 2\mu'\) is a root of \((\mathfrak{g}_C, \mathfrak{h}_C)\). Therefore \(2\xi\) is a root of \((\mathfrak{g}_C, \mathfrak{h}_C)\). This is a contradiction.

Let \(A'_i\) be the set of semi-regular elements in \(A_i\) of noncompact type; that is, those elements \(a_i\) in \(A_i\) such that \(g(a_i)'\), the derived algebra of the centralizer of \(a_i\) in \(g\), is isomorphic to \(\mathfrak{sl}(2, \mathbb{R})\). Then \(a_i\) is in \(A'_i\) if and only if

(i) there is a \(\beta \in P_+\) which vanishes on \(a_i\), and

(ii) \(\xi(a_i) \neq 1\) for \(\alpha \in P_+ - \{\beta\}\).

Now suppose that \(\beta\) is a root in \(P_+\) that vanishes on \(a_i\). Choose a root vector \(X'\) for \(\beta\) such that
\[
-B(X', \theta X') = \frac{1}{2} r^2.
\]
Let \(Y' = -\theta X'\). Then
\[
[H', X'] = 2X',
\]
\[
[H', Y'] = -2Y',
\]
\[
[X', Y'] = H'.
\]
Since \(\beta\) is a real root, \(X'\) and \(Y'\) are contained in \(g\). The subalgebra \(I\) of \(g\) generated by \(\{H', X', Y'\}\) is isomorphic to \(\mathfrak{sl}(2, \mathbb{R})\). Our notation is consistent with [3(b), § 24]. Following Harish-Chandra’s paper, we set
\[
Z(A) = \{1, \gamma\},
\]
where \(\gamma = \exp(\pi(X' - Y'))\). Then \(A_i = Z(A)A_i^\circ\), if \(A_i^\circ\) is the connected component of \(A_i\).

Fix an element \(a_i\) in \(A'_i\). Let \(G_i\) and \(g_i\) be the centralizers of \(a_i\) in \(G\) and \(g\) respectively. Then
\[
g_i = I \oplus a_i.
\]

Lemma 1.3. \(G_i\) is connected.

Proof. Suppose that \(G_i^+\) is the connected component of the identity in \(G_i\) and let \(G_i^+\) be any other connected component. Take \(\gamma^+\) in \(G_i^+\). Notice that
\[
(\gamma^+)G_i^+(\gamma^+)^{-1} = G_i^\circ.
\]
Replacing \(\gamma^+\) by one of its left \(G_i^\circ\)-translates, all of which lie in \(G_i^+\), we obtain
an element in G^+_1 which normalizes a. Now there is a representative in G^+_1 of the nontrivial element of the restricted Weyl group of (\mathfrak{g}, a). Therefore we can find an element in G^+_1 which leaves a pointwise fixed. In other words, every component of G^+_1 contains some element in M. On the other hand, since a_i is semi-regular, the only elements of M which leave a_i fixed belong to A_i. Therefore

$$G_i = A_i \cdot G^+_i = Z(A) \cdot A_i G^+_i = Z(A) G^+_i.$$
Since $Z(A) \subseteq G^+_i$, G_i is connected.

We remark that $\mathfrak{g}_i = a_i \oplus \mathfrak{l}$ is independent of the semi-regular element a_i which we chose. G_i is the analytic subgroup of G corresponding to the Lie algebra \mathfrak{g}_i, so G_i is also independent of a_i.

In the future we shall be dealing with Haar measures on certain subgroups of G. We shall normalize them now for once and for all.

For any X in \mathfrak{g}, write

$$|X|^2 = -B(X, \theta X).$$
This defines a Euclidean norm on \mathfrak{g} and on any subspace of \mathfrak{g}. In particular it defines a Euclidean measure dN on \mathfrak{u}. We define a normalized Haar measure dn on N by

$$\int_{\mathfrak{u}} \phi(n) dn = \int_{\mathfrak{u}} \phi(\exp N) dn , \quad \phi \in C_c^\infty(N).$$

More generally for any subspace \mathfrak{q} of \mathfrak{u} we shall define a measure on $\exp \mathfrak{q}$ from the Euclidean measure on \mathfrak{q}. Similarly, we define a measure on $\exp \mathfrak{q}$ for any subspace \mathfrak{q} of \mathfrak{n}.

We normalize the Haar measure da on A_i by

$$\int_{A_i} \phi(a) da = \int_{\mathbb{R}} \phi(h_i) dt , \quad \phi \in C_c^\infty(A_i).$$
For any compact subgroup H of K, choose the Haar measure on H which assigns to H the volume one.

If a_i is an element of A_i, let $g(a_i)$ and $G(a_i)$ be the centralizers of a_i in \mathfrak{g} and G respectively. Then

$$G(a_i) = K(a_i) \cdot A \cdot N(a_i)$$
is an Iwasawa decomposition for $G(a_i)$ where $K(a_i) = K \cap G(a_i)$ and $N(a_i) = N \cap G(a_i)$. Let dx_i be the Haar measure on $G(a_i)$ defined by

$$\int_{G(a_i)} \phi(x_i) dx_i = \int_{K(a_i) \times N(a_i) \cdot A_i} \phi(k, n_i a) dk d n_i da , \quad \phi \in C_c^\infty(G(a_i)).$$

In particular, this defines a Haar measure dx on G.

Finally suppose that \(H \) is a unimodular Lie subgroup of \(G \) with a distinguished Haar measure \(dh \). Let \(dx^* \) be the unique \(G \)-invariant measure on \(G/H \) defined by
\[
\int_G \phi(x) dx = \int_{G/H} \phi(x^* h) dh dx^*, \quad \phi \in C_c(G).
\]

We shall normalize all measures according to these conventions without further comment.

2. A function on \(N \)

There is an important function on \(N \) whose properties we must discuss before we define our distributions.

For any \(x \in G \), let \(x_K, x_N, \) and \(x_A \) be the elements in \(K, N, \) and \(A \) respectively such that \(x = x_K x_N x_A \). Put \(H(x) = \log (x_A) \). \(H(x) \) is in \(\mathfrak{a} \). Define
\[
\lambda(\bar{n}) = \nu'(H(\bar{n})) , \quad n \in N.
\]
It is known that \(\lambda(\bar{n}) \) is a nonnegative real number. It has been computed explicitly by Helgason ([4(b), Th. 1.14]). We describe his formula.

The map
\[
(X, Y) \rightarrow \exp X \cdot \exp Y = \exp (X + Y) , \quad X \in \mathfrak{g}_1, \ Y \in \mathfrak{g}_2,
\]
is a diffeomorphism of \(\mathfrak{g}_1 \oplus \mathfrak{g}_2 \) onto \(N \). For any \(Z \) in \(\mathfrak{g} \) recall that \(|Z|^2 = -B(Z, \theta Z) \). Then if
\[
n = \exp X \cdot \exp Y , \quad X \in \mathfrak{g}_1, \ Y \in \mathfrak{g}_2,
\]
the formula is
\[
\lambda(\bar{n}) = \frac{1}{2} \log \left[\left(1 + \frac{3}{2r^2} |X|^2 \right)^{\frac{1}{2}} + \frac{2}{r^2} |Y|^2 \right].
\]

Let \(w \) be a representative in \(K \) of the nontrivial element of the restricted Weyl group of \((\mathfrak{g}, \mathfrak{a}) \). Helgason has proved in [4(b), Lemma 1.15], that \(w \) can be chosen such that \(w^2 \) lies in the center of \(G \). By replacing \(w \) with an element of the form \(m_{\mathfrak{g}^1} w m_{\mathfrak{a}} \), for some \(m_\mathfrak{a} \) in \(M \), we can assume that \(\text{Ad}(w) \) maps \(\mathfrak{a} \) onto itself. Notice that for any \(X \) in \(\mathfrak{g} \),
\[
\{ w^{-1}Xw \} = |X|.
\]
Since
\[
w^{-1}_{\mathfrak{g}_i} w = \mathfrak{g}_{-i} = \theta(\mathfrak{g}_i) , \quad i = 1, 2,
\]
we see from the above formula for \(\lambda(\bar{n}) \) that
\[
\lambda(\bar{n}) = \lambda(w^{-1} w).
\]
We shall refer to the element \(w \) later on.
For \(X \in g_1, \ Y \in g_2 \)
\[
\exp X \cdot \exp Y = \exp(X + Y) = \exp Y \cdot \exp X.
\]
On the other hand for \(X_i \) and \(X_j \) both in \(g_i \),
\[
\exp X_i \cdot \exp X_j = \exp(X_i + X_j) \cdot \exp \left(\frac{1}{2} [X_i, X_j] \right).
\]
There is a constant \(a_i \) such that
\[
| [X_i, X_j] | \leq a_i |X_i| \cdot |X_j|, \quad X_i, X_j \in g_i.
\]

Lemma 2.1. There is a constant \(C \) such that for \(n \in N, a_i \in A_i \) and \(t \) sufficiently large,
\[
| \lambda(n \cdot a_i h_i \cdot \bar{a}_i \cdot a_i^{-1} h_i^{-1}) - \lambda(n) | \leq Ce^{-t}.
\]

Proof. Let \(n = \exp X \cdot \exp Y, \ X \in g_1, \ Y \in g_2 \). Then
\[
\bar{a}_i \cdot a_i h_i \cdot \bar{a}_i \cdot a_i^{-1} h_i^{-1}
= \theta(n \cdot a_i h_i \cdot \bar{a}_i \cdot a_i^{-1} h_i^{-1})
= \theta(\exp X \cdot \exp Y \cdot \exp(-X^a e^{-t}) \cdot \exp(-Y^a e^{-t}))
= \theta \left(\exp(X - e^{-t}X^a) \cdot \exp(Y - e^{-t}Y^a - \frac{1}{2} e^{-t}[X, X^a]) \right),
\]
where
\[
Z^a = \text{Ad}(a) Z, \quad Z \in g.
\]
Therefore
\[
\lambda(n \cdot a_i h_i \cdot \bar{a}_i \cdot a_i^{-1} h_i^{-1}) - \lambda(n)
\]
is one-half the logarithm of
\[
\left(1 + \frac{1}{2r^2} |X - e^{-t}X^a|^2 \right)^\frac{2}{2} \left(1 + \frac{1}{2r^2} |Y - e^{-t}Y^a|^2 \right)^\frac{2}{2} \left| \frac{1}{2} e^{-t}[X, X^a] \right|^2.
\]

(2.1)

Replace the numerator of this expression by the sum of
\[
\left(1 + \frac{1}{2r^2} |X|^2 \right)^\frac{2}{2} + \frac{2}{2} |Y|^2,
\]
and a remainder \(R(t, a_i, X, Y) \). Now,
\[
|X^a| = |X|, \quad |Y^a| = |Y|,
\]
and
\[
|[X, X^a]| \leq a_i |X|^2.
\]
Therefore we can find a constant C such that
\[|R(t, a, X, Y)| \leq Ce^{-t} \left[\left(1 + \frac{1}{2\rho^2} |X|^2\right)^{\frac{1}{2}} + \frac{2}{\rho^2} |Y|^2 \right]. \]

It follows that the expression (2.1) differs from 1 by a function that is bounded by Ce^{-t}. The lemma then follows.

There is another consequence of the formula for $\lambda(\bar{n})$ which we shall eventually need. For any $n \in N$ we can choose elements $X(n)$ and $Y(n)$ in g_1 and g_2 respectively such that
\[\bar{n} = \bar{n}_X \cdot \bar{n}_A \cdot \exp X(n) \cdot \exp Y(n). \]

Lemma 2.2. Both $|X(n)|$ and $|Y(n)|$ are bounded functions of n.

Proof. Suppose that $n = \exp X \cdot \exp Y$, $X \in g_1$, $Y \in g_2$. We have
\[\bar{n} = \bar{n}_X \cdot \bar{n}_A \cdot \exp X \cdot \exp Y. \]

Suppose that
\[\bar{n}_X = \nu = \exp R(n) \cdot \exp S(n), \quad R(n) \in g_1, \ S(n) \in g_2. \]

Then
\[\nu = \bar{n}_X \cdot \bar{\nu}_X \cdot \bar{\nu}_A \cdot \bar{n}_A^{-1}. \]

Therefore $\bar{\nu}_A = \bar{n}_A$, so that
\[(2.2) \quad \left(1 + \frac{1}{2\rho^2} |R(n)|^2\right)^{\frac{1}{2}} + \frac{2}{\rho^2} |S(n)|^2 = \left(1 + \frac{1}{2\rho^2} |X|^2\right)^{\frac{1}{2}} + \frac{2}{\rho^2} |Y|^2. \]

Now we have
\[\exp X(n) \cdot \exp Y(n) = \bar{n}_A^{-1} \cdot \exp R(n) \cdot \exp S(n) \cdot \bar{n}_A \]
\[= \exp \left(e^{-iz} R(n) \right) \cdot \exp \left(e^{-iz} S(n) \right). \]

Therefore
\[|X(n)| = \frac{|R(n)|}{\left[\left(1 + \frac{1}{2\rho^2} |X|^2\right)^{\frac{1}{2}} + \frac{2}{\rho^2} |Y|^2 \right]^{\frac{1}{2}}, \]
and
\[|Y(n)| = \frac{|S(n)|}{\left[\left(1 + \frac{1}{2\rho^2} |X|^2\right)^{\frac{1}{2}} + \frac{2}{\rho^2} |Y|^2 \right]^{\frac{1}{2}}}. \]

A glance at formula (2.2) shows that these functions are bounded. \[\square \]

3. The distributions $T(t, a,)$

Assume for the remainder of this paper that there is a root β in P_- which vanishes on α_i.

Following standard notation we write
\[\Delta(a_i, h_t) = \prod_{\alpha \in \Delta} \left(\hat{\chi}_{\alpha, l}(a_i h_t) - \hat{\chi}_{-\alpha, l}(a_i h_t) \right), \quad a_i \in A_1, \ t \in \mathbb{R} , \]
\[\Delta_H(a_i) = \prod_{\alpha \in \Phi_H} \left(\hat{\chi}_{\alpha, l}(a_i) - \hat{\chi}_{-\alpha, l}(a_i) \right), \quad a_i \in A_1 . \]

For real \(t \neq 0 \), and \(a_i \in A_1 \) define the following distributions:

\[\langle T(t, a_i), f \rangle = \text{sgn} \cdot \Delta(a_i, h_t) \cdot \int_{K \times N} f(k n \cdot a_i h_t \cdot n^{-1} k^{-1}) \lambda(n) d n d k , \]
\[\langle F(t, a_i), f \rangle = \text{sgn} \cdot \Delta(a_i, h_t) \cdot \int_{K \times N} f(k n \cdot a_i h_t \cdot n^{-1} k^{-1}) d n d k , \quad f \in C_c^\infty(G) . \]

These integrals are easily seen to converge absolutely.

The distribution \(F(t, a_i) \) is well known. In Harish-Chandra's notation

\[\langle F(t, a_i), f \rangle = F_f(a_1 \omega t) . \]

\(F(t, a_i) \) is tempered, and invariant. We mention it only for the sake of comparison. Accordingly, its Fourier transform is considerably more complicated. Of course we must first of all show that \(T(t, a_i) \) is tempered. This will permit us to regard \(T(t, a_i) \) as a continuous linear functional on \(\mathcal{C}(G) \), the Schwartz space of \(G \).

Let \(\mathcal{C}_0(G) \) be the closed subspace of \(\mathcal{C}(G) \) generated by the \(K \)-finite matrix coefficients of all the square integrable representations of \(G \). It is known ([3(c)]) that \(\mathcal{C}_0(G) \) is nontrivial if and only if there is a compact Cartan subgroup of \(G \). Unlike \(F(t, a_i) \), the distribution \(T(t, a_i) \) does not vanish on \(\mathcal{C}_0(G) \). It will be our goal in this paper to calculate the Fourier transform of the restriction of \(T(t, a_i) \) to \(\mathcal{C}_0(G) \).

There is a slightly different formula for our distributions which we shall need. Define a function \(\Lambda \) on \(G \) as follows: if \(x = k n a, k \in K, n \in N, a \in A \), let

\[\Lambda(x) = \lambda(\overline{n}) . \]

Suppose \(w^{-1} n w = \overline{v} \). Then \(\lambda(\overline{v}) = \lambda(\overline{n}) \). We also have

\[x w = k w \cdot \overline{v} \cdot a^{-1} = k w \cdot \overline{v} \cdot \overline{v} \cdot \overline{v} \cdot a^{-1} . \]

Since

\[\Lambda(x) = \lambda(\overline{n}) = \mu'(H(\overline{v} a)) , \]

we have

\[\Lambda(x) = \mu'(H(x w)) + \mu'(H(x)) . \]

In particular \(\Lambda(x w) = \Lambda(x) \). \(\Lambda \) is actually defined on \(G/A \), so for the normalized measure \(dx^+ \) on \(G/A \) we have

\[\Lambda(x) = \mu'(H(x w)) + \mu'(H(x)) . \]
\[\langle T(t, a_i), f \rangle = \text{sgn } t \cdot \Delta(a_i h_t) \cdot \int_{G/A} f(x^* \cdot a_i h_t \cdot x^{*-1}) \lambda(x^*) dx^*. \]

Let \(W_{G, a} \) be the normalizer of the Cartan subalgebra \(\mathfrak{h} \) in \(G \) modulo its centralizer in \(G \). \(W_{G, a} \) operates on the roots of \(\langle m_C, a_i c \rangle \). For any \(y \) in \(W_{G, a} \), let

\[P_y = \{ \alpha^y : \alpha \in P \}. \]

Define \(\varepsilon_y(y) \) to equal 1 or \(-1\) depending on whether \([P_y \cap (-P_y)]\) is even or not. \(\varepsilon_y \) is a homomorphism of \(W_{G, a} \) into the multiplicative group \(\{1, -1\} \). Now for any \(y \) in \(W_{G, a} \) the map

\[x \mapsto xy \]

is a diffeomorphism of \(G/A \) that preserves the measure \(dx^* \). Since \(\Delta(xy) = \Delta(x) \) we obtain the formula

\[T(t^y, a_i) = \varepsilon_y(y) T(t, a_i), \quad y \in W_{G, a}. \]

The same argument applies to the diffeomorphism \(x \mapsto \theta(x) \) of \(G/A \). It follows that

\[T(-t, a_i) = T(t, a_i). \]

These formulae also imply that

\[\langle T(t, a_i), f \rangle = \text{sgn } t \cdot \Delta(a_i h_t) \cdot \int_{K \times \widetilde{N}} f(k \bar{n} \cdot a_i h_t \cdot \bar{n}^{-1} h_t^{-1}) \lambda(\bar{n}) d\bar{n} dk. \]

There is a well known Jacobian formula on \(\widetilde{N} \) which we should mention before proving that \(T(t, a_i) \) is tempered. Suppose that \(a_i \in A_t \), \(t \) is a nonzero real number, and that \(\phi \in C_c^\infty(\widetilde{N}). \) If

\[\rho = \frac{1}{2} \sum_{a \in P} \alpha \]

then

\[\text{sgn } t \cdot \Delta(a_i h_t) \cdot \int_{\widetilde{N}} \phi(\bar{n} \cdot a_i h_t \cdot \bar{n}^{-1} h_t^{-1}) d\bar{n} = e^{\rho(H_t)} \cdot \Delta_y(a_i) \cdot \int_{\widetilde{N}} \phi(\bar{n}) d\bar{n}. \]

This is a consequence of [3(b), Lemmas 11 and 12].

Lemma 3.1. For fixed \(a_i \) and \(t \neq 0 \) the distribution \(T(t, a_i) \) is tempered.

Proof. Since \(T(t, a_i) \) is symmetric in \(t \), we may assume \(t > 0 \). For \(f \in C_c^\infty(G) \)

\[| \langle T(t, a_i), f \rangle | \leq | \Delta(a_i h_t) | \cdot \int_{K \times \widetilde{N}} | f(k \bar{n} \cdot a_i h_t \cdot \bar{n}^{-1} h_t^{-1}) | \cdot \lambda(\bar{n}) d\bar{n} dk. \]
If we set
\[\mathcal{V} = \bar{n} \cdot a_i h_t \cdot \bar{n}^{-1} a_i^{-1} h_t^{-1} \]
we can regard \(\bar{n} \) as a function of \(\mathcal{V}, t, \) and \(a_i \). Then from (3.1), \(|T(t, a_i, f)| \) is bounded by
\[e^{t \cdot \Delta \cdot \lambda} \cdot \Delta \cdot \lambda(a_i) \cdot \left(\int_{\mathcal{V} \times \mathcal{N}} f(k \mathcal{V} \cdot a_i h_t \cdot \mathcal{V}^{-1}) \cdot \lambda(\bar{n}) d\mathcal{V} dk \right). \]
We must show that \(\lambda(\bar{n}) \) is bounded by a suitable function of \(\nu, a_i, \) and \(t \).

Now
\[\theta(\nu) = \mathcal{V} = \bar{n} \cdot a_i h_t \cdot \bar{n}^{-1} a_i^{-1} h_t^{-1} = \theta(a \cdot a_i^{-1} h_t \cdot \bar{n}^{-1} a_i^{-1} h_t). \]

Suppose that
\[\mathcal{n} = \exp X \cdot \exp Y, \quad X \in \mathfrak{g}_1, \quad Y \in \mathfrak{g}_2, \]
and
\[\nu = \exp R \cdot \exp S, \quad R \in \mathfrak{g}_1, \quad S \in \mathfrak{g}_2. \]
Then
\[R = X - e^{-t} X^{a_i}, \]
and
\[S = Y - e^{-2t} Y^{a_i} - \frac{1}{2} e^{-t} [X, X^{a_i}]. \]
Therefore
\[|X| \leq |R| \cdot (1 - e^{-t})^{-1}, \]
and
\[|Y| \leq (|S| + e^{-t} a_0 |X|) \cdot (1 - e^{-2t})^{-1} \leq |S| \cdot (1 - e^{-t})^{-1} + a_0 e^{-t} \cdot (1 - e^{-t})^{-1} \cdot |R|^p. \]
It follows that there exists a constant \(C_0 \), independent of \(t, a_i, R, \) and \(S \) such that
\[\left(1 + \frac{1}{2} e^{-t} |X|^2 \right)^2 + \frac{2}{r^2} |Y|^2 \leq C_0 \cdot (1 - e^{-t})^{-1} \cdot \left(1 + \frac{1}{2} e^{-t} |R|^2 \right)^2 + \frac{2}{r^2} |S|^2 \].
Therefore
\[\lambda(\bar{n}) \leq \log [C_0(1 - e^{-t})^{-1}] + \lambda(\mathcal{V}). \]
We have shown that \(|T(t, a_i, f)| \) is bounded by
\[e^{s \cdot \log (1 + \sigma(x))} \cdot \Delta_{\nu}(a_i) \cdot \left\{ \int_{\mathcal{K} \cdot \mathcal{N}} |f(k\nu \cdot a_i h_i k^{-1})| \cdot (\log [\mathcal{C} (1 - e^{-t})^{-r}] + \chi(\nu)) d\nu dk \right\}. \]

For any \(r \), let
\[||f||_r = \sup_{x \in G} |f(x)| \cdot (1 + \sigma(x))^{-r}. \]

Then for any \(r \),
\[|\langle T(t, a_i), f \rangle| \leq e^{s \cdot \log (1 + \sigma(x))} \cdot \Delta_{\nu}(a_i) \cdot ||f||_r \cdot \int_{\mathcal{K} \cdot \mathcal{N}} (1 + \sigma(\nu \cdot a_i h_i))^{-r} \cdot (\log [\mathcal{C} (1 - e^{-t})^{-r}] + \chi(\nu)) d\nu. \]

From [1(a), Lemma 11], it follows that \(\mu'(H(x)) \cdot (1 + \sigma(x)) \) is a bounded function on \(G \). On the other hand, in [3(c), Lemma 21], Harish-Chandra proves that there is a number \(r' \) such that
\[e^{s \cdot \log (1 + \sigma(x))} \cdot \int_{\mathcal{K} \cdot \mathcal{N}} (1 + \sigma(\nu \cdot a_i h_i))^{-r'} \cdot (\log [\mathcal{C} (1 - e^{-t})^{-r}] + \chi(\nu)) d\nu \]
converges and is bounded independently of \(t \) and \(a_i \). It follows that \(T(t, a_i) \) is tempered. \(\square \)

From the proof of this lemma we also have

Corollary 3.2. For \(f \in \mathcal{C}(G) \) and \(t \neq 0 \) the integral
\[\text{sgn } t \cdot \Delta(a_i h_i) \cdot \int_{\mathcal{K} \cdot \mathcal{N}} f(k\nu \cdot a_i h_i \cdot \nu^{-1} k^{-1}) \cdot \chi(\nu) d\nu dk \]
is absolutely convergent and equals \(\langle T(t, a_i), f \rangle \). \(\square \)

If we express the estimates of the lemma more precisely we obtain

Corollary 3.3. For every positive integer \(d \) there is a continuous semi-norm \(|| \cdot ||_d \) on \(\mathcal{C}(G) \) such that for any \(t > 0 \), \(a_i \in A_i \), and \(f \in \mathcal{C}(G) \),
\[|\langle T(t, a_i), f \rangle| \leq ||f||_d \cdot \log (1 - e^{-t}) \cdot (1 + t)^{-d}. \]

Proof. Suppose that \(\nu \in \mathcal{N} \), \(a_i \in A_i \), and \(t > 0 \). Then
\[(1 + \mu'(H(\nu a_i h_i)))^{-1} = (1 + \chi(\nu) + t)^{-1} \]
which is bounded by \((1 + t)^{-1} \). Therefore we may take \(|| \cdot ||_d \) to be a multiple of \(|| \cdot ||_{d, r'} \). \(\square \)

1. The behavior for \(t \) near 0

There is another distribution that is also of interest. It may be obtained by examining the behavior of \(T(t, a_i) \) as \(t \to 0^+ \).

For \(a_i \in A_i \), let \(u(a_i), \), \(g_1(a_i), \), \(g_2(a_i), \), and \(N(a_i) \) be the centralizers of \(a_i \) in \(u, \), \(g_1, \), \(g_2 \), and \(N \) respectively. Suppose that \(u(a_i) \neq 0 \). Let \(P_c(a_i) \) be the set of
roots α in P_+ such that $\xi_{a}(\alpha) = 1$. Set
\[
\Delta^*(a; h_t) = \prod_{\alpha \in P - P_{\alpha}(a)} \left(\xi_{a/2}(\alpha, h_t) - \xi_{-a/2}(\alpha, h_t) \right).
\]
Let $d\bar{n}$, $d\bar{n}^*$, and $d\bar{n}_i$ be the normalized invariant measures on N, $N/N(a_i)$, and $N(a_i)$ respectively. Then
\[
d\bar{n} = d\bar{n}_*.
\]
For $f \in C_c(G)$, define
\[
\langle T(a), f \rangle = \Delta^*(a) \cdot \int_{K \times N/N(a) \times N/N(a)} f(k\bar{n}^* \cdot a, \bar{n}_i, \bar{n}^*-1k^{-1}) \cdot \delta(\bar{n}_i) d\bar{n}_id\bar{n}^*dk,
\]
where δ is a function defined on $N(a_i)$ as follows:
- If $g_i(a) \neq 0$, $\delta(\exp(X_i + Y_i)) = \log |X_i|$, $X_i \in g_{-1}(a_i)$, $Y_i \in g_{-2}(a_i)$,
- and
- if $g_i(a) = 0$, $\delta(\exp Y_i) = \log |Y_i|$, $Y_i \in g_{-2}(a_i)$.

Clearly the expression
\[
\int_{N(a)} f(k\bar{n}^* \cdot a, \bar{n}_i, \bar{n}^*-1k^{-1}) \cdot \delta(\bar{n}_i) d\bar{n}_i
\]
depends only on the $N(a_i)$-coset of \bar{n}^*.

Now $\langle T(t, a_i), f \rangle$ equals
\[
\text{sgn } t \cdot \Delta(a; h_t) \cdot \int_{K \times N/N(a_i) \times N/N(a_i)} f(k\bar{n}^*a, \bar{n}_i, \bar{n}^*-1k^{-1}) \cdot \chi(\bar{n}^* \bar{n}_i) d\bar{n}_id\bar{n}^*dk.
\]
We are going to make a change of variables in this integral. Let
\[
\bar{\nu} = \bar{n}_i h_t \bar{n}^* h_t^{-1}
\]
\[
= \delta(n_i h_t^{-1} \bar{n}^{-1} h_t) = \delta(\nu).
\]
Suppose that
\[
n^* = \exp(X + Y), \ n_t = \exp(X_t + Y_t), \ \nu = \exp(R + S)
\]
for $X \in g_i$, $Y \in g_i$, $X_t \in g_{-1}(a_i)$, and $Y_t, S \in g_{-2}(a_i)$. Then
\[
\nu = \exp(X_t + Y_t) \cdot \exp(-e^t X_i - e^{-2t} Y_i)
\]
\[
= \exp\left(X_t(1 - e^{-t}) + Y_t(1 - e^{-2t})\right)
\]
so that
\[
X_t = R(1 - e^{-t})^{-1}
\]
and
\[
Y_t = S(1 - e^{-2t})^{-1}.
\]
It follows that
\[n^* n_i = \exp X \cdot \exp Y \cdot \exp [R(1 - e^{-t})^{-1}] \cdot \exp [S(1 - e^{-t})^{-1}] \]
\[= \exp [X + R(1 - e^{-t})^{-1}] \]
\[\cdot \exp \left[Y + S(1 - e^{-2t})^{-1} + \frac{1}{2} [X, R(1 - e^{-t})^{-1}] \right]. \]

Therefore \(\lambda(\tilde{n}^* \tilde{n}_i) \) equals one half the logarithm of
\[\left(1 + \frac{1}{2r^2} \right) \cdot \left(Y + S(1 - e^{-2t})^{-1} + \frac{1}{2} [X, R(1 - e^{-t})^{-1}] \right)^{\frac{1}{2}}. \]

Let us write \(\lambda(\tilde{n}^* \tilde{n}_i) \) for \(\lambda(\tilde{n}^* \tilde{n}_i) \), since \(\tilde{n}_i \) is a function of \(\tilde{V} \) for \(t > 0 \).

Let \(\rho^* = (\sum_{x \in P_{-}(\alpha)} \alpha)^{1/2} \). Applying the formula (3.1) to the group \(N(a_i) \) we see that \(\langle T(t, a_i), \rho \rangle \) equals
\[e^{\rho \cdot (H^*)} \cdot \Delta^*(a_i h_i) \cdot \int_{E} f(k \tilde{n}^* a_i \cdot \tilde{V} h_i \cdot \tilde{n}^* k^{-1}) \cdot \lambda(\tilde{n}^* \tilde{n}_i) \cdot d\tilde{V} d\tilde{n}^* d\tilde{k}. \]

Suppose that \(g_i(a_i) \neq 0 \), and that \(R \neq 0 \). Then
\[\lambda(\tilde{n}^* \tilde{n}_i) + \frac{1}{2} \log (1 - e^{-t}) \]
\[= \frac{1}{2} \log \left\{ \left((1 - e^{-t})^2 + \frac{1}{2r^2} \cdot |X(1 - e^{-t}) + R|^2 \right)^{\frac{1}{2}} \right\} \]
\[+ \frac{2}{r^2} \cdot (1 - e^{-t}) \cdot \left| Y + S(1 - e^{-2t})^{-1} + \frac{1}{2} [X, R(1 - e^{-t})^{-1}] \right|^2. \]

The limit of this expression as \(t \to 0^+ \) equals
\[\frac{1}{2} \log \left[\frac{1}{2r^2} |R|^2 \right]. \]

On the other hand, suppose that \(g_i(a_i) = 0 \) and that \(S \neq 0 \). Then
\[\lambda(\tilde{n}^* \tilde{n}_i) + \frac{1}{2} \log (1 - e^{-2t})^2 = \frac{1}{2} \log \left((1 - e^{-2t})^2 \left(1 + \frac{1}{2r^2} \cdot |X|^2 \right)^{\frac{1}{2}} \right) \]
\[+ \frac{2}{r^2} (1 - e^{-2t}) \cdot |Y + S(1 - e^{-2t})^{-1}|^2 \]
\[= \frac{1}{2} \log \left[\frac{2}{r^2} |S|^2 \right]. \]

The limit of this expression as \(t \to 0^+ \) equals
\[\frac{1}{2} \log \left[\frac{2}{r^2} |S|^2 \right]. \]

For \(t \neq 0 \) define
\[S(t, a_i) = T(t, a_i) + \frac{1}{2} \log (1 - e^{-t}) \cdot F(t, a_i), \]
if \(g_i(a_i) \neq 0 \),
or
Then we use the Lebesgue dominated convergence theorem and the above formulae to obtain a formula for \(\langle T(a_i), f' \rangle \) if \(f \in C_c(G) \). The result is
\[
\langle T(a_i), f' \rangle = \log (\sqrt{2} \cdot r) \langle F(0, a_i), f' \rangle + \frac{1}{2} \lim_{t \to +} \langle S(t, a_i), f \rangle,
\]
if \(g_i(a_i) \neq 0 \),
\[
\langle T(a_i), f' \rangle = \log (r\sqrt{2}) \langle F(0, a_i), f' \rangle + \lim_{t \to -} \langle S(t, a_i), f \rangle
\]
if \(g_i(a_i) = 0 \).

We shall have occasion to use the distributions \(S(t, a_i) \) to calculate the Fourier transform of \(T(t, a_i) \) on \(C_c(G) \). If \(C_c(G) = 0 \) there is a compact Cartan subgroup \(B \) of \(G \), and so by Lemma 1.1 there is a root \(\beta \) whose restriction to \(a_i \) is trivial. \(\beta = 2\pi' \) by Lemma 1.2.

Suppose that \(a_i \) is in \(A' \), the set of semi-regular elements of non-compact type in \(A_1 \), defined in \(\S 1 \). Then \(\beta \) is the only root in \(P_+ \) such that \(\xi_\beta(a_i) = 1 \).

Take a function \(f \) in \(C_c(G) \) and put
\[
\langle S'(t, a_i), f' \rangle = \frac{d}{dt} \langle S(t, a_i), f \rangle.
\]
We shall find a formula for
\[
\lim_{t \to -} \{ \langle S'(t, a_i), f' \rangle - \langle S'(-t, a_i), f' \rangle \}.
\]

In \(\S 1 \) we introduced the root vector \(X' \) in \(g_2 \) corresponding to \(\beta \). For real \(x \), let
\[
\eta(x) = \exp (xX').
\]
For the other roots \(\{ \alpha \} \) in \(P_+ \) let \(\{ X_\alpha \} \) be a fixed set of root vectors. Put
\[
\eta^* = \eta \cap \sum_{\alpha \in P_+} C X_\alpha.
\]
Then \(\eta^* = g_1^* \oplus g_2^* \) if \(g_1^* = g_1 \cap \eta^* \), \(i = 1, 2 \). Let \(N^* = \exp \eta^* \). We have the diffeomorphism
\[
(n^*, x) \mapsto \eta^* \cdot n(x)
\]
of \(N^* \times R \) onto \(N \). According to the conventions in \(\S 1 \), \(d\eta^* \) is the measure on \(N^* \) defined by the Euclidean measure on \(n^* \). For \(f \in C_c(G) \),
\[
\int_{N^*} f(n^*)dn^* = \frac{r}{\sqrt{2}} \cdot \int_{R \cdot n^*} f(n^* \cdot n(x))dxdn^*,
\]
since \(|X'| = r/\sqrt{2} \).

For \(X \in g_1^* \), \(Y \in g_2^* \), write
\[\nu^*(X, Y) = \exp X \cdot \exp Y. \]

We have

\[\frac{1}{2} \log \left(\left(1 + \frac{1}{2} \right)^2 \frac{2}{r^2} |X|^2 + \frac{2}{r^2} |Y|^2 + \nu^*(1 - e^{-2t}) \right)^2 \]

\[= \frac{1}{2} \log \left\{ e^{2x^2} + \nu^*(1 - e^{-2t}) \right\} + \frac{1}{2} \log (1 - e^{-2t})^2 \]

\[= \frac{1}{2} \log \left\{ (1 - e^{-2t})^2 e^{2x^2} + \nu^* \right\}. \]

Fix \(f \in C_c^\infty(G) \). Set \(\phi(t; \nu^*; x) \) equal to

\[e^{t \nu^*(x)} \Delta^*(a, h_1) \int_K f(k \nu^*(x) \cdot a, h_1, \nu^* - k^*) dk. \]

Then \(\langle S(t, a_1), f \rangle \) equals

\[\frac{r}{2V^2} \int_{\nu^* \cdot \mathbb{R}} \phi(t; \nu^*; x) \cdot \log \left((1 - e^{-2t})^2 e^{2x^2} + x^2 \right) dx. \]

The function

\[\frac{r}{2V^2} \int_{\nu^* \cdot \mathbb{R}} \phi(t; \nu^*; x) \cdot \log (x^2) \]

is differentiable at \(t = 0 \). Therefore

\[\frac{2V^2}{r} \lim_{t \to 0^+} \langle S'(t, a_1), f \rangle - \langle S'(-t, a_1), f \rangle \]

is the limit as \(t \to 0^+ \) of the difference of

(4.1) \[\int_{\nu^* \cdot \mathbb{R}} \phi(t; \nu^*; x) \frac{4(1 - e^{-2t}) \cdot e^{-2t} \cdot e^{2x^2} + x^2}{(1 - e^{-2t})^2 e^{2x^2} + x^2} \]

and

(4.2) \[\int_{\nu^* \cdot \mathbb{R}} \phi(-t; \nu^*; x) \frac{4(1 - e^{2t}) \cdot e^{-2t} \cdot e^{2x^2} + x^2}{(1 - e^{-2t})^2 e^{2x^2} + x^2} \]

We shall show that the limit of each of these terms exists.

The term (4.1) equals

\[4\int_{\nu^* \cdot \mathbb{R}} \phi(t; \nu^*; (1 - e^{-2t})x) \frac{e^{-2t} \cdot e^{2x^2}}{e^{2x^2} + x^2} \]

\[dx. \]
Now notice that
\[
\int_{\mathbb{R} \times \mathbb{R}} \phi(0; n^*: 0) \frac{e^{2\pi i n^*}}{e^{2\pi i n^*} + x^2} \, dn^* \, dx = \int_{\mathbb{R}} \phi(0; n^*: 0) e^{i \pi n^*} \, dn^* \cdot \int_{-\infty}^{\infty} \frac{dx}{1 + x^2} = \pi \cdot \int_{\mathbb{R}} \phi(0; n^*: 0) e^{i \pi n^*} \, dn^* .
\]

Since \(f \) is of compact support, this last integral is absolutely convergent. Therefore by the Lebesgue dominated convergent theorem, the limit as \(t \to 0^+ \) of (4.1) exists and equals
\[
4\pi \int_{\mathbb{R}} \phi(0; n^*: 0) e^{i \pi n^*} \, dn^* .
\]

Similarly, the limit as \(t \to 0^+ \) of (4.2) exists and equals
\[
-4\pi \int_{\mathbb{R}} \phi(0; n^*: 0) e^{i \pi n^*} \, dn^* .
\]

We have proved the following:

Lemma 4.1. For \(a_i \in A_i \) and \(f \in C_c(G) \) the limit
\[
\lim_{t \to 0^+} (\langle S'(t, a_i), f \rangle - \langle S'(-t, a_i), f \rangle)
\]
exists and equals
\[
2\sqrt{2} v \pi \cdot \Delta^\vee(a_i) \cdot \int_{\mathbb{R}} f(k \bar{n}^* \cdot a_i \cdot n^* \cdot k^*) e^{i \bar{n}^*} \, dn^* \, dk .
\]

For \(f \in C_c(G) \), write
\[
\langle S^\vee(a_i), f \rangle = \lim_{t \to 0^+} (\langle S'(t, a_i), f \rangle - \langle S'(-t, a_i), f \rangle) .
\]

Then \(S^\vee(a_i) \) is a distribution on \(G \). We shall show later that it is both tempered and invariant.

5. A differential equation

The distributions \(F(t, a_i) \) satisfy a well-known linear homogeneous differential equation. By studying Harish-Chandra's proof of this fact we shall show that the distributions \(T(t, a_i) \) satisfy a linear non-homogeneous differential equation.

Let \(\mathfrak{g} \) and \(\mathfrak{h} \) be the universal enveloping algebras of \(g_c \) and \(h_c \) respectively. For any \(X \) in \(g_c \) and any \(g \) in \(\mathfrak{g} \), write
\[
R_X(g) = gx ,
\]
\[
L_X(g) = Xg .
\]
For every root α in P fix root vectors X_α and $X_{-\alpha}$ such that
\[B(X_\alpha, X_{-\alpha}) = 1. \]
Then $[X_\alpha, X_{-\alpha}] = H_\alpha$, where H_α is the vector in \mathfrak{h}_C such that
\[B(H_\alpha, H) = \alpha(H), \quad H \in \mathfrak{h}_C. \]
Define
\[\mathfrak{s} = \sum_{\alpha \in P} (C_X + C_{X_{-\alpha}}). \]
\mathfrak{s} is a subspace of \mathfrak{g}_C. Let \mathfrak{s} be the image of the symmetric algebra on \mathfrak{s} under the canonical mapping. \mathfrak{s} is a vector subspace of \mathfrak{g}.

Fix a regular element μ in A_\ast, the Cartan subgroup of G corresponding to the Cartan subalgebra \mathfrak{h}. It is clear that there is a unique linear mapping
\[\Gamma_\mu : \mathfrak{g} \otimes \mathcal{K} \longrightarrow \mathfrak{s} \]
such that
\begin{align*}
(\text{i}) & \quad \Gamma_\mu(1 \otimes u) = u, \quad u \in \mathcal{K} \\
(\text{ii}) & \quad \Gamma_\mu(X_1 \cdots X_n \otimes u) = (L_{A_1}(1 \otimes \cdots, X_1) - R_{X_1}) \cdots (L_{A_n}(1 \otimes \cdots, X_n) - R_{X_n}) u, \\
& \quad X_1, \ldots, X_n \in \mathfrak{s}, \quad u \in \mathcal{K}.
\end{align*}
Harish-Chandra has shown that the restriction of Γ_μ to $\mathfrak{s} \otimes \mathcal{K}$ maps $\mathfrak{s} \otimes \mathcal{K}$ bijectively onto \mathfrak{s} ([3(a), Lemma 15]). Let S' be the set of elements in \mathfrak{s} of strictly positive degree. Then it is obvious that for any g in \mathfrak{s} there is a unique element $\beta_\mu(g)$ in \mathcal{K} such that $g - \beta_\mu(g)$ is in $\Gamma_\mu(S' \otimes \mathcal{K})$.

Let $\{H_1\}$ and $\{H_2, \ldots, H_s\}$ be orthonormal bases of \mathfrak{a}_C and \mathfrak{a}_C respectively, with respect to the Killing form. If ω_δ is the Casimir operator on G,
\[\omega_\delta = H_1^2 + \cdots + H_s^2 + \sum_{\alpha \in P} H_\alpha + 2 \sum_{\alpha \in P} X_{\alpha} X_{-\alpha}. \]
Let ω be the sum of ω_δ and $(1/2) \sum_{\alpha \in P} H_\alpha \| \alpha \|^2 I$, where I is the identity operator. ω is in \mathfrak{z}, the center of \mathfrak{s}. We would like to find the element in $\mathfrak{s} \otimes \mathcal{K}$ whose image under Γ_μ is ω.

Suppose $\alpha \in P$. Then
\begin{align*}
\Gamma_\mu(X_{-\alpha}X_\alpha \otimes 1) &= (L_{A_1}(1 \otimes \cdots, X_1) - R_{X_1})(L_{A_1}(1 \otimes \cdots, X_{-\alpha}) - R_{X_{-\alpha}})I \\
&= (L_{A_1}(X_{-\alpha} \otimes \cdots - R_{X_{-\alpha}})(\xi_{\alpha}(\mu)^{-1}X_\alpha - X_{-\alpha}) \\
&- (\xi_{\alpha}(\mu)^{-1}X_\alpha - X_{-\alpha})X_{-\alpha} + \xi_{\alpha}(\mu)X_\alpha(\xi_{\alpha}(\mu)^{-1}X_\alpha - X_{-\alpha}) \\
&= X_{-\alpha}X_\alpha(1 - \xi_{\alpha}(\mu) + 1 - \xi_{\alpha}^{-1}(\mu)) + (1 - \xi_{\alpha}^{-1}(\mu))H_\alpha,
\end{align*}
since
\[X_{\alpha}X_{-\alpha} = X_{-\alpha}X_\alpha + H_\alpha. \]
Therefore
\[- (\xi_{\alpha}(\mu) - \xi_{-\alpha}(\mu))^{-1} \Gamma_\mu(X_{-\alpha}X_\alpha) \]
equals
\[X_{-a} X_a = (1 - \xi_a(t')^{-1})(\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t'))^{-2} H_a. \]

Since
\[1 + 2(1 - \xi_a(t'))(\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t'))^{-2} = (\tilde{\xi}_{a/2}(t') + \tilde{\xi}_{-a/2}(t'))(\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t'))^{-1}, \]
we see that \(H_a + 2X_{-a}X_a \) equals
\[\Gamma_p \left(1 \times \frac{\tilde{\xi}_{a/2}(t') + \tilde{\xi}_{-a/2}(t')}{\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t')}, H_a \right) - 2(\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t'))^{-1} \Gamma_p (X_{-a}X_a). \]

We have shown that
\[\omega = \Gamma_p (1 \otimes \beta_p(\omega)) + \sum_{a \in P} a_\alpha(t') \Gamma_a (X_{-a}X_a \otimes 1) \]
where
\[a_\alpha(t') = -2(\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t'))^{-2} \]
and \(\beta_p(\omega) \) equals
\[H_i^2 + \cdots + H_n^2 + \sum_{a \in P} \left(\frac{\tilde{\xi}_{a/2}(t') + \tilde{\xi}_{-a/2}(t')}{\tilde{\xi}_{a/2}(t') - \tilde{\xi}_{-a/2}(t')} \right) H_a + B(\rho, \phi)I. \]

There is a well-known homomorphism \(\gamma \) of \(\Xi \) onto the set of elements in \(\mathcal{E} \) invariant under the Weyl group of \((g_c, b_c) \). It is an easy calculation to show that
\[\gamma(\omega) = H_i^2 + \cdots + H_n^2. \]
See [1(a), p. 6.11]. Harish-Chandra has shown that for any element \(z \) in \(\Xi \)
\[\beta_p(z) = (\varepsilon_R(t')\Delta(t'))^{-1} \gamma(z) \cdot (\varepsilon_R(t')\Delta(t')). \]
See [3(a), Theorem 2]. This formula can also be proved directly for \(z = \omega \) from our formulae for \(\gamma(\omega) \) and \(\beta_p(\omega) \). (The symbol \(\varepsilon_R(t') \) follows standard notation of Harish-Chandra. We shall also permit ourselves to write \(\varepsilon_R(t') \) for \(\varepsilon_R(h_t) = \text{sgn } t \), whenever \(t \) is a nonzero real number.)

Now let us apply (5.1) to the distributions \(T(t, a_i) \). For any \(f \) in \(\mathcal{C}(G) \) and \(x \) in \(G \) write
\[f(x; t') = f(x; t) = f_{x^{-1}}(x; t). \]
Then for any \(X \) in \(g \),
\[f(x; X; t) = \left. \frac{d}{dt} f(x \cdot \exp tX; t) \right|_{t=0}, \]
in the usual notation. This equals
\[
\frac{d}{dt} f(x \exp(tX) \cdot \mu \cdot \exp(-tX)x^{-1}) \bigg|_{t=0}
\]

\[
= \frac{d}{dt} f(x \exp(tX)\mu x^{-1}) \bigg|_{t=0} - \frac{d}{dt} f(x\mu \exp(tX)x^{-1}) \bigg|_{t=0}
\]

\[
= f_{x^{-1}}(x\mu; \text{Ad}(\mu^{-1})X - X) .
\]

However,

\[
f(x\mu x^{-1}; \omega) = f_{x^{-1}}(x\mu; \omega)
\]

since \(\omega\) lies in the center of \(G\). By (5.1) and the definition of the map \(\Gamma_{\mu}\) this equals

\[
f(x; \mu; \beta_{\epsilon}(\omega)) + \sum_{x \in F} a_{x}(\mu)f(x; X_{-\omega} X_{\omega}; \mu) .
\]

Now suppose that our regular element \(\mu\) equals \(a_{\omega t}\), for \(a_{\omega}\) in \(A_{\omega}\) and \(t \neq 0\). As we saw in § 3, \(\langle T(t, a_{\omega}), f \rangle\) equals

\[
\varepsilon_{R}(t) \Delta(a_{\omega}, h_{\omega}) \int_{G_{14}} f(x^{*} a_{\omega} h_{\omega} x^{* -1}) \Delta(x^{*}) dx^{*} .
\]

Therefore \(\langle T(t, a_{\omega}), \omega f \rangle\) is the sum of

\[
\varepsilon_{R}(t) \Delta(a_{\omega} h_{\omega}) \sum_{x \in F} a_{x}(a_{\omega} h_{\omega}) \int_{G_{14}} f(x^{*}; X_{-\omega} X_{\omega}; a_{\omega} h_{\omega}) \Delta(x^{*}) dx^{*} .
\]

For any real number \(s\),

\[
\text{Ad}(h_{\omega}) X_{-\omega} X_{\omega} = \xi_{\omega}(h_{\omega})^{-1} X_{-\omega} X_{\omega} = X_{-\omega} X_{\omega} .
\]

Therefore \(f(x^{*}; X_{-\omega} X_{\omega}; a_{\omega} h_{\omega})\) is well defined for \(x^{*}\) in \(G/A\), so the above integral makes sense.

We shall use the relation between \(\beta_{\omega h_{\omega}}(\omega)\) and \(\gamma(\omega)\). Let \(\nabla^{s}\) be the differential operator

\[
H^{1} + \cdots + H^{d}
\]

on \(A_{\omega}\). Recall that

\[
r^{2} = 2(r_{1} + 4r_{d}) = B(H', H') = B(\mu', \mu')^{-1} .
\]

If \(\phi\) is any function in \(C^{\omega}(A_{\omega} A)\),

\[
\phi(\mu; \gamma(\omega)) = \left(\nabla^{s} + r^{-2} \frac{d^{2}}{dt^{2}}\right)\gamma(a_{\omega} h_{\omega}) .
\]

Then we have shown that

\[
\langle T(t, a_{\omega}), \omega f \rangle - \left(\nabla^{s} + r^{-2} \frac{d^{2}}{dt^{2}}\right)\langle T(t, a_{\omega}), f \rangle
\]
equals
\[\sum_{a \in P} a(\alpha_i \exp(\mathfrak{h})) \epsilon_\mathfrak{h}(t) \Delta(a, \mathfrak{h}_i) \int_{\mathfrak{g}^{\mathfrak{h}}} f(x^*; X_{-\alpha} X_{\alpha}; a, \mathfrak{h}_i) \Delta(x^*) dx^*. \]

For \(\alpha \in P \),
\[\int_{\mathfrak{g}^{\mathfrak{h}}} f(x^*; X_{-\alpha} X_{\alpha}; a, \mathfrak{h}_i) \Delta(x^*) dx^* = \int_{\mathfrak{g}^{\mathfrak{h}}} f(x^*; a_i \mathfrak{h}_i) \Delta(x^*; X_{\alpha} X_{-\alpha}) dx^*. \]

Recall that
\[\Lambda(x) = \mu'(H(x)) + \mu'(H(xw)) . \]

Then
\[\Lambda(x; X_{\alpha} X_{-\alpha}) = \mu'(H(x; X_{\alpha} X_{-\alpha})) + \mu'(H(x; X_{\alpha} X_{-\alpha}; w)) , \]
if \(H(x; w) = H(xw) \).

Therefore
\[\Lambda(x; X_{\alpha} X_{-\alpha}) = \mu'(H(x; X_{-\alpha} X_{\alpha} + H_\alpha)) + \mu'(H(xw; \text{Ad}(w^{-1})(X_{\alpha} X_{-\alpha}))) \]
\[= \mu'(H(x; X_{-\alpha} X_{\alpha})) + \mu'(H(x; H_\alpha)) + \mu'(H(xw; X_{\alpha} X_{-\alpha})) , \]
where \(\alpha^* \) is the root of \((g_c, \mathfrak{h}_c)\) given by
\[\alpha^*(H) = \alpha(\text{Ad}(w^{-1})H) , \quad H \in \mathfrak{h}_c . \]

If \(\alpha \) is positive on \(a \), \(\alpha^* \) is negative on \(a \). If \(\alpha \) is zero on \(a \), so is \(\alpha^* \). In any case if \(\alpha \) is in \(P \),
\[\mu'(H(xw; X_{\alpha} X_{-\alpha})) = 0 . \]

Also
\[\mu'(H(x; X_{-\alpha} X_{\alpha})) = 0 . \]

Finally,
\[\mu'(H(x; H_\alpha)) = r^{-2} n_\alpha \]
where \(n_\alpha \) is an integer which equals 0, 1, or 2 depending on whether \(\alpha(H^') \)
equals 0, 1, or 2 respectively.

Therefore
\[\Lambda(x; X_{\alpha} X_{-\alpha}) = r^{-2} n_\alpha . \]

We have proved the following:

Theorem 5.1. For a fixed \(f \in C(G) \) and \(a_i \exp(\mathfrak{h}) \), a regular element in \(A_1 A \),
\[\left(\nabla^2 + r^{-2} \frac{q^2}{d t^2} \right) \langle T(t, a_i), f \rangle \]
equals
\[\langle T(t, a_i), w f \rangle + 2r^{-2} \sum_{a \in P} n_\alpha \left(\xi_{a/2}(a_i \exp(\mathfrak{h}_i)) - \xi_{-a/2}(a_i \exp(\mathfrak{h}_i)) \right)^2 \cdot \langle F(t, a_i), f \rangle . \]
The points
\[a, h, \quad a, h \in A, \quad t \neq 0, \]
are sometimes called the \(\mathbb{R} \)-regular elements of \(A,A \). Theorem 5.1 is certainly true if \(a,h \) is only an \(\mathbb{R} \)-regular element in \(A,A \).

6. An integral formula

As we noted earlier, the distribution \(T(t, a) \) is not invariant. To proceed further we must associate an invariant distribution with \(T(t, a) \).

For \(f \in C^\infty(G), y \in G \), write
\[f^y(x) = f(yxy^{-1}). \]

Theorem 6.1. Let \(f \in C(G) \) and \(y \in G \). Then for \(t \neq 0 \),
\[\langle T(t, a), f^y \rangle - \langle T(t, a), f \rangle \]
equals
\[\operatorname{sgn} t \cdot \Delta(a,h) \cdot \left\{ \int_{K \times N} f(kn \cdot a, h, n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k))dndk \right\}.
\]

Proof. Fix \(\alpha \in C_c^\infty(A) \) such that \(\int_A \alpha(a) da = 1 \). Define a function \(A \) on \(G \) by
\[A(x) = \alpha(x), \quad x \in G. \]

Then \(\langle T(t, a), f^y \rangle \) equals
\[\operatorname{sgn} t \cdot \Delta(a,h) \cdot \left\{ \int_{G \times A} f(yx^s \cdot a, h, x^{-1}y^{-1}) \cdot \Delta(x^s) dx^s \right\}.
\]

This expression equals
\[\operatorname{sgn} t \cdot \Delta(a,h) \cdot \left\{ \int_{G \times A} f(kn \cdot a, h, a^{-1}n^{-1}k^{-1}) \Delta(y^{-1}k) \cdot A(kn) dkdnd \right\}
\]
\[= \operatorname{sgn} t \cdot \Delta(a,h) \cdot \int_A f(x \cdot a, h, x^{-1}) \Delta(y^{-1}x) A(x) dx.
\]

This expression equals
\[\operatorname{sgn} t \cdot \Delta(a,h) \cdot \left\{ \int_A f(x \cdot a, h, x^{-1}) \cdot \mu'(y^{-1}x) \cdot A(x) dx \right\}
\]
(6.1)
\[+ \int_A f(x \cdot a, h, x^{-1}) \cdot \mu'(H(y^{-1}xw)) \cdot A(x) dx \right\}.
\]

The first integral in (6.1) equals
\[\int_{K \times N \times A} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k)) \cdot \alpha(a) \cdot da \; dk \; dn \]
\[+ \int_{K \times N \times A} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(a)) \cdot \alpha(a) \cdot da \; dk \; dn , \]

since \(H(y^{-1} \cdot kna) = H(y^{-1}k) + H(a) \).

This in turn equals
\[\int_{K \times N \times A} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k)) \; dk \; dn \]
\[+ \int_{K \times N \times A} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(a)) \cdot \alpha(a) \; da \; dk \; dn . \]

The second integral in (6.1) equals
\[\int_{K \times N \times A} f(k \bar{n} \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k) + H(a^{-1})) \cdot A(\bar{n}a) \; da \; dk \; dn \]

Notice that
\[\int_A A(\bar{n}a) \; da = \int_A \alpha(a) \; da = 1 . \]

Therefore, the second integral in (6.1) equals
\[\int_{K \times N \times A} f(k \bar{n} \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(a^{-1})) \cdot A(\bar{n}a) \; da \; dk \; dn \]
\[+ \int_{K \times N \times A} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k)) \cdot \alpha(a) \; da \; dk \; dn . \]

We have expressed \(\langle T(t, a), f^* \rangle \) as a sum of four terms, only two of which depend on \(y \). If we set \(y \) equal to 1, these two terms vanish, so the sum of the other two terms equals \(\langle T(t, a), f \rangle \). Therefore,
\[\langle T(t, a), f^* \rangle = \langle T(t, a), f \rangle
\[+ \text{sgn } t \cdot A(a, h_t) \cdot \left\{ \int_{K \times N} f(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k)) \; dk \; dn \right\} . \]

For \(f \) in \(\mathcal{C}(G) \) let \(f_0 \) be the projection of \(f \) onto \(\mathcal{C}_0(G) \). Define
\[\langle T_0(t, a), f \rangle = \langle T(t, a), f_0 \rangle , \quad f \in \mathcal{C}(G) . \]

Corollary 6.2. \(T_0(t, a) \) is an invariant distribution.

Proof. Fix \(y \) in \(G \). Since \((f^*)_0 = (f_0)^* \),
\[\langle T_0(t, a), f^* \rangle = \langle T(t, a), (f_0)^* \rangle \]
\[= \langle T_0(t, a), f \rangle
\[+ \text{sgn } t \cdot A(a, h_t) \cdot \left\{ \int_{K \times N} f_0(kn \cdot a, h_t \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k)) \; dndk \right\} . \]
For f in $\mathcal{C}(G)$ let
\[\tilde{f}(x) = \int \! f(ksk^{-1}) \cdot \mu'(H(y^{-1}k))dk. \]
Then the map
\[f \mapsto \tilde{f}, \quad f \in \mathcal{C}(G), \]
is a continuous linear operator on $\mathcal{C}(G)$. If f is in $\mathcal{C}_0(G)$, so is \tilde{f}. Therefore
\[\int_N \hat{f}_0(n \cdot a_1 h_1 \cdot n^{-1})dn = \int_N \hat{f}_0(\tilde{n} \cdot a_1 h_1 \cdot \tilde{n}^{-1})d\tilde{n} = 0. \]
It follows that
\[\langle T_0(t, a_1), f^\nu \rangle = \langle T_0(t, a_1), f \rangle, \]
which verifies the corollary.

Suppose that a_1 is a semi-regular element in A_i. In §4 we defined the distribution
\[\langle S^*(a_1), f \rangle = \lim_{t \to +} \{ \langle S'(t, a_1), f \rangle - \langle S'(t, a_1), f \rangle \}, \quad f \in \mathcal{C}_0(G). \]

Corollary 6.3. $S^*(a_1)$ is invariant.

Proof. For any y in G, and $t \neq 0$,
\[
\text{sgn } t \cdot \Delta(a_1 h_1) \cdot \int_{K \times N} f(kn \cdot a_1 h_1 \cdot n^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k))dndk
\]
\[= \text{sgn } t \cdot \Delta(a_1 h_1) \cdot \int_N \hat{f}(n \cdot a_1 h_1 \cdot n^{-1})dn
\]
\[= e^{tH(y^{-1})} \cdot \Delta_{y}(a_1) \cdot \int_N \hat{f}(a_1 h_1 \cdot n)dn. \]
This function is differentiable at $t = 0$. Similarly
\[
\text{sgn } t \cdot \Delta(a_1 h_1) \cdot \int_{K \times N} f(k\tilde{n} \cdot a_1 h_1 \cdot \tilde{n}^{-1}k^{-1}) \cdot \mu'(H(y^{-1}k))d\tilde{n}d\tilde{k}
\]
is differentiable at $t = 0$. Therefore $\langle T(t, a_1), f^\nu \rangle$ and $\langle T(t, a_1), f \rangle$ differ by a function in t which is differentiable at the origin. Since the distribution $F(t, a_1)$ is invariant,

\[\langle S(t, a_1), f^\nu \rangle - \langle S(t, a_1), f \rangle \]
is also differentiable at $t = 0$. This proves the corollary.

Recall that we are assuming that there is a root β in P_+ which vanishes on a_1. Recall that G_i was the centralizer in G of any element in A_i'. Consider the map
\[\Gamma: (k, n^*) \mapsto k\tilde{n}^* \cdot G_i \]
of $K \times N^*$ into G/G_i. A consequence of the Iwasawa decomposition for G is
that Γ is surjective. Another consequence is that the inverse image under Γ of $e \cdot G_1$ is $K_1 = K \cap G_1$, a compact group.

For any function g in $C_c(G/G_1)$ define

$$ T(g) = \int_{K \times \mathcal{N}} g(k\bar{n}^*) e^{i \bar{\chi} \cdot \bar{v}} \, dk \, dn^* . $$

T is a continuous linear functional on $C_c(G/G_1)$. Therefore there is a measure μ on G/G_1 such that

$$ \int_{K \times \mathcal{N}} g(k\bar{n}^*) e^{i \bar{\chi} \cdot \bar{v}} \, dk \, dn^* = \int_{G/G_1} g(x^*) d\mu(x^*) , \quad g \in C_c(G/G_1) . $$

Fix $a_i \in A_i$ and choose a function ϕ in $C_c(A_i)$ such that the support of ϕ is contained in A_i and such that $\phi(a_i) = 1$. Then if $g \in C_c(G/G_1)$, the function

$$ f(x^* \bar{a}_i x^{* \cdot}) = g(x^*) \phi(a_i), \quad x^* \in G/G_1, \bar{a}_i \in A_i $$

is in $C_c(G)$. As we saw in Lemma 4.1,

$$ \langle S^*(a_i), f^* \rangle = 2\sqrt{2} \cdot r \cdot \pi \cdot \Delta^*(a_i) \int_{K \times \mathcal{N}} f(k\bar{n}^* \cdot a_i \cdot \bar{n}^{* \cdot \cdot \cdot \cdot \cdot}) e^{i \bar{\chi} \cdot \bar{v}} \, dk \, dn^* $$

$$ = 2\sqrt{2} \cdot r \cdot \pi \cdot \Delta^*(a_i) \int_{G/G_1} g(x^*) d\mu(x^*) . $$

Applying this formula to f^* for $y \in G$, we have

$$ \langle S^*(a_i), f^* \rangle = 2\sqrt{2} \cdot r \cdot \pi \cdot \Delta^*(a_i) \int_{G/G_1} g(yx^*) d\mu(x^*) . $$

By Corollary 6.3 we have

$$ \int_{G/G_1} g(x^*) d\mu(x^*) = \int_{G/G_1} g(yx^*) d\mu(x^*) , \quad y \in G , $$

so that μ is a G-invariant measure on G/G_1. It is well known that any G-invariant measure on G_1/G_1 is unique up to a scalar multiple. Therefore, there exists a non-zero constant c such that

$$ \int_{G/G_1} g(x^*) d\mu(x^*) = c \int_{K \times \mathcal{N}} g(k\bar{n}^*) e^{i \bar{\chi} \cdot \bar{v}} \, dk \, dn^* , \quad g \in C_c(G/G_1) . $$

We shall prove that $c = 1$.

Suppose that ϕ is any bounded measurable function of compact support on G. Then

$$ \int_G \phi(x) \, dx = \int_{G_1 \times G_1} \phi(x^* x_1) d\nu^* d\nu , $$

$$ = c \int_{K \times \mathcal{N} \times G_1} \phi(k\bar{n}^* x_1) e^{i \bar{\chi} \cdot \bar{v}} \, d\nu^* d\nu \, d\mu^* $$

$$ = c \int_{K \times \mathcal{N} \times K_1, A \times K_1} \phi(k\bar{n}^* \bar{a}_i x_1) e^{i \bar{\chi} \cdot \bar{v}} \, d\nu^* d\nu \, d\mu^* , $$

where ν is the normalized Haar measure on G. Thus

$$ \int_G \phi(x) \, dx = \int_{G_1 \times G_1} \phi(x^* x_1) d\nu^* d\nu , $$

$$ = c \int_{K \times \mathcal{N} \times G_1} \phi(k\bar{n}^* x_1) e^{i \bar{\chi} \cdot \bar{v}} \, d\nu^* d\nu \, d\mu^* $$

$$ = c \int_{K \times \mathcal{N} \times K_1, A \times K_1} \phi(k\bar{n}^* \bar{a}_i x_1) e^{i \bar{\chi} \cdot \bar{v}} \, d\nu^* d\nu \, d\mu^* , $$
where \(K_i = K \cap G_i \), and \(N_i = N \cap G_i \). This equals
\[
\int_{K_i \times N^* \times N_1} e^{2i(H(a))} d\phi(k^{-1}k\bar{n}^\ast \bar{n}_i \bar{a}_i) e^{i(\bar{\pi}^*)^\ast} e^{i\bar{\pi}^*} d\bar{n}_i d\bar{a}_i d\bar{k}_i d\bar{k}_1 d\bar{a}_1.
\]

For any \(\delta > 0 \), let \((\bar{N}A)_\delta\) be the set of elements in \(\bar{N}A \) of the form
\[
\bar{n}_i \bar{a}_i \quad \text{and} \quad \bar{n}^* \in N^*, \quad n_i \in N_i, \quad a \in A
\]
such that
\[
|1 - e^{2i(H(a))} e^{i(\bar{\pi}^*)^\ast}| < \delta.
\]
\((\bar{N}A)_\delta\) is a neighborhood of the identity in \(\bar{N}A \). For any \(\delta > 0 \), fix a neighborhood \(G_\delta \) of the identity in \(G \) such that
\begin{itemize}
 \item[(i)] \(G_\delta \supset K(\bar{N}A)_\delta \),
 \item[(ii)] \(k_i^{-1}G_\delta k_i = G_\delta \) for every \(k_i \in K_i \).
\end{itemize}

Let \(\phi \) be the characteristic function of \(G_\delta \) divided by the volume of \(G_\delta \). Then
\[
\int_G \phi(x) dx = \int_{K_1 \times K \times N \times A} \phi(k^{-1}k\bar{n}^\ast \bar{n}_i \bar{a}_i) e^{i(\bar{\pi}^*)^\ast} e^{i\bar{\pi}^*} d\bar{n}_i d\bar{a}_i d\bar{k}_i d\bar{k}_1 d\bar{a}_1.
\]

This expression is the sum of
\[
\int_{K_1 \times K \times N \times A} \phi(k^{-1}k\bar{n}^\ast \bar{n}_i \bar{a}_i) e^{i(\bar{\pi}^*)^\ast} e^{i\bar{\pi}^*} d\bar{n}_i d\bar{a}_i d\bar{k}_i d\bar{k}_1 d\bar{a}_1
\]
and
\[
-c \int_{K_1 \times K \times N \times A} \phi(k^{-1}k\bar{n}^\ast \bar{n}_i \bar{a}_i) \cdot (1 - e^{i(\bar{\pi}^*)^\ast} e^{i\bar{\pi}^*}) \cdot d\bar{n}_i d\bar{a}_i d\bar{k}_i d\bar{k}_1 d\bar{a}_1.
\]

The first term in this sum equals
\[
c \int_G \phi(x) dx.
\]

Therefore
\[
|1 - c| \cdot \int_G \phi(x) dx = |1 - c|
\]
\[
\leq c \int_{K_1 \times K \times N \times A} \phi(k^{-1}k\bar{n}^\ast \bar{n}_i \bar{a}_i) \cdot |1 - e^{i(\bar{\pi}^*)^\ast} e^{i\bar{\pi}^*}| \cdot d\bar{n}_i d\bar{a}_i d\bar{k}_i d\bar{k}_1 d\bar{a}_1
\]
\[
\leq \delta c \int_G \phi(x) dx = \delta c,
\]
by the properties of the neighborhood \(G_\delta \). Since \(\delta \) is arbitrary, \(c \) equals 1.

We have proved

Theorem 6.4. For \(g \) in \(C_c(G/G_i) \)
\[
\int_{G_i / G_i} g(x^*) dx^* = \int_{K \times N} g(k\bar{n}^*) e^{i(\bar{\pi}^*)} dk d\bar{n}^*,
\]

7. Evaluation of the distributions on $\mathcal{C}_\psi(G)$

As in [3(b), § 24], let $y = (\pi i/4(X' + Y'))$. y is in G_C, and y leaves a_i C pointwise fixed. $i(X' - Y')$ equals $(H')^{r-1}$. Define

$$b_z = 1 \cap b_C^{-1} = R(X' - Y'),$$

$$b = b_z + a_i,$$

and

$$B = \exp b.$$

B is a compact Cartan subgroup of G. If δ equals β^{r-1}, δ and $-\delta$ are the only roots of (g_C, b_C) that vanish on a_i. For $\theta \in R$, define

$$t_\theta = \exp (\theta(X' - Y')).$$

Then $t_\gamma = \gamma$ and $t_{2\gamma} = 1$. Define

$$\Delta^\delta(a_i t_\theta) = \prod_{\alpha \in P} (\hat{z}_{\alpha/2}(a_i t_\theta)^\alpha - \hat{z}_{-\alpha/2}(a_i t_\theta)^\alpha),$$

and

$$\Delta(a_i t_\theta) = \prod_{\alpha \in P} (\hat{z}_{\alpha/2}(a_i t_\theta)^\alpha - \hat{z}_{-\alpha/2}(a_i t_\theta)^\alpha).$$

Suppose a_i belongs to A_i. Then for a suitably small positive number θ, $a_i t_\theta$ is a regular element in B. We define, as usual,

$$F^\delta_{\theta}(a_i t_\theta) = \Delta(a_i t_\theta) \cdot \int_{G/B} f(x \cdot a_i t_\theta \cdot \bar{x}^{-1})d\bar{x},$$

and

$$F^\theta_{\theta}(a_i t_\theta) = (-2i \sin \theta) \cdot \int_{G/B} g(u \cdot a_i t_\theta \cdot u^{-1})du,$$

$$g \in \mathcal{C}(G).$$

Lemma 7.1. Let a_i be an element in A_i. Then for any f in $\mathcal{C}(G)$,

$$\Delta^\delta(a_i) \cdot \int_{G/B} f(x \cdot a_i \cdot x^{-1})dx$$

equals

$$\frac{1}{4\pi i} \lim_{\theta \to 0} \frac{d}{d\theta} F^\delta_{\theta}(a_i t_\theta).$$

Proof. This is a special case of a result of Harish-Chandra, ([3(c), Lemmas 23 and 28]). We shall repeat his proof in order to obtain the correct constant. For $x \in G_1$, define

$$g_x(u) = f(xuw^{-1}),$$

$u \in G_1$.

Let dx^* and $d\bar{x}$ be the normalized G-invariant measures on G/G_1 and G/B.
respectively. Let du^* be the normalized $G,\text{-}inv$ariant measure on G_B / B. Then $d\bar{x} = du^* dx^*$. Therefore,

\[(7.1) \quad F^\alpha_f(a, t_\delta) = \Delta^*(a, t_\delta) \int_{\sigma / \tau} F^\alpha_f(a, t_\delta) dx^* . \]

Let B_δ be the Killing form of l_C, the derived subalgebra of g_{B_C}. δ and $-\delta$ can be regarded as roots of (l_C, b_{B_C}). Let $H_{B\delta}$ be the element in b_{B_C} such that $B_{\delta}(H_{B\delta}, X) = \delta(X)$, $X \in b_{B_C}$.

Then

\[B_{\delta}(H_{B\delta}, i(X' - Y')) = B_{\delta}((H_{B\delta})^\nu, (H')^\nu) = \beta(H') = 2 . \]

Since $B_{\delta}(H', H') = 8$, we have

\[H_{B\delta} = \frac{i}{4} (X' - Y') . \]

From a well known formula on $SL(2, \mathbb{R})$ we have for any $g \in \mathfrak{C}(G_\delta)$,

\[\pi g(a_i) = \lim_{\theta \to 0} F^\nu_{\theta}(a, t_\theta; H_{B\delta}) = \frac{i}{4} \lim_{\theta \to 0} \frac{d}{d\theta} F^\nu_{\theta}(a, t_\theta; X' - Y') = \frac{i}{4} \lim_{\theta \to 0} \frac{d}{d\theta} F^\nu_{\theta}(a, t_\theta) . \]

Applying the formula for $g = g_{x_\ast}$ and using (7.1) one obtains the formula

\[\lim_{\theta \to 0} \frac{d}{d\theta} F^\nu_{\theta}(a, t_\theta) = 4\pi i \cdot \Delta^*(a_i) \int_{\sigma / \tau} g_{x_\ast}(a_i) dx^* . \]

The lemma follows. \[\square \]

Let \mathcal{E}_δ be the set of unitary equivalence classes of square integrable representations of G. Choose a class σ in \mathcal{E}_δ corresponding as in [3(c), Theorem 16] to a real linear functional ν on iB. Fix a function f in $\mathcal{C}_\delta(G)$, the closed subspace of $\mathcal{C}(G)$ generated by the matrix coefficients of any representation in the class σ. We are going to calculate $\langle T(t, a_i), f \rangle$.

Recall the definitions of $F(t, a_i)$ and $S(t, a_i)$ from \S 4. Since f is in $\mathcal{C}_\delta(G)$, $\langle F(t, a_i), f \rangle = 0$, so that

\[\langle S(t, a_i), f \rangle = \langle T(t, a_i), f \rangle . \]

Suppose that a_i is in A'. Then

\[\lim_{t \to +} \langle T'(t, a_i), f \rangle = \langle T'(-t, a_i), f \rangle \]

\[= 2\sqrt{2} \cdot \pi r \cdot \Delta^*(a_i) \cdot \int_{K \times N} f(k \bar{n}^* \cdot a_i \cdot \bar{n}^* - k^{-1}) e^{i(z^\nu)dn dk} \]

\[= 2\sqrt{2} \cdot \pi r \cdot \Delta^*(a_i) \cdot \int_{\sigma / \tau} f(a_i x^* d x^* , \]

\[= 2\sqrt{2} \cdot \pi r \cdot \Delta^*(a_i) \cdot \int_{\sigma / \tau} f(a_i x^* d x^* . \]

\[\Rightarrow \]
by Lemma 4.1 and Theorem 6.4. According to Lemma 7.1 this last expression equals

\[\frac{\sqrt{2r}}{2i} \lim_{\theta \to 0} \frac{d}{d\theta} F_f(a, t_0) \, . \]

On the other hand, a theorem of Harish-Chandra ([3(c), Theorem 141]) asserts that for \(f \in \mathfrak{c}_c(G) \),

\[F_f^\theta(a, t_0) = f(1) \cdot d_{\sigma}^{-1} \cdot \Delta(a, t_0) \cdot \Theta_\sigma(a, t_0) \, , \]

where \(\Theta_\sigma \) is the character of \(\sigma \) and \(d_\sigma \) is the formal degree.

Now for \(b \in B \),

\[\Delta(b) \Theta_\sigma(b) = (-1)^s \cdot \text{sgn} \omega(v) \cdot \sum_{s \in W_\sigma} \varepsilon(s) \xi_\sigma(b) \, , \]

where \(\omega(v) = \prod_{a \in \mathfrak{P}_v} B(\psi, \chi) \) and \(2q = (\dim \mathfrak{g}_C - \mathfrak{rank} \mathfrak{g}_C) - (\dim \mathfrak{h}_C - \mathfrak{rank} \mathfrak{h}_C) \).

If \(s \) is an element in \(W_\sigma \), we can write

\[\xi_\sigma(a_{l_0}) = e^{ik(su)_0} \cdot \xi^{su}(a_i) \, , \]

for \(k(su) \) an integer and \(\xi^{su} \) a character on \(A_i \). Any character \(\zeta \) on \(A_i \) defines a linear functional \(\mu(\zeta) \) on \(iA_i \). Put \(|\zeta|^2 = B(\mu(\zeta), \mu(\zeta)) \). Notice that

\[B(\nu, \nu) - |\zeta^{su}|^2 = k(s\nu)^2 \cdot B(H', H')^{-1} + B(\mu(\zeta^{su}), \mu(\zeta^{su})) - |\zeta^{su}|^2 \]

\[= k(s\nu)^2 \cdot r^{-2} \, . \]

Since

\[\Delta_\sigma(a_{l_0}) \Theta_\sigma(a_{l_0}) \]

equals

\[(-1)^s \cdot \text{sgn} \omega(v) \cdot \sum_{s \in W_\sigma} \varepsilon(s) e^{ik(su)_0} \cdot \xi^{su}(a_i) \, , \]

we have established the following formula:

\[\lim_{t \to 0^+} \{ \langle T'(t, a_i), f \rangle - \langle T'(-t, a_i), f \rangle \}
\]

\[= \frac{\sqrt{2r}}{2} \cdot d_{\sigma}^{-1} \cdot f(1) \cdot (-1)^s \cdot \left(\sum_{s \in W_\sigma} \text{sgn} \omega(sv) \cdot k(sv) \cdot \xi^{su}(a_i) \right) \, . \]

Now let us return to the differential equation. If \(\omega \) is the differential operator defined in § 5, \(\omega f = B(\nu, \nu)f \). Since

\[\langle F(t, a_i), f \rangle = 0 \, , \]

the equation of § 5 becomes homogeneous. It is

\[\left(\nabla^2 + r^{-2} \frac{d^2}{dt^2} \right) \langle T(t, a_i), f \rangle = B(\nu, \nu) \cdot \langle T(t, a_i), f \rangle \, . \]

Let \(A^*_+ \) be the dual group of \(A_i \). For \(\zeta \in A^*_+ \) define
\[\langle T(t, \zeta), f \rangle = \int_{A_1} \langle T(t, a_i), f \rangle \cdot \zeta(a_i^{-1}) da_i. \]

Then we have differential equation
\[r^{-2} \frac{d^2}{dt^2} \langle T(t, \zeta), f \rangle = (B(\nu, \nu) - |\zeta|^2) \cdot \langle T(t, \zeta), f \rangle. \]

Therefore, there are constants \(C^+ \) and \(C^- \) such that \(\langle T(t, \zeta), f \rangle \) equals
\[C^- \cdot \exp \{ r t \sqrt{B(\nu, \nu)} - |\zeta|^2 \} + C^+ \cdot \exp \{ -r t \sqrt{B(\nu, \nu)} - |\zeta|^2 \}. \]

Now, by Corollary 3.3, we know that \(|\langle T(t, \zeta), f \rangle| \) decreases for large \(t \) faster than any power of \(t \). We shall write \(A^+_1(\nu) \) for the set of characters \(\zeta \) in \(A^*_1 \) such that \(|\zeta|^2 < B(\nu, \nu) \). Then if \(\zeta \) is in \(A^+_1(\nu) \), and \(t > 0 \), \(C^+ \) must be 0. Moreover if \(\zeta \) is not in \(A^+_1(\nu) \) then \(C^+ = C^- = 0 \). It follows that there are numbers \(\{ C(\zeta): \zeta \in A^+_1(\nu) \} \), depending only on \(f \) and \(\nu \) such that for \(a_i \in A^*_1 \) and \(t = 0 \),
\[\langle T(t, a_i), f \rangle = \sum_{\zeta \in A^*_1(\nu)} C(\zeta) \cdot \zeta(a_i) \exp \{ -r \cdot |t| \sqrt{B(\nu, \nu) - |\zeta|^2} \}. \]

From this formula we see that
\[\lim_{t \to +\infty} \langle T'(t, a_i), f \rangle = \langle T'(-t, a_i), f \rangle \]
equals
\[-2r \sum_{\zeta \in A^*_1(\nu)} \sqrt{B(\nu, \nu) - |\zeta|^2} \cdot C(\zeta) \cdot \zeta(a_i). \]

Now we are through, because we can compare (7.2) with (7.4) to solve for the numbers \(C(\zeta) \). \(C(\zeta) \) will be zero unless \(\zeta = \xi^{s}\nu \) for some \(s \in W_0 \), in which case
\[-2r \cdot C(\xi^{s}) \cdot \sqrt{B(\nu, \nu) - |\xi^{s}\nu|^2} \]
equals
\[\frac{\sqrt{2r}}{2} \cdot d_{s^{-1}} \cdot f(1) \cdot (-1)^{s} \cdot (\text{sgn } \tilde{\omega}(s\nu) \cdot k(s\nu) \cdot \xi^{s} \nu(a_i)) \].

Since \(B(\nu, \nu) - |\xi^{s}\nu|^2 = k(s\nu)^2 r^{-2} \), \(C(\xi^{s}) \) equals
\[(-1)^{s+1} \cdot \frac{\sqrt{2r}}{4} \cdot \text{sgn } \{ k(s\nu) \tilde{\omega}(s\nu) \} \cdot f(1) \cdot d_{s^{-1}}. \]

We have essentially proved the following, which is our main result.

Theorem 7.2. Suppose \(f \in \mathcal{C}(G) \), and \(\sigma \in \mathcal{E}_g \) is associated to the linear functional \(\nu \) on \(i\mathfrak{b} \). Then for \(a_i \in A_1 \), and \(t \neq 0 \), \(\langle T(t, a_i), f \rangle \) equals
\[(-1)^{s+1} \cdot \frac{\sqrt{2r}}{4} \cdot f(1) \cdot d_{s^{-1}} \cdot (\sum_{\xi \in W_0} \text{sgn } \{ k(s\nu) \tilde{\omega}(s\nu) \} \cdot e^{-i\xi s \nu(t)} \cdot \xi^{s} \nu(a_i)) \].
Proof. For \(a_i \in A'_i \) the formula follows by substituting the above value for \(C(\gamma_i) \) in (7.3); but \(A'_i \) is dense in \(A_i \) and for fixed \(t \neq 0 \), \(\langle T(t, a_i), f \rangle \) is a smooth function of \(a_i \). Therefore the formula is true for all \(a_i \) in \(A_i \).

Corollary 7.3. In the notation of the theorem, \(\langle T(a_i), f \rangle \) equals

\[
\varepsilon^{-1} \cdot (-1)^{s+1} \cdot \frac{\sqrt{2\gamma'}}{4} \cdot f(1) \cdot a_i^{-1} \cdot (\sum_{w \in W_0} \text{sgn} \{k(sv)\tilde{w}(sv)\} \cdot \zeta^w(a_i)),
\]

where \(\varepsilon \) equals 1 or 2, depending on whether \(g_i(a_i) = 0 \) or not.

Proof. \(\langle F(t, a_i), f \rangle \) equals zero for all \(a_i \) and all \(t \). Therefore by a formula in §4,

\[
\varepsilon \langle T(a_i), f \rangle = \lim_{t \to 0^+} \langle T(t, a_i), f \rangle.
\]

The corollary follows from the theorem.

Yale University

Bibliography

(b) The Selberg trace formula for groups of \(F \)-rank one, Ann. of Math. 100 (1974), 326–385.

[3] Harish-Chandra
(a) The characters of semisimple Lie groups, T.A.M.S. 83 (1956), 98-163.
(b) Two theorems on semisimple Lie groups, Ann. of Math. 83 (1966), 74-128.

(Received February 26, 1973)