Afternoon Seminar

THE STRUCTURE OF TRACE FORMULAS AND THEIR COMPARISON

R. Langlands

1. Credo. There are now many results on the trace formula and many

ideas, so that we can now begin to look beyond the analytic difficulties
and attempt to put it in a form suitable for applications. Since obstacles
remain, some of the ideas are only tentative. One purpose of the after-
noon seminar is to test them in particular cases where the difficulties
can be overcome.

In this part of the seminar 1 want to review the general ideas, at
first briefly; state the result towards which it seems all efforts are
tendings and then, in the context of U(3) or SU(3), explain the
ideas in more detail, and at least partially justify them. However much
will be left for later.

I begin by recalling what we have available in the Wa? of results
and ideas, introducing some catchwords whose meaning it is one of my
purposes to explain.

1. First and foremost, the trace formula of Arthur, both the
ordinary and the twisted forms.

2. The observation that the twisted formula can be used for the
transfer of automorphic representations from one group to another, due
to Saito-Shintani for base change and to Jacquet for the Gelbart-Jacquet
transfer from SL(2) to PGL(3).

3. Stabilization.
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4. Shelstad's formalism of endoscopic groups in the twisted case.

5. For (3) and (4) one needs the transfer of orbital integrals to
endoscopic groups and the fundamental lemma. These represent perhaps
the major obstacle at present, but results of Shelstad, Kottwitz, Rogawski,
and Kazhdan permit considerable confidence that the transfer is possible
and the lemma wvalid.

6. Hierarchical structure of the trace formula and decomposition of
measures.

7. This hierarchical structure will be obtained by paring off the
contributions from proper parabolic subgroups by a procedure that I refer
to as Flicker's trick. It is the necessity of utilizing this device, whose
value was first emphasized by Flicker, that forces us to modify the basic
identity, using ecf rather than Oi.

8. The principle of cancellation of singularities. This is a
suggestion of Arthur, who may feel that its elevation to the status of a
principle is premature.

Recall that to obtain the trace formula we start from the basic
identity (modified) and integrate both sides over G\Gl, obtaining on
the left JT(¢) and on the right @T(qb) . They both depend on the
parameter T and are both distributions in ¢, in general non-invariant.

The fine @ -expansion will - it is hoped - allow us to decompose

JT(d)) as a sum

T T
J™) =) T (¢)
MM



the sum being over conjugacy classes of Levi subgroups of e-invariant
standard parabolics, and thus over associate classes of e~invariant
parabolics.

We will go into this decomposition in more detail later. For now
there are only two points to r-emark:

(a) Both JT(q;) and all J&(M are polynomials in T. The degree
of Jl\jjl(d)) is  dim dz&/ozé. In particular JG(qJ) = Jg(qb) is independent
of T.

(b) The larger M is the closer JI\T/I is to being e-invariant. In
particular JG is e-invariant.

The distribution J will have a simple form. To describe it, it

G
may be best to fix once and for all a finite set of places S containing
all infinite places ‘and all places ramified for G and to assume that
outside of S, ¢, is the characteristic function of Kv divided by the
measure of Kv' Thus we are assuming that

o(g) =TI o.(g)

v v TV

and ¢ is determined by

qu:TT ¢V

vVEeS

Let 0 = OS be the set of conjugacy classes in G(AS) with

elliptic representatives in G(R). Then

J(¢) =) < f sz tvg)dg
G v U G (Ag\G(Ag) S



vy in G(Q) being a representative of the class ¢ .

There will be a similar decomposition
T T
07(¢) =] 0,(¢)
M

and conditions (a) and (b) will be satisfied. To describe the form of

T
% = %

Recalling the presence of w in the definition of R(8) (I now

we need some simple definitions.

shift to the better afternoon notation replacing ¢ by 8) we agree to

call an automorphic representation 6-invariant if it satisfies

(h —> 7(h)) ~ (A — w(8 T (h))m(e *(h))
and of type §& if

m(z) = &(2)I, z € Z

Two 6-invariant automorphic representations 7, 7' of type £ will be

called projectively equivalent if

x being a character of G trivial on ZO and satisfying
_ -1
x(h) = x(8 “(h))

Denote the set of such characters by X(g, ZO) = %.

There will be a countable set Y of projective equivalence classes



such that

(c) oge) = I 4y jg@ tr(r (6) (8))dx
yeY

7 denoting some arbitrary element of y. The meaning of vx(e) will
be explained later. It should also be observed that the numbers d(y)
may not be positive and, indeed, may not even be real.

As observed in Shelstad's lectures we proceed now in two steps.
We first stabilize the ordinary trace formula for quasi-split groups in-

ductively. This is going to lead us from the formula

T T
Jo(¢) = 0, ()
L v Y
to a formula
T T
ST A(¢) =) S8 (¢)
EM M Mo M

If H is a cuspidal endoscopic group for G then, G being
quasi-split every associate class ¥ for- H determines one for G.
Namely an element of the class has a Levi factor M and the center of
M has a maximal split torus A which can be transferred to a torus A'
in G. The centralizer of A' 1is the Levi factor M' of a parabolic
whose class ’?' is the image of ? We write '? = }{?H or M = MH
and ?’ = ?G or M :MH and write ’?H — ?G or MH — MG°

We set

STE () = Th ) - T el sah )
G G H MH+MG



the prime indicating that we sum over all cuspidal endoscopic groups
(or better data) except G itself and <bH being a function associated
to ¢ by transfer of orbital integrals.

In the same way we define

T

T f T, H
ser (¢) =0, (¢) - ) WG,H)) s (¢7)
G MG H M

M H

M
—
H G

M

Since all the H are cuspidal they have the same split center as G.
Thus (c) will continue to hold for S@G(¢) = Seg(q)) and (a) and (b)
will hold for the SJI\I;I(cb) and the S@I\rﬁ(d))a Moreover the inductive

definition has been so made that
T _ T
ZM SIy(4) = 1S6,(¢)

holds.
We are interested in the distribution S@G and we would like to

*
know in particular that it is stable. In this case G = G is already

*
*
quasi~split, but ¢ = d)G is not necessarily equal to ¢. It need only

have the same stable orbital integrals as ¢, and the assertion that

S@G is stable is the assertion that

S0 ) = Se(6)

. *
for all choices of ¢

The plan of attack, and we will see how it works out in particular

cases, is to show that SJG, which is a sum of orbital integrals, is in



fact a sum of stable orbital integrals and thus that
%

This leaves us with the equality of

T T, * T T, *
(A) (ST (4) = ST (¢ )) - (Se.(¢) - Se (s ))
ZM:AG M M ZMzG M M
and
N
(B) Son(9) - 50,09 )

The idea is to add one unramified place Vo to S, working then
sk
with S' = Sv{v,} rather than S, and to take ¢ = ¢ to be an
0 Vo Vo
element of the Hecke algebra H = H(G, Qv). We then prove the equality

of (A) and (B) by treating them as linear forms on substituting

finally the identity of the Hecke algebra for ¢, to obtain the identity
0

desired.

This is an argument already used to prove base change for GL(2).

The Hecke algebra has an involution 9, T cwbv i g —> 9 (g_l)-

0 0 0
The linear forms (A) and (B) may be represented by measures on the

set 61 of homomorphisms A of the Hecke algebra into € satisfying

Moy ) =G

for all ¢
v
0



It follows from (c), applied to Seg, that the measure attached to
(B) is of Lebesgue type and dimension equal to dim #, which is often
zero, whereas one can expect to prove that (A) is a sum of measures of
Lebesgue type and dimension between dim %#+1 and dim 3% + dim ()‘iMO/ﬁzG.
The conclusion must be that (A) and (B) are separately 0.

At the moment I only have a clear idea how to do this when G is
of rational rank 1 and quasi-split, but this will do for the purposes of
this seminar. In this case, as we shall see

T T
SIT () = ST, (4 )
My My Mg

where ¢I\T/I is a function on MO. In the same way

0
STt uﬁ3 = S8J (¢*T}
MO MO MO
T «T
Neither ¢M nor ¢M will be smooth in general. However the difference
T «T
YRRV will be smooth (cancellation of singularities). So we can apply
0 0

the trace formula on MO to the difference obtaining
Y

T T, * T
SIZ (¢) - ST (¢ ) = S0, (b = &)
M, M, My M, Mg

Then it will be easy to show that all three linear forms

¢ so,, (40 o)
—_-—>- p—
Yo MO MO MO
T
6 —> S0 (9)
0 My
T



are given by measures of Lebesgue type and dimension equal to
dim #+1.

The stable trace S@G(¢) once defined we can at least state what
appears to be our final goal. Thus for any group G and any 8 we

want to show that

: 0g(®) = I 1(G,8,H)Se ()
H

The sum is over all cuspidal endoscopic groups for the pair (G, 6).
The proof will of course be about the same. One will show directly,

or almost directly, that
H
(C) Jo(e) = ] 1(G,0,H)ST (6 )
H

and then apply cancellation of singularities and decomposition of measures.
At least one extra difficulty will arise. For example, for the ordinary

trace formula the term
meas{G \Gl)¢(1)

will occur on the left side of (C) and the term
1 *

s e
meas(G \G )¢ (1)

*
will occur on the right, G  being the quasi-split form of G. The
*

relation between ¢(1) and an (1) will be simple, presumably

85 (1) = ¢(1)
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Thus to achieve cancellation we will need to show that

% w1
meas(G \Gl) = meas(G \G )

In some cases this will be known from results on Tamagawa numbers, but
it will be preferable to derive it from the trace formula itself, by an
elaboration of the measure-theoretic arguments.

Shelstad has explained in her lectures the meaning of the identity
* for the twisted trace formula arising from base change for U(l). In
this case there are several endoscopic groups, all isomorphic to U(1).
Some other cases of the identity are implicit in the literature. If G is
the multiplicative group of a quaternion algebra the only cuspidal
endoscopic group is GL(2). So the identity is quite simple, and was
used in effect in §16 of Jacquet-Langlands. In general if G is the
multiplicative group of a division algebra of degree nz then there is
only one cuspidal endoscopic group, namely GL(n) and weak forms of
the identity have been used by Deligne-Kazhdan and Rogawski. For
SL(2) there are many cuspidal endoscopic groups, SL(2) itself and all
anisotropic tori. For base change for GL(n) there is only one
cuspidal endoscopic group and that is GL{(n). For U(3) or SU(3)
there are, as we have seen, more than one cuspidal endoscopic group.
The consequences of this are, as we shall see, quite fascinating.

There are two papers which explore, in a somewhat tentative way
but for general groups, the consequences and meaning of * for the

ordinary trace formula:
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1. J. Arthur, On some problems suggested by the trace formula.

2. R. Kottwitz, Stable trace formula: cuspidal tempered terms.
Our purpose at the moment is however to concentrate on U(3)

and SU(3) and to see whether the plan of attack outlined here is

feasible or nothing but a pipe dream.



AFTERNOON SEMINAR

Orbital integrals of spherical functions

J. Rogawski

Let E/F be an unramified quadratic extension of p-adic fields.
Let G be the special unitary group in 3 variables with respect to E/F
1

defined by the form ¢ = (] -1 '). Let K be the maximal compact subgroup of

integer matrices in G. Let

and set KH = H N K. The map

@ : LH > LG

gives a homomorphism ?* :#G - }(H where %G and ){H are the Hecke
algebras of G and H with respect to K and KH respectively.

There is a unique stable class {T}St of CSG's of G which consists
of elliptic tori that split over E. 1In these notes, we show that the transfer
factors AG(Y), AH(y), t(y) defined in previous notes do in fact give a
transfer of orbital integrals for spherical functions and the class {T}st.
The remaining classes of elliptic CSG's will be dealt with in a lecture
of Kottwitz.

The conjugacy classes within {T}st are parametrized by Hl(gf,T),
where ? = {1,0} 1is the Galois group of E/F. Let A be the diagonal subgroup

of G and let 7 be a fixed prime element in F. We have H](%I,T) =

7/2 ® 1/2 and the four conjugacy classes within {T}St are defined by the



four cocycles with values in the normalizer N(A) of A in G(F):

To obtain a representative for the conjugacy class defined by a cocycle a;s
we write a, = g_lo(g) for some g € G(F) and take T = gAg—] (T 1is defined
over F, although Yy ~> gyg-l, vy € A, 1is not defined over F).

Let Ti be a representative for the class defined by the cocycle

a We choose T, and T inside H (this is possible since a

Os3° 0 3 a,0

and a lie in H). Let &. € G(F) be such that &§.T 671 =T.. We
i 17071 1

0,3

define the unstable orbital integral for Y € Té:

5 5 5
ST/K(y,£) = B(y,E) - Oy LE) = B(y 2,8) + 0(y *,6)

where 0(x,f) = [, £( -]x )dg for x elliptic regular and dg is chosen
o £(g x8

so that meas(K) = 1. For functions on H, we define
/1 %3
@H (y,£) = @H(Y,f) + @H(Y ,£)
where the measure on H is normalized so that meas(KH) = . We want to

prove the following.
Theorem: For all v € Té and f G&?( ,

T/ T/1

. (v, P (5.

T(Y)AG(Y)® (v,£) = AH(Y)®

*
The map & is defined in terms of the Satake transform. For

A €2, set



a(i)

1]
—

-

Aa)) [ g al0g)de.

A\’

Ff(x)

The Satake transform f' of f € J(h may be viewed as a function on elements
Y x Fr € Ly vwhere Y € LAO and Fr 1is a Frobenius element. As such, it
can be written in the form

£ (yxFr) = | F OOAY)
AeZ

where A(y) means Aag(y) and o' 1is the co-root corresponding to the root

3
Qqe Let nj = mug + m(ag)—]. Since Fe is invariant under the Weyl group,
£V is a finite linear combination of the nj (j=0,1,...) and )(é is

isomorphic to the algebra spanned by the nj. Let Hnj denote n.

]
regarded as an element in the range of the Satake transform of J(H. By

definition of &, we have:

: 1 ] x Fr} = [a i l x Fr
¢ ! o

* .
from which it follows that @ (nj) = (-1)7 Hnj. Set

Hh
]

char. fn. of Ka(A)K

rh
[

A char. fn. of KHa(X)KH.

The next lemma follows easily, either by direct calculation or by MacDonald's

formula.



Lemma 1:
2 2 22—
D) f;=qknk+qx(1—l3) z nj+q>”(1—-1-) z n; (Ny o)
=) T 3Ea(2)
0<j<h 0<j<A
A-1
2) B oM s dfa-b row, (3>0)
)\. X q . J
i=0
* A H LA G2 E
: J
q” j=0
S.
To prove the theorem, we shall calculate Q(Y’fk)’ d(y J,fx) for
all )\ and check that the values we obtain compare favorably with the known

g/l(y,fo) through the formula 3) above.

values of ¢
As explained in Kottwitz's lecture, Q(Y’fk) is given combinatorially

in terms of the Bruhat-Tits building associating to G. The building X 1is

a tree with two G-conjugacy classes of vertices. We call the vertices

conjugate to the vertex defined by K hs-vertices and call the remaining

vertices s-vertices. Each hs-vertex has q3+l s-neighbors and each

s-vertex has q+1 hs-neighbors. Thus, for q =2, the tree is as follows:



where the o are hs-vertices and the x are s-vertices. For vertices
p,q € X, let d(p,q) denote one-half the number of chambers that lie on a
geodesic joining p and gq; a chamber is an edge o°—x. The next lemma

is a trivial calculation.
Lemma: For y elliptic regular,
Q(Y’fk) = FA(Y)

where FX(Y) is the number of hs-vertices p € X such that d(yp,p) = A.
Let T be an elliptic Cartan subgroup. Then T is contained in

some maximal compact subgroup of G and thus T fixes some vertex Py € X.

The set Fix(y) of fixed points of an element <y € T 1is a connected

neighborhood of Py* If vy 1is regular, Fix(y) is finite and

FO(Y) = 0y, fy).

Let Nhs(y) be the number of paths in X of the fellowing type:

The path begins at Py» ends at an s-vertex p' which is not fixed by v,

but p € Fix(y). Similarly, let NS(Y) be the number of paths

with p € Fix(y) and p' ﬁ Fix(y). As the following diagram indicates:



FX(Y) is determined by Nhs(y) for A even, A # 0 and by Ns(y) for

A odd. The next lemma follows easily from the structure of the tree.

Lemma 2: q N s(y) A even

A odd.

We- first calculate FO(Y). Let Y1sYp0Y3 be the eigenvalues of

Y € TO. Since T, & H, we may choose Y2 so that

0
£ 0 %
Y = Yz
0 *

Let val : E' > I be the valuation map and set m, = val(l-agl(y)) where
al(Y) = YI/YZ’ az(y) = Y2/Y3» and a3(y) = Y]/Y3 (the ambiguity in the

labelling of Y, and vy, will not matter).

Proposition 1: Let Yy € T0 be regular, Set m = min(m],mz,mB), n =

max(m],m ), and let

273
1 if m=n (2)

S(y) =
0 if m#n (2).



a) Fo(y) is equal to

m my Tyt
451 2 q
-(g+1) 27 q°(q+1) m+n m+n | (q+1)
- - (-1 — + §(y) ——F— .
4 -1 q-1
q -1 q -1
<S3
b) FO(Y ) 1is given by the following formulas
-1
$ 4144
(1) If w #wmy,then Fo(y ) = (g 2 —1)‘*—*—’——]—

S
(ii) If m,=w, ,then F,(y 3) is equal to

m, +m,+m

L 11Ty
—(2"‘1) -q 2 q [ES+]) + (_])m+nqm+n __}_]_ + (]‘S(Y)) q 1 (q+l)
q -1 q -1 q q-

. . . T
With this proposition, we can compute @ /x

(Y,foé. 1f m,m, ,my
are the integers attached to vy, set Fj(ml’mZ’mB) = FO(Y J), where we
let 60 = |. The proof cf the proposition shows that Fz(ml,mz,mB) =

F3(m3,m2,ml) and Fi(ml,mz,m3) = F3(m1,m3,m2). We must calculate
Fo(m],mz,m3) - F3(m3,m2,ml) - F3(m],m3,m2) + F3(m],m2,m3).
The three possibilities are
(a) m, > m, = mg (b) my > m, =m, (c) m, > m = m,.

Case (a): We are reduced to Fo(ml,mz,m3) - F3(m3,m2,ml). After cancelling

off equal terms, we get



m +m, m_+m,+m m_+m, m_ +m
1772 B MM g4 1) 17 ™ 2{ 1 ]
(=1) = - 2(-1 —
1 a-1) -0 d q-1

Case (b): The constant terms cancel and the highest order term is

m]+m2+m3 .l
q (%:T). The intermediate terms are as follows:
4[21( 2
- q 27|9(g+D) _ _jymtn menf 1
Fo(m],mz,m3) q 7 (-1)" q )
q -1
ar® Ly, o
- F,(m,,m,,m,) ¢ - g 2 q+l1 _
3V7322y 4
kq -14
m= 1
4[—1+4 3
- F,(m,,m_ ,m,) : - q 2 q*!
3173220 4
\q -1
4[21( 2
F,(m,,m,,m,) : - g 279" (g#1) + (_l)m+nqm+n " .
37177273 4 gq-1
q -1
The sum of these intermediate terms is
m m-1 m, +m
_2(q+]) 4[7]+2+ 4['—2—-]+4] } _2q2m(q+l) ] _2q 1 2(q+1)
qa_l q q q_] q—l

Case (c): We are reduced to Fo(m],mz,m3) - F3(m],m3,m2) and the answer is

the same as case (a). To summarize, we have the next proposition.

Progosition 2: For vy € TO regular,



This Proposition gives the theorem for fO = f; it 1is clear that

m,+m T/I

! and it is known that @H

t(y) = (-1)
-1, "3
(g-1) "(q “(q+1)-2).

(Y,Hfo) is equal to

Proof of Proposition 1: Since TO splits over E, we may choose g € SL3(C95)
1

so that gA(E)g = TO(E), where O is the ring of integers in E. Suppose

E
that vy € A(E) and gyg_1 € T, Then a vertex p 1is fixed by vy 1if and

only if gyg_] fixes gp. Let Py be the vertex associated to K and
assume that TO C K, which we may up to conjugacy. An hs-vertex of X is

of the form 8XP, for some x € SLB(E); gxP, lies in X 1if and only if
G(gxpo) = gxp,y.  Now, G(gxpo) = Bxp, if and only if

x (g7 o(g))o(x) € SL4(07) and since g 'o(g)

w, this is the condition
(*) bx e SLB(CY ).

E
By the Iwasawa decomposition, we may choose x wupper-triangular. Let

*
a,b,c € E

]

[}
o
O O —
o - N
—_— N

X,¥s2 & E.

A calculation shows that this x satisfies (%) if the following six

quantities lie in C7 :

E
1) aa 4) bb + aaxx
2) aax 5) bbz + aayx
3) aay 6) cc + bbzz + aayy.

Now let
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N\

d -j -4

s I 81 il €2
= -]

X 1 0 1 kit 83
4o 0 1

where d = a non-negative integer, 0 < j < d, and the ej are zero or lie

. * . o . . -
in C’E' Then x satisfies (%) if and only if the two conditions

-j _
D 1o (egre e,) € O];

2) Tr-Zd(1+Tr2d_2jN(e3)+N(€2)) € 0;

are satisfied, and if x,x' are of this form, Xpy = x'pO only when

j 2(d~}) 24
() € - €, =T JE‘(€3'~ g€;) (W )

ti
Q]

oot (]
€, = € (m) €,

(N(a) denotes the norm from E to F). Furthermore, for x of this form,
d(xpo,po) =d.
We will now describe the qu(1+ -%J points at a distance d

q
from Py in X by writing them as g x Py with x in the above form.

-1 (ﬂ2d

a) j =0; take e, =¢, =0 and N(ez)

: ). We obtain qu(1+ %)

points this way.

b) j = d; take € = (—€3/€2) so that 1) 1is satisfied and choose €, SO

that N(Ez) 2 -1 (m);

then ¢4 is taken to be a unit satisfying 2). There are qad(l— —%) -
q
q4d-2(1+ %) = q4d(]— %._ J%) choices for €y and qu(l+ %) choices for
q
€3- Dividing by q2d to account for redundancies, we obtained
q4d(l— 2. jL) points in this way.

2 3
q q



1

C) j = 1,...’d - 1; take €] = (—83/62) so that ]) is SatiSfiEd and
TTZ(d-J)N(€3) + N(ez) =0 (n2d). We must require

TT2(d—_‘1)+]

pick €9 and e3 so that 1 +

that N(€2) = -1 (ﬂz(d_j)) and N(Ez) Z -1 ( ). Then 2) 1is satisfied

by 24y, %)(ql;j_ql;j—-l)

choices of €, and qzj(l+ é& choices of €qe
Dividing by qzj to account for redundancies, we obtain q2d+2j(1+ %)%\-%)
q2d+2j(l— —%)(1+ é& points. Summing over j gives (l+ é)(qu—z—l)qu
points. ¢

For each of the points of the form p Xp with x 1in the above

form, we may consider the points w,p where

01 0 -100
Wy o= 10 0 Wy = 001,
00 -1 01

In cases a) and c¢) this leads to new points (by a lengthy but straight-

forward calculation) and gV XD, is F-rational if 8XD is because
i

t .
wow, = 1. Hence we have described a total of

q4d(l— I _2_) + 3q2d(l+ l) + 3(1+ l)(qu—z_])qu = q4d(l+ -1—-)
q2 q3 b 4 q3

points of the form p = Xpy or wjxpo such that 8XPg is an F-rational
point of X and d(gxpo,po) = d. This must therefore be all p € X such

that d(gxpo,po) = d.

Let vy be the standard roots. If

i
<
N

and let al,aZ,QB
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voa=alox Gl oy + @ ) - o] e

vy a7 lyn = |0 I (1-03 (1))

0 0 i

Assume that g\{g_1 €T and let

m.

-] - ]
(l—aj ¥)) = nj

€ O

If x =an, a € A, n € N, then vy fixes Xp if and only if y—ln-lyn € KA N.

Suppose that

nd 1 W—JEI ﬂ-2d€2
a = i n=i0 1 T e
3
-d 0 0 i

with- n of the type described above. Then if vy fixes anp the following

inequality holds:

2(d-3) 2(d-J)+m1-m3

(%) val(N(e,)+m N(eg)-n npn; N(e) > 24 - m

3

Furthermore, it is easily checked that

1) m, > my => my = m,
ii) m <mg =>m =m,
iii) m, = my => m, Z_m] = mg.

We consider the cases separately.



13

1) m, > my:  then Y fixes anp, if and only if 24 < m; and 0<] < my.

1

2) my < my: then y fixes anp, if and only if either

m
i) 2d -2j+m, -my, >2d - m ji—zl,2d<m3, and

1 3 3° =
0 < j< m,, oOr
ii) 24 > My 2d - 27 + m - my = 0 and
my-m, -1 2d—m3
N(ey) + m N(€3) - N N3 N(ey) = 0 (m ).
This occurs only when m, = mg (2) and
m m,+m
d=[—§3-]+l,..o’ 123 .
3) m = gl then <y fixes anp, if and only if either
i) 2d < mg and 0 < j <m or
ii) 0<d=] <m and
-1
va1(N(e2)+(l—n]n3 N(e3)) > 24 - mg.
When d # j, we have to consider the points ijpO for j = 1,2 also;

this amounts to replacing vy by wijgl and using the above conditions.
Suppose first that m, 3 my and let m = min(ml,m3),

n = max(ml,m3). Then the number of fixed points is equal to

(3] (5] 3
) c14d(1+ ——]5-) + ) q2d ) qzj(l— Lz)(l+ %) + (1+ %) (a)
d=1 q d=[%l']+l j=1 q

We obtain:
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4[274+2 m_+m
F.(y) = —(g+=q ’ CLADA L if m, Z m (2)
oY 4 q-1 2 ¥ 03 °
qg -1
If m, = m, (2) and m, = m, we obtain the number (a) plus
an additional
m+n a
2 m+2[=]
1,2 2d
(1+ a—) qm z q = (__g::)(qn+2m_o’ 2 )
d=[%]+1
points. We obtain
4[%]+2 m, +m, m, +m,+m,
-(q+1)-q (q+1) ¢q q (q+1)
F = - = = .
0(y) q4-1 =T * -~ if m = my, My = m
The only remaining case is m, > m, = m,. We obtain
4[3]+2 m +m
~(qg+D-q > (g#D) g ' 2
+ if m, Zm (2)
4 gq-1 2
q -1
4[21+2 m,+m m, +m,+m
-(q+1)-q 2 (g+1) q '@ ? q 2 3(q+1)
- + if m, = m (2).
4 q-1 q~1 2
q ~1
The result is as stated in part a) of Proposition 1.
Now we have to compute the fixed points for vy € Tj, j = 1,2,3. We
will see that the cases T, and T, can be easily reduced to the case of

1 2

T3, so we deal now with this case where we may assume that T3 is

associated to the cocycle
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a =w 1 and that gAg-] = T. Let CYA
m

be the apartment in X
associated to A, and let Py/2 be the unique s-vertex fixed by a5 (we
may assume that T stabilizes pl/Z)' As in the previous case, we will
describe the hs-vertices p such that gp 1is F-rational in the form Xp

and then compute the fixed points of gyg_l by determining whether or not

vy fixes Xpy:

d -j -2d-1
gl 17 7 €y
Let a = 1 and n = |0 1 ﬂ_Je3 s J = 04l1y...,d,
nd o o 1
where €. € OE or €j = 0. The point ganp is F-rational if and only if
tEm|" 1 (an) € SL3(0E) which is equivalent to the requirements

-1
m

-j —
1y = (€3+€1€2) € OE'

2) 1297124723 g yaNge,)) € o,
3 2 E
We always take ¢, = -(€3/€2).
a) j =0: take €, = € = 0 and N(ez) B —1(ﬂ2d+1). We obtain q2d(q+])
points in this way.
b) 0 < j < d: choose €, such that N(€2) -1(n2d_23+1) and
N(Ez) F2 —1(ﬂ2d_23+2), and €q satisfying 2). We obtain a total of
q2d+2]+](]- —%J(l+ %) points in this way.
q
Adding cases a) and b), we obtain a description for
d .
q2d+1(1+ é& + q2d+1(1+ é&(l— —%) z qzé = qad(q+l) points. Furthermore, all

q- j=0

points obtained in this way satisfy d(p,pl/z) =d + (where d(p,q) =

1
2
half the number of chambers separating p and gq). Since exactly q4d(q+1)
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points satisfy d(p,p,,,) = d + l, this must be all of them.
y 1/2 2

To reduce the cases of T1 and T2 to T3, we remark that vy

fixes Xp, if and only if wijgl fixes wjxpo. Choose gj (j=1,2) so
that ngggl = Tj° Then the number of fixed points of glyg;1 equals the
number for gwj_ywzlg—1 and the number for gzyg;] equals the number for
-1 -1
gw,Yyw, & -
Suppose gyg-1 € Ty and let W, M, 5 My be as before. Then if

gyg_] fixes anp with an of the usual form so that ganp, is

F-rational, the following inequality holds:

. 2d=2j+1+m_-m
2d=-23+1 - 173 _
(%) val(N(€2)+ﬂ N(€3)‘ﬂlﬂ3 i N(€3)) >2d + 1 - m,.

There are two cases to consider:

a) m, > mg! then 2d <mg - 1 and 0 < j f_mln(m],mz).
. V m,~-1 m,
b) m, < mgi (1) 0<] f.mln(ml,mz), d <= and j < 5 or
(ii) 24 + 1 > mg, 0<j i_mln(ml,mz), 2(d-j) + 1 = mg - m,
2d-2k+1 -1
and V(N€2+TT Ne3-n]n3 Ne3) >2d + 1 - my

((ii) occurs only when m, 4 m3(2).)

The number of fixed points in the two cases is

m,~1
3 m,—1
==, Pt N
a) ] q (e =L—(q -1).
d=0 q -1
m m,—-1 m
[— R [
4d 2 2d 23 i
B) 1 q g+ s ] @ + T Pl@rna- =) +
d=0 j=0 q
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(if m % my(2))

m]+m3—1
2 m, +1+2d
1,2 1
+ (1+ =)
( 4 E q
m,-1
_r. 3
d=[ 5 J+1
4 ml
_(q+1)_q2(q+1q4[?r] qml+m3
+ if m, = m,(2)
4 g-1 1 3
q -1
= <
ml]
4{— m,+m
2 2 173 2m,+m
-(q+1)-q"(gq+1)q _q q+1 173 .,
q4-] =1 + —1 ¢ if m, # m3(2).

To obtain the theorem for fx, A# 0,

Nhs(y) and NS(Y). It is known that

A+m
/1, H,, M3
(Y’ f>\) = q (1+ q).

%

The next lemma follows from Lemma 1.

Lemma 3:

22 +m ~(m,+1)
3 1 1 1 3
1+ — 1+ — + ~—)=2
q (1+ q)(( + q + 2) q

q

22+m,-1 -m
1
e > (= D(1-29 3

\

o1y, 9" (5 = 1
)

S

K

1 2
For Y € T,, regular, let Nhs(y) = Nhs(y) - Nhs(y ) - Nhs(y ) + Nhs(y

< S S S
and NS(y) = N_(y) - N _(y

the next proposition.

) A even

A odd.

$

$

it is necessary to compute

3

1) - NS(Y 2) + NS(Y 3). The result is equivalent to



18

Proposition 3: Let Y € TO be regular.

m_ 4m. m_ +m.+m ~(m,+1)
2 N (=¢n' Zgl? 33D e L v Ly2g 3 )
s q q2
m. +m m_+m,.+m =
b) Ny =D V2?2 3gena-2q D).

The computations required to verify this proposition can be
carried out using the description of the fixed points of Yy given in the
proof of Proposition. According to Kottwitz's lecture, we can alternatively
compute the number of s-vertices fixed by the stable conjugates of v,
for a simple argument shows that Nhs and Ns can be expressed in terms of

the numbers of fixed s and hs-vertices. A computation of the number of

fixed s-vertices will be given in subsequent notes.



Notes I for the seminar "Analytical Aspects of the Trace Formula II"

Preliminary Facts About Unitary Groups in Three Variables

J. Rogawski

§1. Definitions. Let E/F be a separable quadratic extension of fields
and let ¢ (E/F) = {1, ¢} be the Galois group of E/F. Let D be a
simple algebra which is central over E. An involution of the second
kind 1 is an anti-automorphism of order two of D such that the
restriction of 1 to the center E of D coincides with o. If A is
a commutative F-algebra, then o extends to an automorphism of

E ®F A and 1 extends to an involution of D ®F A whose restriction
to E ®F A is o. Given a pair (D, 1), we obtain an algebraic group

UT defined over F such that for every F-algebra A, the group of

A-rational points is given by:
*
U (a) =1{ge (DA : <(glg=1}

We call UT the unitary group defined by (D, 1). We also obtain the

groups

SU_(A) = fg e (D 8, A) : w(g)g = 1, Nm(g) = 1)

GU_(A) = {ge (D 8, A) : (e € (B O I

where Nm is the reduced norm map.

Let Mn(R) be the algebra of n X n matrices over R for any



ring R. If D = Mn(E), an involution of the second kind <t is of the

form +t(x) = ®_10(tx)® for x € Mn(E) and © & GLn(E) is Hermitian,

t

i.e., ®» = og(®). In this case, UT is the unitary group attached to the
e ot ]
Hermitian form <v1, v2> = O(vl)@vz where vy and v, are column
. n
vectors in E .
Let
0 1 1
@n' = . € GLn(E)
1° 0

and let Un denote the unitary group with respect to E/F defined by
the Hermitian form CZDn. Then Un is qgasi—split (a reductive group over
a field F is called quasi-split if it contains a Borel subgroup over F)
since the subgroup of upper-triangular matrices in Un is a Borel
sﬁbgroup over F.

We recall the definition of an inner form of an algebraic group. Let
G and G' be algebraic groups over a field F and suppose that there
is an isomorphism @ : G —> G' defined over a Galois extension E/F
with Galois group ?(E/F). For o e?(E/F), a_ = cp_l ° qu is an
automorphism of G over E and a__=a_° O(ar) for all 1 € ¢#(E/F).
Hence {ac} € Hl(%(E/F), Aut(3)) and if a_ is an inner automorphism
for all o e ?(E/F), then G' 1is called an inner form of G. Every
connected reductive group is an inner form of a unique guasi-split
reductive group. Hence all unitary groups are inner forms of the groups

Un defined above.



§2. Unitary groups in three variables. In this section, suppose that

(D, 1) 1is a pair as in §1 where dimED = 9. The group UT is called
a unitary group in three variables. We list some facts about unitary groups

in three variables.

Fact (i): If F =R and E =C, all unitary groups in three variables
are isomorphic to either the quasi-split form U3 or the compact form

100
defined by the Hermitian form <O 1 O).
001

Fact (ii): If F 1is a p-adic field, all unitary groups in three Variablés
are quasi-split, hence isomorphic to U3.

Now let E/F be a quadratic extension of number fields and let v
be a place of F. Let UT be a unitary group in three variables with
respect to a pair (D, r) for the extension E/F. From the definition of

UT and the above facts, we get:

Fact (iii): a) If v is infinite, then UT(FV) is isomorphic to U3(R)
or its compact form if v is ramified and it is isomorphic to GLB(R) or
GL3(C) if v is unramified and FV =R or FV = C, respectively.

b) If v 1is finite and does not split in E, then UT(FV) is
isomorphic to U3(FV) .

c) If v is finite and splits in E, then UT(FV) is isomorphic
to (D ®E EW)* where w 1is a place of E lying above v (the groups

for the two different places are isomorphic).

Fact (iv): The isomorphism class of UT is determined by the isomorphism

classes of the groups U_(FV) for all places v of F, i.e., UT is
t
1



isomorphic to U if and only if U (FV) is isomorphic to U_(F_) for
T, Ty T,V

all places v of ¥, where (Dl’ ’El) and (DZ, TZ) are pairs as in §1.

§3. L-groups. The L-group of a connected reductive group G over a

field F 1is a complex Lie group of the form LG = LGO b WE/F where

E/F is a Galois extension over which G splits (we may take E/F as
large as desired, or may take E to be an algebraic closure of F) and

WE/F is the Weil group of E/F. The L-group depends only on the

*

guasi-split group G of which G 1is an inner form: LGO is the group

of complex points of the connected reductive group over € whose root

L_ o .
on G is

E/F
defined through the action of Y (E/F) on the root data defined by a

*
data is inverse to that of G and the action of W

Borel subgroup of G* defined over F . We refer to Borel's article in
[ ] for precise definitions. We simply state what is needed for this
seminar.

(i) Let E/F be a separable guadratic extension and let G = UT

be a unitary group in mn-variables with respect to E/F. Then

Lo _ L. _L.o ) Lo
AG = GLn(C) and G ="G = WE/F where WE/F acts on G
through its projection onto % (E/F) = {1, ¢} and o acts on Lgo by
the automorphism g b— J;l tg—l Jn with
1
0 p 7t
J =
n
0



(ii) With G, E/F as in (i), let G = Res.,.(G) where Res

E/F E/F

denotes restriction of scalars. Then

Lo _ Lx _ Lxo
G —GLn(C) XGLn(C), G =7G NWE/F

where WE/F acts on LGO through its projection onto %4 (E/F) and

L~ . .
o acts on G° by the automorphism:

-1t -1 -1t -1
(gl’ gZ) (Jn g2 Jn’ Jn g1 Jn)

L—..
for (gl, gz)é G°

. S /- T S
There is a homomorphism G —— TG defined by

< LO
wG(gXW)Z(g, g) xw for gxwe€ G ﬁwE/F’

§4. Unramified Representations.

Let G be a connected reductive group over a p-adic field F. It
is called unramified if G 1is quasi-split over F and splits over an
unramified extension E/F. If G is unramified, it contains a "hyper-
special” maximal compact subgroup K (see [ 1) and an irreducible
admissible representation w of G(F) 1is called unramified if the space
TrK of vectors in 7 which are fixed by some such K is non-zero.

Let G be unramified with E/F as above and let

LG = LGO ) 7(E/F). Let @ € 4(E/F) be the Frobenius element.

un
Then the set W (G) of unramified representations of G is

parametrized by the set of LGO—conjugacy classes in LG which contain

an element of the form vy x ¢ with vy g LGO semisimple.



If w is unramified and irreducible, then dim ’ITK = 1 and the
Hecke algebra HK of bi-K-invariant, compactly supported functions on
G(F) acts on TTK through a character X : HK —> C. The above

assertion amounts to an identification of the characters of the commutative
algebra HK with the conjugacy classes {y x &}. See Borel's article

in [ ] for details.

§5. Functoriality in the unramified case.

If G1 and GZ are connected reductive groups over F  (local .

= Lo ww and TG. = TG% xw

. L
or global) with L-groups G, = 1 B /T 5 = 5 B /F

respectively (we take E large enough to define both L-groups), then a

map of L-groups is a homomorphism:

L. ¢ L
Gy /;Gz

Wer

such that the above diagram commutes, where the maps to WE are the

/F

projections on the second factor.

Now assume that F is ‘p—adic and that G1 and GZ are un-

ramified. Take E to be an unramified extension of F over which both

G, and G, split. By §4, an L-group map ¢ :LGl—>LG2 gives

ur un
a map || (Gl) — [] (GZ) by associating the unramified representation

corresponding to the LG(l)-conjugacy class of y x © +to the one corre-

sponding to the LG(2)~conjugacy class of @ (y x ¢).



§6. The basic diagram of L-group homomorphisms.

Let E/F be a guadratic extension of number fields with Galois

group YF(E/F) = {1, o}. We define the following five groups:

G = U3 with respect to E/F
H = U, with respect to E/F
G = ReSE/F(G)

H = ResE/F(H)

T = El X El

where E = is the algebraic group over F defined by the group

1

E ={x¢eE : NE/F(X) = 1} of norm one elements in E. Thus, for any
1
field extension XK/F, E(K) = {x € E ®_. K : N (x) = 1}. We will
F E®FK
define a diagram of L-groups:
1, ~
G
e , ”E
My
Lg La
AH un w;It
A 1
Lo T Ly ¥ L,
. un
such that IPG o AH = }\H o wH }
*
For any number field k, let Ak, A, and Ck denote the

adeles, ideles, and idele classes of k, respectively. Recall that there

is an exact sequence 1 CE WE/F — ‘{](E/F) —> 1, We



regard CF as contained in CE in a natural way and NE/F(CE) c CF'

All L-groups occurring in the basic diagram have been defined in

L_o

§3 except LT. We have LT ="T %W where

E/F

L..o _ a 0
T _{(O b) € GLZ(C)}

E/F acts on LTO “through its projection onto 92(E/F), and
L

o acts on T° through the automorphism

and W

<<a ) <a—1 O >

o > = _

0 b, o bl

The maps in the basic diagram are defined as follows.
(i) wG is the map defined in §3.

is the fnap ng defined in §3.

Let o : GLZ(C) — GL3(C) be the map

a 0 b
a b -1
o << )) = 0 & 0 where § = ad-bc
c d 0 4

C

We fix an element w € WE/F which projects to ¢ € F(E/F) and a
character u of CE whose restriction to CF is the character of order

two associated to E/F by class field theory. We have wi € CF - NE/F

and hence u(wi) = -1,

(1ii) AH maps h x 1€ LH to a(h) x 1 GLG,

(Cp)



u(z)

AL(Ixz) = u(z)_2 X z € LG for z e C
H E

u(z)

1
Ao (Ixw ) = 1 X w _ & LG
H o} o
-1
Then }‘H defines a map of L-groups

(iv) Ay maps (h hZ’ z) € LETIO x C to (cx(hl), u(hz), z) € Lé and

H

1
Agl(L, 1) x w ) :<< 1 ) , <
1

1’ E

-1

(v) w;n maps h><1€LH to (h, h)XlELI—N{ and

u(z) - ulz)
w;n(1XZ) = << > , < >> xz €
u(z) u(z)
1 -1
un _ L
R << 1>’ < —1>> R

T

§7. What to expect.

One would like to understand functoriality for the basic diagram as
completely as possible. The general problem and technigues for solving it

(stable, twisted trace formula and matching orbital integrals) were
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outlined by Langlands. Contributions (in chronological order) are as

follows: )

Rogawski: existence of quasi-lifts for AH and matching orbital integrals
for }‘H (part of thesis, 1980, and unpublished manuscript, 1981)

Kottwitz: matching orbital integrals for Ve (unpublished manuscript,
1981) ,

. . . un st
Flicker: discussion of wH and wH (Duke J. Math. 49, no. 3, 1982)

and preliminary draft dealing with IPG

Further references are: :

Labesse-Langlands: L-indistinguishability for SL(2), Can. J. Math. 31 p
(1979). (This paper treats the analogue of the map )\T for SL{2)
and applies, with minor modifications, to )\T. It was a motivating
example for subsequent work on L-indistinguishability.)

Langlands:‘ Les débuts’ d'une formule des traces stable, Pub. Math. Paris

VII, 1982.

D. Shelstad has an extensive bibliography of papers dealing with L-
indistinguishability for real groups. See Langlands Paris VII notes

and further notes of this seminar for references.

What follows is a sketch of results which one would like to prove and
questions one would like to answer. Some are suggested by the unpublished
manuscript of Flicker cited above. In some cases, certaln facts are already
known and one wants to understand the compatibility of what is known with
the formalism of‘ L-groups.

For the definition of an automorphic representation, we refer to the
article of Borel and Jacquet in [ ]. An automorphic representation will
be called cuspidal, discrete residual, or Eisenstein according as it occurs in the

space of cusp forms, residues of Eisenstein series, or in the orthogonal
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complement of the discrete spectrum, respectively. It occurs discretely
if it is cuspidal or residual.

If G is a connected reductive group over a local (resp. global)
field F, [[(G) will denote the set of irreducible, admissible (resp.
automorphic) representations of G(F) (resp. G(A)). If F is global
T[_V(G) will denote W(G{FV) and Win((}) will denote the set

un

T (G/F ).
L L

If G1 and GZ are groups over a global field and ¢ : G1 —> GZ
is a map of L-groups, we obtain maps @ : Lle —> LGZV by restriction,

where LGV is the L-group of G/FV. Hence ¢ gives rise to maps
un un
@ : ﬂ—v (Gl) ——>WV (GZ) for all places v at which G, and GZ

are unramified as in §5.

1 1
Definition: With ¢, Gl’ GZ as above, let 7 =@ T, QW(GI) and
2

7T = ® ﬂi € TRGZ)' Then Tr2 is called a quasi-transfer of wl (with respect

to (P) if ’ﬂ'i: <p(1r3_) for almost all v at which Gl’ GZ and T,

are unramified.

The following is a list of questions:
Q1. Do quasi-transfers exist for all maps in the basic diagram? This is known

so far for all of the maps except Ve (for it follows from the theory

KI:I’

of Eisenstein series and for the other maps from the references cited above).
We want to define transfers locally and globally and there are two points

to understand beforehand. First, in general it makes no sense to transfer a

representation to an individual representation because, for example, in

the local tempered case, transfers should satisfy certain character identities
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and these identities can only be formulated in terms of stable conjugacy.
Postponing details for the time being, it suffices to say that one can

only compare certain linear combinations of characters of irreducible 7
with such linear combinations on other groups and not the characters
themselves. The linear combinations are built out of elements in finite sets
of representations called }fpackets, in the local case. Second, transfers
and L-packets for non-tempered representations will generally not obey
the same formalism as that which one hopes for in the tempered case. This
comes under the rubric of "anomalous" representations discussed below:

To define L-packets for G locally means to partition WV(G) into
finite sets WV - it will consist either entirely of tempered or entirely of
non-tempered representations. Tempered Wv should satisfy character
identities defined by functoriality and be compatible with global transfer.
The definition for non-tempered WV is reduced to the tempered case via
the Langlands classification.

Suppose local L-packets for a group G have been defined. A
global L-packet TI_: ® Wv is then, by definition, obtained by choosing
a local L-packet WV for all v such that Wv contains an unramified

representation “S, for almost all v and setting

TTZ ® _H—V = {® T, ot “n've —[TV for all v, T, unramified for a.a.v.}

It should be stressed that apart from the case F =R or C, there
is no general definition of local L-packets. See [Langlands, Paris VII notes]

for a description of the formalism one would like L-packets to satisfy. For
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GL(n), all L-packets have one element (locally and, hence, globally).
For SL(n), local L-packets consist of the sets of representations

which are equivalent under conjugation by GL(n), and one may use the
same definition globally. For a torus, L-packets consist of one element.
These are the only cases in which L-packets have been defined for all
places. In particular, this defines L-packets for the groups G, H, and
T in the basic diagram since L:}(F) = GL3(E), g = GLZ(E), and T is.

a torus.

For the group H, L-packets can also be defined because the
derived group Hd of H is BSL(2). Hence GL(2) acts on H by
conjugation and L-packets are defined via conjugation by GL(2) as in
the case of SL(2).

To formulate Kansfer results, it remains to define L-packets for G.
We give an ad hoc definition - the trace formula can be expected to show
that this definition has the properties wanted. Fix a Borel subgroup
B =AN of G and for ¥ a character of A(Fv), let i(y) = indzzivix
(unitary induction). N

(i) For x a character of A(Fv), define an L?packet

i(x) if i(yx) is irreducible

TG =
{constituents of i(x)} if x is unitary
(Gi) If 7w € WV(G) is non-tempered and is not of the form i(x),
7 is in an L-packet by itself.
By the Langlands classification, the only 7 € TTV(G) not covered by

(1) and (ii) are square-integrable. To define the L-packet W(’IT) of



14

for 7 square integrable, we shall assume that there exists an element

=0 1° € W(G) such that #° = 1 and such that there exists a
v Fransgiee v
cuspidal quasi- A 7 =® 7 with respect to
_ W G
—%—r&wi’ge—f

we call TNrV a (via gbG) of T, The trace formula should imply that

(see Q1). In this case,
T exists and that 7~TV is uniquely determined by T,

(iii) For square-integrable lifting to ;Tv as above, set

%(w"ggats -

THm =1{n" € fo(G) st toom ]

v

A global L-packet [[=® ﬂ—v is called automorphic if some

T E is automorphic.

Q2. Let ¢ : LG1 —_— LGZ be one of the maps in the basic diagram

and let || be a global L-packet for Gl' Set

QQ(TD = {1 e TT(GZ) : 7 is the quasi-transfer of some = € || via ¢}

If W is tempered, is CP(TD a global L-packet for GZ? One expects
so in all cases and it is known for all maps except XH and q)Go If it
is true, say (P (TD = —ﬁ—z & ﬁv’ then it is reasonable to set
¢ (WV) = ﬁv and thereby obtain a map for local tempered L-packets. The
$-transfer of non-tempered L-packets is defined in all cases by using
the Langlands classification.
For each character H of El(FV), let St(uv) denote the

associated Steinberg representation in WV(H). Then {St(pv)} is a

local L-packet for H. Flicker's paper suggests the following question.
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not supercuspidal and ”lT; is supercuspidal?

. . . + .
Q4. Is T unipotent in the sense of Lusztig? Does T have Iwahori-

. . + . .
fixed vectors and if so, are Tl’u and TTU related as in Lusztig's
conjectural classification of representations with Iwahori-fixed vectors

for Chevalley groups?

Q5. Is the set of local and global L-packets for G with more than

one element equal to the image under )\H of local and global L-packets.

on H.

Q6. Suppose || € J](G) is a discretely-occurring global L~packet for
G such that QJG (TD does not occur discretely. Is _]T: AH(WH) for

some discretely-occurring global WH c [J(H)?

Q7. Suppose ﬂ_C W(H) is a discretely-occurring global L-packet

for H such that XH(W) does not occur discretely. Is _ﬂ_= XT(WT)

for some W’I’ CTT(T)?

Recall that G(F) = GL,(E). Let = =@ m_ be a cuspidal
automorphic representation of M(AE), where M 1is the Levi factor
of a parabolic subgroup P of GL3. Let w be the central character
of 7 and suppose that Re(iw }) € X*(AP) ® R lies in the closure of
the positive Weyl chamber defined by P, where AP is the center of
M. For all v, the induced representation I('ITV) has a unique

irreducible quotient ’IT; and the global representation I(r) has

T =@ ﬂ;/_ as a quotient. All automorphic representations ' obtained
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in this way are called isobaric; all other non-cuspidal automorphic
representations are called anomalous.

Let [[ =8 _ﬂ—v be a global automorphic L-packet for G and

let ﬁ =@ ﬁ—v where WV = gbG‘(]_TV). If W is anomalous, we call

the L-packet TT anomalous (note that W is a single representation).

Q8. Are all discretely—ocgufring anomalous representations of G obtained

as the ¢H~transfer of a one-dimensional automorphic representation of H?

Q9. Are the tempered components of a discretely-occurring anomalous

representation of G of the form . ?
v

There are a number of questions regarding multiplicities in the :
discrete spectrum for G which are suggested by the results for SL(2)
of Langlands-Labesse. ‘Let Wd(G) = {5 ¢ W(G) : m occurs discretely}.
If [Jc J[(G) is a global L-packet such that 1T n ﬂ—d(G) + 0 we will
say that I—T occurs discretely. For = éWd(G), let m(w) be the

multiplicity of 1w in the discrete spectrum of G.
Q10. Is m(m =1 for all = e [[;(G)?

Q11. If WC W(G) .occurs discretely and is not in the image of AH,

is m(m) the same for all 1 € Tl—?

Q12. Let [[ < [[(G) be a tempered, global L-packet which occurs
discretely and suppose that || = AH(WH) for some WH c [[H). 1Is

it possible to define a positive rational number n(|]) and maps

* . ,
. - R~ U
€y HV————> C for i i, ..., N-1
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such that for 2all =@ 1 ¢ WV,
N-1
m(n) = £ D+ ] e )
i=1

= = f ?
where Ei(”ﬂ') U—eiv(ﬂv) and Eiv(ﬂv) 1 for a.a.v.?

H
Q13. If ] and [ are global, isobaric, discretely-occurring L-packets

} it
for G such that WV:WV for a.a.v., is WV :WV for all v?

One would like to know the image of gf)G. If 7 1is a local or global

admissible representation of é, define w° by the formula ’ITO( ) = n(a(g))
P Y g

. O

and call 7 o-invariant if =x T .

Ql4. Does the image of Ve consist of o¢-invariant representations? If

=2

is o-invariant and not in the image of LpG, is it in the image of
st
~ ?
Ag oo Vg
If W(G) can be analyzed, one can attempt to compare G with

its inner forms, the other unitary groups in three variables. One question

is:

Q15. Do anomalous representations occur discretely for an inner form G' of

if and only if G' is not defined by a pair (D, t) where D is a

division algebra?

Finally, one would like to understand any possible relations between
the residual spectrum and the cuspidal spectrum of G. For example,
do analogues of the 'ACAP" representations for Sp(4) constructed by
Piatetski-Shapiro occur for G? The residual spectrum, which is spanned

by the residues of Eisenstein series, is determined by the behavior of
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certain L-functions as follows.
Let B = AN be the Borel subgroup of upper-triangular matrices

in G, where A 1is the diagonal subgroup of G and N is the

unipotent radical of B. Then
aB
*
A(F) = .. B e B, e E
o

E/F(Gm)) X El. Let x be a character A'o,f

A(F)\A(A) and let I(y) = indg((ﬁix.

and A is isomorphic to (Res

A constituent of I(yx) is of the

form & =« with 7« a constituent of i(yx_ ) for all v and 7 un-
v v v v

ramified for almost all T,

Q16. Which constituents of I(yx) occur in the cuspidal spectrum of G?

Suppose that x 1is unitary and consider the Eisenstein series E(s)

associated to the character X where

The poles of E(s) are the same as those of the function

L(s, xl)‘L(Zs, xzw)
e(s) = oo X)L, 3w

where X1 is the character of C obtained by restricting x to the

E
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image of the map

X5 is the character of CF obtained by restricting X, to the image of
CF in CE’ and w is t%é character of order two of CF associated to
E/F by class field theory.

The residues of E(s) for\ s € [0. 1] contribute to the discreté\
spectrum. If Xy 1s trivial, g£(s) has a simple pole at s = 1. For ¥
such that X1 is non-trivial, £(s) has a pole for s € [0, 1] if and

only if x,w is trivial and L(%, x,) # 0, in which case the pole occurs
Yy 2 1 A p

at s = % and is simple.

Q17. If X W is trivial and L(%, Xl) = 0, so that £(s) is finite at

s = z, do constituents of I(y) occur in the cuspidal spectrum of G?



-20-

Notes II for the seminar "Analytical Aspects of the Trace Formula II"

Stable Conjugacy, Stable Trace Formula J. Rogawski

§8. Stable conjugacy, twisted conjugacy

[1] Langlands, Les débuts d'une formule des traces stable
" Pub. Math., Paris VII
[2] Langlands, Stable conjugacy, definitions and lemmas
Can. J., 31 (1979)
[3] Kottwitz, Rational conjugacy classes in reductive groups

Duke J., 49, No. 4 (1982)

In order to compare the trace formulas of different groups, we need

a way of matching conjugacy classes in different groups.

Example: Let G and G* be comnected reductive groups over F and let
53:— = Gal(F/F). Then 52: acts on Hom_(G,G*) . Let G L G* be an isomorphism
. ¥
defined over F and suppose that oy = \poad(gg) for some gcé G(F), for all
Py . . % -1
G € ¢f. Then G is an inner form of G and for all y g G(F), w(ggygg ) =
oU(y) = o(P(y)) and hence ¥(y) and o(y(y)) are conjugate in G (F). 1In other

words, the conjugacy class of U(y) is defined over F and we have a map

v

{Conjugacy classes in G(F)} —— {Conjugacy classes in G¥(F)

which are defined over F} .

If {y},{y'} are conjugacy classes in G(F), then y({y}) = w({y'}) if and

only if v and +y' are conjugate in G(F) .
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Kottwitz's Theorem ([3]): If G is connected, reductive and quasi-split

over F, and if the derived group of G is simply-connected, then every

conjugacy class in G(F) which is defined over F intersects G(F) .

Definition: Let G be connected, reductive, quasi-split over F with simply

connected derived group. We say that y and vy' in G(F) are stably conjugate

if they are conjugate in G(F) (abbreviation: st-conjugate).

1

* . -1 . .
In the above example G — G with 1V o0y an inner automorphism for
all ¢ € g , Kottwitz's theorem shows that if the derived group of G* is

simply-connected and G* is quasi-split, then we obtain an injection

{stable conj. classes in G} & {stable conj. classes in G*1

e(®) N{g vgrg € 6G(H} —— () O {g7 v(y)g:g € ¢F (M)}

Parametrization of conjugacy classes in a stable class: If vy,y' £ G(F) and
2L T e Y'Y

g_lyg = v' for some g € G(F) , then by applying o € c—”; to this equality we

see that U(g)g-1 < Gy(f) where G"Y is the centralizer of vy, and
-1 — —
{ag = g(g)g } is a cocycle in Hl(Gg_,G;{) whose image in Hl(eg,,G) is trivial.

The next lemma 1is easy to check.

Lemma 8.1: Let v <£G(F). The set of G(F)~-conjugacy classes within the

stable conjugacy class of <y 1s parametrized by the set:

T ym = ker{n' (F,6,) — 8,0
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Let G ¢ denote the simply-connected covering group of the derived
group Gder of G and for any vy £ G, let G°% denote the centralizer in G°°C
of vy under the map 6°¢ ~— Ad(G). Then Gf{C — GY by restricting the map

GS¢ —, ¢%T | et

£(y/F) = Image of H'(5,6°%) in B'(5,G.) .
K A

Then 1t is easy to see that ﬁy/F)CE(y/F): the images of G°%(F) and G(F)

in the adjoint group coincide.

From now on we use CSG to abbreviate "Cartan subgroup of G defined

over F."

Definition: Let T, and T, be CSG's of G. We say that T, and T, are
- -1
stably conjugate if there is a g€ G(F) such that T, = g T,g and the map

t f— g—ltg is defined over F (equivalently, T. and T, are stably con-

1

jugate if some regular element of T,(F) 1is stably conjugate to an element

of T,(F)).

For T a CSG of G, set

- =1 -
OI(T) = {g € G(F):g Tg and t —» g 1tg are defined over F 1} .
Set: ,4“?’/(T/F) = T(?)\@Z(T)/G(F). It is easy to check that the map
o 1,= 1, —
A (T/F) ~——> Ker{H (GF,T) —— H(1,6)}

g — {a = o(g)g™ }
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is a bijection and identifies 4,/ (T/F) with A/(y/F) for any regular vy &€ T(F).
Let

E(T/F) = Image of H (§,T°%) in H (57,T)

sSC

0%
where T° is the inverse image of T 0N ¢?T in ¢ Then (/(T/F) CE(T/F).

Stabilization of the elliptiec regular terms: Let f = va be a function on

G(A) of the usual type to which one applies the trace formula. Assume that
-1
f(zg) =& (2)f(g) for all z € Z(A), where Z is the center of G and & is

a character of Z(F)\Z(A) . The elliptic regular term of the trace formula is:

7
E(f) = Z cS(«()'1 meas (Z(A)G_(FI\G_(A))®(y,£)
{y} elliptic Y Y

where ' denotes a sum of regular elements, {y} ranges over the elliptic
regular conjugacy classes in Z(F)\G(F), and &(y) is the index of Z(F)\GY(F)

in the centralizer of v in Z(F)\G(F) . Set:

Q;’,(T,G) = the Weyl group of T in G(F)

0_(T,G) = the Weyl group of T in G(F)

F

QF(T,G) = {w ¢ QF(T’G) t t —— w_ltw is defined over F}

-1

o = o o -1 =
QF(T,G)Y = {w € SZF(T,G) s wo oywy € zZ(F)}

for y regular in T{F) .
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For v € T'(F), &(y) = [Q;(T,G)Y[ and the conjugacy class of vy modulo
Z(F) intersects Z(F)\T(F) in [Qg(T,G)IS(y)_l points. Hence, if C]G is a

set of representatives for the conjugacy classes of CSG's in G, we have

i
E(f) = :E: {Qg(T,G)I-lmeas(Z(A)T(F)\I(A)) EE:- oy, £)
TE D, Y€ Z(FNTI(F)

where I' means sum over regular elements. For § E,iTQT/F) and vy € T(F),
-1 =1

let ’I‘(S and Y6 denote h Th and h +yh where h € O)(T) is any element

representing ¢§ . It suffices that ‘Is and 'YS are defined up to G(F)-

conjugacy because the orbital integral

2(y%,8) = f
h

depends only on §.

» £(g" 'h”'yhg)dg
T(AYR\G(A)

Given a stable conjugacy class {T}St of CSG's and T, € {T}St, the

number of To—conjugates of the form 'TG for § € i%fT/F) is equal to

195(T,6)
|2(T,6) |
and hence we may write:
i
E(f) = Z [QF(T,G){"l meas (Z(A)T(FI\G(A)) Z ; ®(y5,f)
S st YEZ(FINT(F) S€(T/F)

TE;;G
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where /J(s;t is a set of representatives for the stable conjugacy classes of

CSG's of G.

Now fix Tféfjét and vy € Z(F)\T(F) and consider the sum

> eyd,n .

§ € J(T/F)

Set:
Jr/ay = o 5(/r,)
v v
E(1/8) = 9E(T/F )
v v
We have:

Sam — Jrm)

f [

11)T
ES(T/F) —=— E(T/A)

and since @(ys,f) = H@(Ys,fv) , it is clear that @(yc,f) depends only on
v
the image of & under wT.
Let Ei(T/F) be the set of characters of & (T/A) which are trivial on
wT(LﬁkT/F)). By Tate~Nakayama duality, IKer wTI < © and EEKT/A):¢EXE(T/F)) < @,

The following two lemmas are proved in [1].

o4
Lemma 8.2: Let & € & (T/F) and suppose that WT(S)E +/(T/A) . Then

5 €. 5(1/7) .

$
Lemma 8.3: The set of places v of F such that &(y v,fv) # 0 for some
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8y gﬁfT/Fv) with §_ # 1 is finite.
fovg & §
For & € &(T/F) - J(T/F) (resp. § €E(T/F)) - AT/F ), set o(y ,£) =0

(resp. @(Yé,fv) = 0). The orthogonality relations for finite abelian groups

give:

> oy, = Y > w®eGS,n

dezm(wT) k€ R(T/F) SEE(T/A)

where convergence of the right-hand side is assured by Lemma 8.3. By Lemma

8.2, @(Yé,f) depends only on \bT(S) for § € £(T/F) . Hence

S0 = [rerug] D > ket .

§ €&(T/F) < € R(T/F) 8 € S(1/4)

For v a place of F and K, @ character of E(T/Fv), set

T/
o) v(y,f) = Z K(5)®(Y6,f)
dét(T/Fv)

For K« E\{;\(T/F) ,» let kg be the restriction of « to E(T/FV). Then

Lemma 8.3 gives:

8Ty, 8y = > < (8)0(+S, £)
SEE (T/A)

T/«

where @T/K(y,f) =10 V(y,fv). This proves the next proposition.
v

Proposition 8.4:

|Ker U, |meas(Z(A)T(FI\T(A)) /
E(f) = Z : Z Z o™y, ) .

Te’lzt [, (T,0)] * | R(1/B)] € ZINIE) we ReT/E)
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Twisted conjugacy:

Recall that G = Res (G) . Since G is isomorphic to GL; over F,

E/F
G is a twisted form of GL, x GL; . The action of 6-3: on GL,; x GL, which

defines G is: ((g,,8,) € GL,(F) x GL,(F))

[}
el

(1(g,), 1(g,)) if T
) E

(glygz) l"'—'_—‘*

[
Q

(Igy), gy if 71
E

0 01
where 1(g) = 0 1("g”™)¢ for g ¢ GL,(F) and © = (o -1 0). For g € GL,(F),
1 00

1

o(g) will denote d)-lc(tg_ )¢ . We have

G(F) = {(g,0(g)) :g €GLs(E)} .

Let o be the automorphism of G which interchanges the GL,-factors:

a((gl,gz)) = (gz,gl) . Then G embeds in G as the fixed point set of &, i.e.,

{(g,8) € G} and

[0}
1l

G(F) = {(g,g) € GL3(E) x GL;(E) :5(g) = g} .

We define a norm map

~ ~

N: G ———> G

g > galg) .

If we identify a(}?) with GL,(E) by projection onto the first factor, then
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N on GL,(E) is the map g +—> go(g) .

Lemma 8.5: Let g = (gl,g(gl)) € G(F) . Then the E(F)-conjugacy class of

N(g) intersects G(F) in a unigque stable conjugacy class.

Proof: N(g) = (gla(gl),gf(gl)gl) and glc?(gl) € GL,(E) . Since E(glg(gl)) =
gzl(gla(g))gl , the conjugacy class of g18(g1) in G(E) = GL,(E) is defined
over F and hence Kottwitz's theorem implies that there is an x € GLg(ﬁ)
such that x_l(gla(gl))x € G(F). Let h = (x,a(gl)x). Then

h-lN(g)h € G(F) C G(F) and so the a(F)-conjugacy class of N(g) intersects
G(F) . If (y,,y,) and (y,,y,) in G(F) are both G(F)-conjugate to N(g), it

is clear that y and y, are G(F) = GL,(F)-conjugate and the lemma follows.
1 2 3

This lemma gives a map
G(F) ——— {stable conjugacy classes in G(F) } .
To describe the fibers of the map, we make the following definitions.

Definition: Let Y, o Y, € G(F). We call Yy, and v, twisted conjugate

(t-conjugate for short) if there is a g € G(F) such that g-lyla(g) =y,

and twisted stably conjugate (tst-conjugate for short) if such a g ¢ G(F)

exists.

. -1 -1 S .
Since N(x wvyoa(x)) = x N(y)x, it is clear that the fibers of the

above map are tst-conjugacy classes. Let

“H : {tst-conjugate classes in 6(?)} ~—s {st-conjugacy classes in G(F) }

¢

be the resulting map. ¥For vy £ G(F), let {v} denote the tst~-conjugacy

tst

class of v . We will write H(y) = Y, to indicate that 11({y}tst) = {Yo}st'
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For vy = (yl s Yz) € G(F) s set
G, = {8 €Cig vale) = v} .

The group Gya is defined over F since o 1is, and if (gl,gz) < Gay , then

-1 . . . .
g, N(y)g, = N(y). Projection onto the first factor gives an isomorphism

~

G —r G defined over F.
Yo Y

If v,,7, € G(F) and g € G(F) is such that g-lyla(g) =Y, then
{a, = a(g)g 1€ Ker{H"(UT,aYOL) — BN, .

Denote this kernel by Agg(y/F); it parametrizes the t-conjugacy classes within

the tst-conjugacy class of vy.

Stabilization of the twisted elliptic term

For the purposes of the trace formula, we deal only with the F-points
G and it is convenient to deal instead with G(E) = G(F) = GL3(E) . The center

of G(E) is Z(E) = E* and the norm map on Z is:

N: Z(E) — Z(F)

z b—— z/z

We also have N: Z(AE) —> Z(A) . Let é =& N where £ 1is a character of
Z(FI\Z(A) and let ¢ = II¢v be a function on G(AE) of the type to which we
v

~ =1
can apply the trace formula and assume that ¢(zg) = £(z) o¢(g) .

Let £ be a set of representatives for the t-conjugacy classes of

v € G(E) such that H(y) is elliptic regular, taken module Z(E).
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We are interested first in the contribution from £ to the trace formula

applied to the kernel

Zd,)(g—lyoc(h))

As a function along the diagonal g = h, it is invariant under Z(AE) since

E(z7'5(2)) = 1 for all z € Z(a) . Set

2, (vs0) = f . o(g7 Y5 (8)dg
Z(AE)G&Y(A)\G(AE)

o (y:0) = /: . L e y8(e)de
Z(Fv)Gow(nv)\G(Fv)

Let Sa(y) be the index of Z(E)auY(F) in the a~centralizer of vy in

Z(ENG(F) . Let

-1 ~ ~
TE(9) = :E: S (v) meas(Z(A)G (FNG,  (4))0 (y,f)
o oy ay a
Yeg
This is the contribution of £ to the twisted trace formula. For the next
proposition, recall that fjét is a set of representatives for the st-conjugacy

classes of CSG's of G.

Let F* = {(z,1):G(F): z € F*} . Then we have a map F* —s £9;(Y/F)

6(z) _

which sends (z,1) to &(z) = {G((z,l))(z,l)_l} and vy zy . If

§ € }Sg(y/F) is represented by {G(g)g—l} , then &(z)8 is represented by

6(z)8 = zy6 . Hence F* acts on A?(%/F)- Let L};<Y/F) be

g((z,1)g) and ¥y
the set of orbits of F* in 4ﬁsﬁy/F) . Since & is trivial on {z € Z(E):N(z) =1} =
{z € Z(E) 1z ¢ F¥} , the twisted orbital integral @a(ys,f) depends only on

the image of § in /t?;(Y/F)-



=31 -

Proposition 8.6:

TE(d) = Z Z [QF<T,G);"lmeas<z(A)T(F)\T(A) Z @&(Yé,ﬁ
. G’J(S;t Y, € Z(FINI(F) 8€ S (v/F)

where the last sum is defined by any vy € G(F) such that Hy) = Y, (it equals

zero if {yo} is not in the image of “F}).
st

Proof: For vy € G(F) and Y, € T(F) such that 1](y) = Y, » set

2p(T,0).

{g € G(F) : g-lyo gYD—IG Z(F)}/Gy(ﬁ)
0

() = {g € 6(H g yale)y € 2B /FE (D) .

Lemma 8.7: The map Q{(y) — QF(T,G),Yo given by projecting g = (gl,gz) € Qy)
to the first factor g, is an isomorphism.

Proof: If g = (gl,gz) represents an element of {(y) is such that

g_lya(g) = zy for some 2z &£ Z(E), then gIIN(Y)gl = (z/z)N(y) . Hence

g, € Gy(f) if and only if z ¢ F¥ C z(E) . If g:lN(Y)g1 = (z/z)N(y)

(every element in Z(F) is of the form (z/z) for =z € E¥), then g = (gl,gz)
satisfies g—lycc(g) = zy, where g, = y:1g12Y1 and vy = (Yl ,S(Yl)) € G(F) .

To see that the map is an isomorphism, we have to show that if g—lya(g) = zvy

with z € P , then g &€ §*GYQ(§) and this is clear.

Now let

2’ (y) = {g € &®) 1g vale)y € Z(BIH/Z(EE (F)
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It is clear that [QO(Y)] = 6@(\{) . If g € G(F) is such that g—lycx(g) = zy

*
with z ¢ F , then z € N (%) , as one sees by taking determinants:

E/F

z = NE/F(det(g))-lz—z. Therefore, the obvious map SZO(Y) —> Q(y) 1is injective.

To prove the proposition, note that in the sum over Z(F)\T(F), a given
stable conjugacy class {Yo} occurs {QF(T,G)]»[QF(T,G)Y [—1 - times. Let 6&(“{6)
be the number of §,€ %(Y/F) such that y61 is t-congugate to zy(S for some
z € Z2Z(E). It will suffice to show that [QF(T,G)YO[ = 6@(*{6)6&(\{5) , or, by the
above, that 6&(7) = [Q(y): Qo(y)]. (we may take 6 = 1). This is clear from

the definition of /9;(\{/]5') .

§9. Conjugacy classes in G

For later use, it will be convenient to have a list of the stable
conjugacy classes of CSG's in G. Let A be a fixed CSG of G; for the next
Proposition, G can be any connected reductive group. If T is any other CSG,
there is a g € G(F) such that g—lAg = T (the map t —> g—ltg is not, in
general, defined over F). Hence {ac = G(g)g—l} € Hl(a-i,ﬁ) where N is the
normalizer of A in G(F). It is easy to check that {aa} determines the

G(F)~-conjugacy class of T. Let Q be the Weyl group of A in G(F) and let
1, = 1 — =
v E @GN — 5 (57,0

be the natural map.

Both @-3: and {} act on A and the character group X*(A) = Hom(4,GL{1)) .

_ 1 vewem - . ) . ~ ;— * Y
A cocyle o = {ac} € 5 (L, W) defines a twisted action of };(_ on X“(A):

gla) = ag-a(a) for o € XF(A)
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and hence o = {ac} defines a form Aa of A.

Proposition 9.1:

(a) Let T, ,T, be CSG's of .G associated to cocycles a,; ,Q, € Hl(c_j,ﬁ) .

Then T, and T, are st-conjugate if and only if Y(a,) = ¥(a,) .

(b) If G is quasi-split, then every a € Hl(g}-,ﬁ) is of the form y(a)
where @ arises from a CSG of G, i.e., o = P(a) for some a € Ker{Hl(@,ﬁ)-—»

B (§],6)}

Proof: Part (a) follows easily from the definitions. For (b), suppose

a € Hl(éa—_,ﬁ) and let A& be the twisted form of A that it defines. Let

Y € A&(F) be regular. There is an isomorphism q::A&(ﬁ) — Ad(ﬁ) and

o (y) € AO‘(‘-F-) is regular. Furthermore, o(¢(y)) = agtb(y)a;l for all 0 € a,
where o = {ag} . Hence the conjugacy class of ¢(y) is defined over F. By

Steinberg's theorem, G(F) contains an element Y in the G(F)-conjugacy

of y if G is quasi-split. The CSG G_ then corresponds to the cocycle a.
0

We now consider the quasi-split unitary group in three variables G = U,

with respect to a local or global quadratic extension E/F. We may assume

that U, is the unitary group of the Hermitian form @ = (8 _g é) (it 1is
1 00
001
isomorphic to the unitary group of the form (O 1 0})). Let A be the diagonal
100

subgroup of G. Then W is isomorphic to the symmetric group S, . Let
0 01 01 ¢ -1 00

w=<0-10> wl=(10 O> w2=<001> .
1 00 00 -1 010

The elements lie in N and we identify W with S, by mapping w,w, ,w, to
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the transpositions (13) , (12) , (23) respectively. The Galois group %_ acts

on G as follows:

w (i) v if T =0
E

T:g b—>

i}
oy

T({g) if Ti
E

where @(E/F) = {1,0} . Under the identification of W with Sy, T € Ei

acts on S, trivially if T| =1 and if T! =0
‘B E
(13) > (13)
T (12) r—— (23)

(23) +— (12) .

Let T be a CSG of G and let L be the centralizer of T in M,(E) .
Since L is a maximal, commutative, semi-simple subalgebra of MS(E) , 1t 1is

isomorphic to a direct sum of field extensions of E and the possibilities are:

(1) L=EQ@EQE

K®E with XK/E quadratic

(2) L
(3) L is a cubic extension of E.

To state what we need about stable conjugacy classes of CSG's, we first
. . . .
define some tori. Recall that E 1is defined as the kernel of the norm map
N :ResE/F(Gm) — Gm . Let Kl/F be a quadratic extension with K, # E and
let K =K E, so that @;L(K/F) = (Z/Z)2 . Let Gl,Tle(}J(K/F) be such that K,

is the fixed field of o, and E 1is the fixed field of Tl . Define a two-

" dimensional torus TK over F by the exact sequence:
1
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Ny /x
—_— TK —_— ReSK/F(Gﬁ) ——ils Res

1 (E) —>]

K
1

where NK/ is the map (1 +c51).

X

If L/E is a cubic extension with an automorphism o € Aut(L) of order

~

two whose restriction to E is o, let 17 be the fixed field of O and define

TL by the exact sequence

| — T. —> Res

L L/p(6) — Res 5 (6) — |

L°/F

where N is the map (1 +0). Then TL is a torus of dimension three over F.

Proposition 8.4: Let T be a CSG of G. Then T is isomorphic to one of

the following types:

- 1 ‘ . ,
Q) A= ResE/F(Gm) x E (the CSG contained in B)
(1) E! xE! xE!

(2) TK x E! where Kl/F is quadratic with K, # E.
1

(3) TL where L/E i1is a cubic extension with an automorphism o £ Aut(L)

of order two whose restriction to E is o.

Furthermore, in cases (0), (1), and (2), the stable conjugacy class of T is

™

determined by the isomorphism class of T as a torus over F.

Proof: By Lemma 8.3, the stable conjugacy classes of CSG's are parametrized
by H'(& ,W). Let T be a CSG of G and let L be the centralizer of T in

M,(E). We consider three cases separately.

Case (i): L =E®E®E. Then T splits over E and {T}st is determined
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by a cocycle in Hl(QQ,(E/F),W) , 1.2., by an element agé W such that

=1, (123), (132), or (13) and since

ac-g(ag) = 1. The possibilities are ag

0((12))(123)(12) = ¢((23))(132)(23) = 1, the choices a_ = (123) or (132) are
cohomologous. to a, = 1. Hence we may assume that a; = 1 or a, = (13) . 1If

a_ = 1, then {T}St = {A} and if a = (13) , then the twisted action of g cn
X*(A) is the multiplication by -1 . This is clear since the map a;*0 on the

diagonal subgroup is g b— g—1 . So in this case, T = TE! xE! xE!.

Lemma 8.5: Let T be a CSG of G and let K/E be the splitting field of T.

Let K' be the Galois closure of K over E. Then K 1is Galois over F.

. . -1
Proof: The involution gpr— O t

o(g)® stabilizes T(F), hence L, and
induces an automorphism ¢' of K whose restriction to E is o . It follows

that K' is stable under &{ .
"

Case (11): 1In this case, T splits over K with X/E quadratic. By Lemma 8.4,
K/F 1is Galois and hence EEL(K/F) =Z/2 @ Z/2 or Z/4 . We first show that
Z/4 cannot occur. If it did and if T, Wwere a generator of C%Z(K/F) , then T%

would act trivially on E. The cocycle {aT} € Hl(C‘g(K/F),‘v-J) associated to T

would satisfy (a 2)2 = (To(aT Ja_ )? =1 which implies that a_ = 1 or (13)
2
Yo 0 1] 0

(the cases (123) and (132) are cohomologous to a_ = 1 as in Case (i)).

0

Hence a_2t =1 and T splits over E, which is Case (i). Hence /Jg_(K/F) =
0

zZ/2 ®Z/2 . Let o, and T, generate %{K/F) with 01{ = g and Tl[ =1.
B E E

Then

a = a = g, {a_)a = a_a or

0,7, T,0, 1 70, g, T,

“M(o,(a_ Na a

a = °
acl 91 1,77 0, T,
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Up to coboundaries, the possibilities are

(1) a =1 a (13) a
g, T, 0,1,

(13)

It
[]

(2) a

n
~
[
W
[

L}

(13) a =1
9, T 9,0

and since 0, and 0,;T, both induce ¢ on E, their roies may be interchanged
and we may assume the cocycle has the form (2). Let K, be the fixed field

of 0, in K. It is easy to check that T is isomorphic to TK xE! .
"1

. . . . -1 .
Case (3) is clear since the involution g — & tc(g)@ induces an

automorphism ¢ of order two on L whose restriction to E is o.



Thursday Morning Seminar

DIVISION ALGEBRAS I

R. Langlands

Introduction.

In the Friday afternoon seminar a method for comparing traces on
different groups was described and applied to some low-dimensional groups
of rank one. As a further test of its effectiveness we will consider here
the comparison of the trace formula on G = GL(n) and G'= D*, D
being a2 division algebra of degree n2 over the global field F of
characteristic zero.

It should be emphasized that the advantage of the method is that it
does not require that the trace formula be made invariant, so that many
problems in local harmonic analysis are avoided. On the other hand it
cannot, so far as I can see, be applied when one is working, for whatever

reason, with a single trace formula.

The procedure.

We suppose we are given a function ¢' = ﬂ—v‘b"\r on G', smooth
and of compact support, and a similar function ¢ = ﬂ_d;v on G. We
suppose that at each place v of F and for each regular y in GV
the orbital integral (v, :;)V) is equal to @(y, ¢;,) if v occurs in G{r

and to 0 otherwise. We want to show that

0 (4) = 05 ($)



Observe that G and G' have no non-trivial cuspidal endoscopic groups,
so that stabilization is superfluous.

The trace formula for G' reads simply

T (8D = 65,(s")
The trace formula for G reads
T c T
Y I(0) = ) 0y (e)
MM M M

The sum over M runs over conjugacy classes of Levi subgroups of
parabolic subgroups of G. They are indexed by unordered partitions
of n. One lesson to be drawn from the following is that it is better to
use a sum over M D MO'
We take it for granted that Jg(cp) = JG(q)) is equal to JG,(cb'),

obtaining an equality

T T
(1) 0(¢) - 8,4,(¢") = J(6) - 0 4(d)
G G ? ZM:*:G M zMzCr M

Before going on I underlire a peculiar feature of the notation. Both
JI\T/I and Ogj are distributions on G and thus depend on the pair M
and G, the dependence on G being implicit in the function ¢. If
. T T .
however we write JM(wM,) or GM(\[)M,) where M c M' and Yapr 1S
a function on M' then it is understood that the distributions involved

are those for the pair M, M'. Since the T 1is of no concern to us we

drop it from the notation.



What we want to do is show the existence of smooth, compactly

supported functions IPM on M, M # G, such that

Ml
(2) J (¢) = J. ),
zMzG M zM' zM M

the inner sum being taken over conjugacy classes of M in M'. The trace

formula for M' vyields
M! M!
Do) =1 g0
M M
and the relation (1) becomes

M. -
0.(¢) - 0.,(8") = o, ) - 0,,(¢)
G G zM':GZM M ZMzc; M

!
This equality will allow us - provided the \pM satisfy a supplementary
condition that is to be explained later - to proceed with the argument on

decomposition of measures and to show not only that
= 1
but also that for each M # G

L, oy W) = o,06)

appropriate care being taken with the range of summation on the left.
However, our concern at present is with (2) and indeed at first with

a weaker statement. We anticipate that we will be provided with an



expression for JM(¢) of the following form,

2]

I (8) = { Gl ) Iyl ¢)
Q

Ml 6!

the outer sum running over all M' containing M, and conjugate to M

0

and the inner sum over all elliptic conjugacy classes in M. Thus we may

expect that (2) reduces to a collection of equalities, one for each & ¢ G,

M M .
SR J[“—Gi‘z I(eyed = 1] J|“—,|Lz T(orye o)
Mz Q o ,CO et oy e0r
MO‘.:_'M M= M'z2G MOEM_C_M M

It is thus convenient to fix a Levi subgroup MO of PO and to

work only with M containing MO' It will also be convenient to suppose
Q

that ¢, a function on MQ’ is defined for each Q containing MO'

So we are reformulating the problem, the functions we originally introduced

being m — J ) wQ(g_ lmg), with g in the normalizer of
M' Q€ P(H")

M., g 1Mg = M', and M' running over the conjugates of M.

0’
In this lecture we are concerned with (3) only for regular ¢, and

it is clear it would follow from

9

14

(5) (o, @) =1  Jle, v
MeQ
Q=G
@ now being a conjugacy class in M.
Let p{(M) be the dimension of the center of M minus the dimension

of G and let p(Q) = p(MQ). The functions wQ are to be defined

inductively on p(Q), starting with p(Q) = 1. The only condition is



that (5) be satisfied at each stage.

Weighted orbital integrals.

Let S be a finite set of places containing all infinite places, all
places at which D ramifies, and all places at which ¢v is not a

spherical function. If v ¢ S and if M is the Levi factor of Q then

_ -1
(6) 95 ,4(m) = pp(m) jK J’\I - )¢v(k mnk)dndk
: v QY v

0 being the square root of the absolute value of the determinant of

adm\ w-~, is a spherical function on M and is independent of Q.
\ o) P v P

My

So we sometimes denote it ¢V . We demand, and this is the supplementary
condition mentioned above, that

Q_ Q M

- Q
1 _WS WV*S ¢V

Since the function ¢ has compact support there will be only

finitely many conjugacy classes ¢ for which JM(O' ) # 0 for some M

M 9
and some 0y & - It is easily seen that we can choose the finite set of places
S' = S(¢) to be so large that for each such ¢ and s the

class O’M has a representation y which for v € S' lies in KV and
. -1 . .

is such that g “yg € KV, g e GV implies that g € GY(FV)KV. The
group Kv is of course the standard maximal compact subgroup of Gv'

As a consequence we may replace JM( O'M, ¢) by

clerypJ cb(g_lYg)vla(g)dg
G (Ag)\GAg)



or

-1
clery) [ ¢c.i(g Yg)VG(Y, g)dg
o agancag ° M

Let
!
K5 =77 K
vés V

and let G(O‘M) be 1 or 0 according as O’M does or does not meet

{g k5" glg € caS')3
Then

c(o-M) = meas(GY\ G'Y)meas(Ks' N GY\KS')G(O'M)

The weight factor vﬁ(g) is that given by the trace formula and VIC\;/I(Y’ g)
that given by Flicker's trick. For the y being studied at the moment
they are equal.

We may disregard the factor c(O’M), examining instead

v 9 = |06 [*f bi(g YEI VoY, g)dg
G (Ag)\GAg)

The factor ]DG(Y) | is that introduced on P. 30 of Arthur's Annals
paper. It is 1 for regular semi-simple y in G. We shall study
Jﬁ(y, ¢) for vy in M(AS') and regular in G. We need to show,

by the same inductive procedure, the existence of tpg, such that



Q
(7) Y, ba)) = ] Iy, ¥g)
M ?s veg M S

Q=G

for every M. There is only one observation to make. We began by
choosing S' = S(¢). It can always be made larger. As we construct the
\J)Q inductively we will introduce S(\pQ). They may not be contained in
S'. We simply enlarge S' at each stage to accommodate them.

This being understood we work entirely within the given set S',

sometimes dropping it from the notation. All functions will be spherical

outside of S.

Basic lemmas.

The distributions ¢ —> JM(Y, $) = JI\GA(y, ¢) are very similar to

G
M,y

Apart from the fact that our S' is his S the difference is that he

the distributions f —> J (f) studied in §8 of Arthur's Annals paper.

works with VS{ rather than Vﬁ. The analogue of his Lemma 8.2 is valid

and the proof is exactly the same.

LEMMA 1. Let L oM be Levi factors of G over F. Let h lie in

L(AS,) and let y on M(AS,) be regular in L(AS,). If ¢ is smooth

and of compact support on L(AS,) then

h
Ty, ) =) ¥, ¥n 1)
M oe Fopp M7 QA

The sum runs over the parabolic subgroups of L over F which contain
M. Moreover \DQ L s a function on MQ(AS,). So in agreement with

M
» . . q , .
our notational conventions JM(Y, wQ,h) is JM (v, wQ,h)' The function



pr h is defined on p. 20 of Arthur's paper and is smooth and of compact
support on MQ(AS,).
It is important to observe that - this one sees immediately from the

definition - if h € L(AS) then f = \pQ h is a product,

My
£=1f5 - T, egnsty

M
The function ¢V

Q . . =
is defined by (6) and fs = I‘DS,Q,h'

For technical reasons it is convenient to fuse all infinite places into

a single place, denoted «., With this convention F_  denotes -H_VGS FV

v {»}, S' =8 v {«}

and M_ = ers Mv' Moreover S = S fin

fin

Suppose that L 1is a Levi factor of G containing MO and that

fS is a smooth, compactly supported function on L(AS)" A collection
of functions Fg, Q lying in L and Fg being a smooth, compactly
supported function MQ (AS), will be said to be adapted to fS if for
every S' 2 S and every collection of spherical functions fv’ v e S'-S,
every M, MO € M cL, and every semi-simple vy in M(AS,) regular in

G the equality

W

, _ Q.
JM(Y’ '95 ) -ITV& S-S fv) =1 L JM(Y’ Fs ﬂ-va,v)
Qed (M)
Q=L
holds. The functions fQ . are defined by the equation (6), fv

replacing ¢,

LEMMA 2. Suppose that fS = Tl—vesfv and that for some given v the

orbital integral ¢(y, fv) = 0 for all semi-simple ¥y iﬂﬁr(FV) regular

w
L



L
in ;Z'/(FV). Then a collection Fg adapted to fS exists.

For v = » the proof of the lemma draws on various facts whose
explanation it is convenient to postpone. For v finite it is however an
immediate consequence of Lemma 1 and the following lemma of Vignéras

(cf. §2 of Caractérisation des intégrales orbitales sur un groupe réductif

p-adique and App 1.1 of Représentations des algébras centrales simples

p-adiques). ;;./\Jg(“.\—\ S ey

LEMMA 3. If v is finite and &(y, fv) = 0 for all regular semi-simple

i
y then f may be expressed as a sum zi fi,v - fi,v’ hi,E L(F_).

We set :fi = f, . szva and take

LEMMA 4. Suppose that f is a smooth function with compact support on

M(AS) and that for every regular semi-simple vy the orbital integral

d(y, £f) = 0. Then f is a sum Z £ where £V is a sum of functions
veS ,
f;’ such that each f;’ is a product ] FW and ¢(y, Fv) =0 for
wE S

all regular semi-simple y in M(FV).

Observe that the Fw depend on v and 1i. It is inconvenient
and unnecessary to incorporate this in the notation.
The lemma is proved by induction on the cardinality of S. 1t is

trivial if Sﬁn is empty. So choose v € Sfin' If C is a compact

subset of M and U an open compact subgroup of it, let H(C/IU)
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be the set of functions on MV supported by C and bi-invariant under U.
We write m € M(AS) as (ml, mz), m; € M(Asl), m, & M(FV), S1 =S - {v}.
Choose C and U such that for each my the function m, —> f(ml, mz)
lies in H(C//U).

Since H(C//U) is finite dimensional we can find, for a suitable &,

functions hl’ coes hz in it and 4% regular semi-simple elements
Yyr +ees Y, in MV such that @(Yi, hj)2= 6ij and such that any other
function in H(C//U) is of the form z a].hj + h, where h € H(C/U)

=1
and all its orbital integrals are 0. In particular

f(ml, rnz) = Zaj(ml)hj(mz) + h(ml, mz)
with

_ -1
a.(ml) —f f(ml, m, sz)dm

j 2
MY(FV) \M(Fv)

The lemma ffollows.

We shall be faced with the following problem. We shall be given a
function y —> Y¥(y) on regular semi-simple classes in M(AS) and
we will want to show that there is a smooth, compactly supported function
f such that V¥(y) = o(y, f) for all such vy.

If v is a place in S we say that V¢ is satisfactory at v if
for each regular semi-simple Yy in M(Asl) there is a function le
on M(Fv) smooth and of compact support, such that:

(i) For all regular semi-simple Y, in M(Fv) and all regular semi-

simple Y1 in M(AS)
1
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‘i’(Yl, Yz) = <I>(Y1. f‘; )
2

(ii) If v is finite then there is a C and U such that

£f' € H(C/U) for all «v..
Yy 2

LEMMA 5. If VY is satisfactory at every v in S then there is a

smooth, compactly supported function f{ on M(AS) such

that Y(y) = ¢(y, f) for all regular semi-simple vy in M(AS).

We argue by induction. If S contains only one element there is

nothing to prove. So suppose Sfin contains v. Choosing hl’ cens hJL

and Yy» +eer Y, @S above we may write
£.=Ya, (y)h, +h_ ,
y T Lajnhy +h
with
aj(Y) = <I>(Y]., Y)

By induction there are functions f'Y on M(AS ), smooth and of compact
i 1 ’
support, such that

@(Yj, y) = o(y, f'Y]_)

We may take

f(m), m,) = zj f'Yj(ml)hj(mz)
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LEMMA 6. Suppose that R 1is a subset of S containing at least two

elements and that for every v in R and every regular semi-simple

Y, in M(Fv) there is a smooth compactly supported function fY on
2

M(AS ) such that
1

‘i’(Yl, Yz) = <I>(Y1, fY )
2

for regular, semi-simple Yy in M(AS ). Suppose moreover that for each
1 -

finite w # v, all Yoo and all m' € W va the function

m —> fY (m', m) lies in H(C/U) for some given C and U. Then V¥
2

is satisfactory at every place in S.

This is clear.

A simple problem. The functions pr will be chosen inductively and the

lack of unicity is somewhat disconcerting. To allay at least some of the
unease we consider a Levi factor L of G and the trace formula for a
function ¢ on L so chosen that vy = ﬂ-vwv and, for some v, all
orbital integrals of b, are zero. With this assumption the trace formula
should be trivial and we should be able to take all terms from the left to
the right without any difficulty.

Q

This means that we should be able to find functions y on M™,

Q e 4(M0). Q # G such that the analogue of (5) is satisfied,

Lemma 2 guarantees the existence of an satisfying this relation.
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Existence.
We come now to the proof of the existence of the functions po
attached to ¢ = ﬂ—vd)v. The critical property of the function ¢ is the

following (cf. part C of Vignéras's notes).

Suppose L # G. Then there exist at least two places v € S such that

for all vy e L(FV) which are regular in G the orbital integrals

o(y, ¢v) are zero.
Let Nys eeey B be the partition defining M and let dv be the
denominator of the invariant of D at v. In order that &(y, q‘>v) is not

zero for all y in L(FV) all n n_ must be divisible by dv' If

10

this were so at all but one v it would be so at all v and then r would

be 1 and L = G,

For p(M) =1 the factors V;(y, g) are linear, and

G, |1 -1 .G
Iy, ¢) = |[DT(y)|% ) o(g yg)Virly, g.) =0
M v jGY(AS,)\ G(ag,) M M

Thus we may take LpQ =0 if p(Q) = 1.

We now suppose that for p(Q) < p we have so defined wQ that

Q
(8) Iy, ¢) = J .y, v)
M EMCQ M

Q=G
for p(M) < p, and we prove the existence of ¥y for p(RQ) = p satisfying

the corresponding equation. We apply Lemma 6 to the difference

Q
J(Y!d’)— J(Y,IP),
M ZMEQ M

Q=G

Q € P(M)
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/
T

proving that it is equal to ;i/(y, f) for some smooth compactly supported

function on M(AS,) and we set

Q_ 1
YTl
for Q € P(M).

Let v be a place in S such that &(y, ¢V) =0 for all vy e MV
regular in G’v' We need only show that for such a v the condition
of Lemma 6 is satisfied.

According to Lemma 6.3 of Arthur's Annals paper we have a
decomposition of VSI(g) as

Q
Vi(g,)U~(g,)
Qe4-(M)M 177Q =2

where g; € G(AS ), g, € G(Fv)' This leads to a decomposition
1

(9 Iy(rs b9 =1 Wy 4Ly 65)

Qe 3

where ¢(g) = ¢l(gl)¢2(g2> and

¢é(m) = pQ(m)J’ f ¢ (k" 'mnk) dndk

K1 NQ(AS'I)

If Q =G then UQ(gZ) = 1 and LQ(YZ, ¢2) = 0, for it is an ordinary
orbital integral and Y, € Mv' So we drop the term corresponding to
Q =G from the sum (9).

For any other Q we apply Lemma 2 to the function d)é and write
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1 Q!
I (Y, 05) =} Iy, F3)
MY %Q Q,%QMl Q

McQ'

Since Y, and ¢, play the role of fixed parameters in the discussion

we remove them from the notation, setting

SES)

Ql
F~™ = FILn(v,s 9,)

We also have a decomposition

9

Q,1 Q,2
Iy, v°) = ) T (Y1 050 LAy, v7°)
M McQ'e0 M1’ Yo Q''\Y2
We set
Q! Q,1 Q,2
H =7 vor Ly, 9779
Qe 8 R
2<0(Q) <p

] ) 1
Both HQ and FQ are smooth, compactly supported functions on MQ (AS ).

1
By assumption

Q' Q!
(10) ¥ Tl FoO) - ] Joaly;, HY) =0
Qre dun ML Qredn ML

i p(M) < p.
If p =2 then
LI ED) Ty(rys FO
Qe POM)

Thus we may take
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£ =) FR
Y2 Qe Pm)

Now we suppose that

p > 2 and we define inductively on p(M"),

Ml
on My(As,), Q €4 (M), Q # M,
| Q75
which are smooth and of compact support.

!
2 2 p(M") < p(M), functions gM’ 0

They will be shown inductively to have the property that the orbital
integrals of

H n f 1 n
fg = 7§ -1 D D SRV
1 QrePMm "1 QrePmm 1 MaMr QrerMm 51
p(M') >2
are zero on regular semi-simple elements if p(M") < o,
i
This being so we will take the functions Elg Q to be those attached
1
"
to f‘g by Lemma 2. The relation (10) assures us that for o(M") = 2
1
the function
n n n
£y = FS' - ] HY
1 Q"e P(M") 1 Qne P(M") 1
has orbital integrals zero. So we can begin the process.
n 3
To verify that it continues we have to evaluate JM"(Yl’ flg ). Observe
1
first of all that if M™ ¢ M" then
QH QH
(11) Yy F& ) - 1 Tyl s HS )
EQ"eP(MH) Ml! 1 Sl Q”eP(Mn) Mll 1 Sl
plus
(12) M!',Qn

J , E
M'aM" Q'e PM'(M") M"'(Yl Sl )
o(M")>2
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is equal to

'
(13) 1 J |||(Y ’ EM, ’Q'") .
Q'"€4M (M"™) M 1 Sl
QMa=M"
We are interested in calculating JM'"(Yl’ fl\SAm). This will involve,
’ 1
for each M" 2 M"™, the terms
MH Ql"
(14) z n J m(Y » E ’ )
Qe 'pM (M"') M 1 Sl

They appear in (11) and thus can be calculated as the sum of (11) and (12)
minus the difference of the remaining terms in (13). Moreover there will
have to be a sum over M" 2 M",

m
This will lead to an expression for JM'“(YI’ fI\SAl) containing first
of all

Q. _
zQe4(M|||)JM"'(Yl’ Fsl) B JM'"(Y’ ¢S)

and secondly

)= Ty (0 9D

)

- E Jyrm (Y1, HQ
Qe daam MU STt e dum)

By assumption these two terms cancel.

The sum of the contributions (12) gives for every triple M' 2 M"

MI’QH)‘

51

On the other hand if in the contributions from (13) we denote M" by

!
(with M">M"™) and every Q"€ PM (M") a term JM"'(Yl’ E

M' and Q™ by Q', denoting M by M" (which contains M™

Ql
but is different from it) we see that they cancel those of (12).
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Thus the inductive definition is permitted. We cannot define

for the given M with p(M) = p because Hg is not defined for
1

Qe P(M). However we can introduce the function

_ Q H',Q _ Q'
fs = FS + 2 M! ES ‘PQ
1 aeran 51 wam ee™an 51 ‘aeran Q20

p(M')>2

The previous calculation now shows that

T vy fo ) = Ty, ¢o) - ) T (v, v3)
M1 S1 M S Qe4(M)M S
Q¢ P(M)

f5
1

» 1

A similar calculation, using the properties of adapted collections, shows that

the relation remains valid if S 1is replaced by S'. This completes the

proof of the existence.

Q,Z)



On the global correspondence between GL(n) and division algebras

. -
Marie-France Vigneras

la. Let D be a division algebra of degree n?

over a global field F
of characteristic zero. We suppose that for each place v of F, DV is
M(n,Fv) or a division algebra. We will use the comparison between the
trace formula on GL(n) and D* and local results to get the global corre-
spondence between automorphic representations of GL(n) and p*

The case n = 2 is already known (JL or GJ). We suppose n > 2.
Then at infinity D_ is M(n,F_) . At a finite place v, Zelevinski (Z)

equivalence classes

introduced a duality in the Grothendieck group K(GL(n F )) of the/representa=-
tions of finite length of GL(n,FV) . This duality generalizes the duality
introduced by Alvis and Curtis for finite groups, and exchanges the class of
the Steinberg representation with the trivial one.

We denote by A the adele ring of F. Recall that an irreducible
subrepresentation of LZ(GF\GA,w) for some central character « 1s called
a discrete automorphic representation of GA . We denote by S the set of
finite places v of F where DV is a field. Let Ty be an equivalence
class of irreducible representations of GL(n)A, such that for every v £ §,

T, is square integrable or the dual of a square integrable representaticn.

By the local correspondence (BDKV), we associate to T, an equivalence class

TT;X of irreducible representation of D::

7! = T, ifv¢S



1 . . .
-m, s such that the characters of ﬂ; and T, on the regular elliptic

conjugacy classes satisfy

X, = €(Trv)XTT where e(ﬁv) e {+1} .
v v

We will prove the following theorem:

1b. THEOREM: The map 7, — T,

induces a bijection from the set of auto-
morphic discrete representations of GL(n)A such that for every v < §, ﬂv
is square integrable or the dual of a square integrable representation onto
the set of automorphic representations of D:.

With the natural definition of duality at infinity for n = 2, this
theorem includes the theorem of Jacquet-Langlands. We restrict ourselves
to the case where DV is M(n,Fv) or a division algebra because of our
ignorance of the residual spectrum for GL(n). In §2, we collect some

results on local representations of GL(n). We determine the irreducible

representations of GL(n,FV) whose characters do not varish on the set

Gell

v of regular elliptic conjugacy classes, and we prove that the square-

integrable representations and their dual are the only ones which are
unitarizable. This last result is a sharpening of a theorem of Casselman

(BW). We will use these local results to prove the theorem in §3.

2a. We suppose F local, non-archimedean, of characteristic zero. We

let G = GL(n,F) and E(G) be the set of equivalence classes of irreducible
representations of G. We denote by £?(c), E Z(G)t , E°(G) the subsets
given by the quasi-square-integrable, dual of quasi-square-integrable,
quasi-cuspidal representations respectively. Recall that a quasi-square-

integrable representation is the product of a square-integrable one by a



power of v, where v(g) = |detg|, g € G.
Let us recall the classification of E?(G) given in (Z). Let X2(G)
be the set of (m,0) where m|n and p & E°(GL(d,F)) if md = n. The

unitarily induced representation

-1 -1

D X VP X s+ X o p = ig (p@vp@---@vm 0)
d
where Pd is the standard parabolic whose Levi factor is isomorphic to
GL(d,F)m , has a unique irreducible quotient. This quotient denoted by
Stm(p) is quasi-square-integrable. Every quasi-square-integrable irreducible
representation of G is equivalent to a unique Stm(p). The representation
m-1

D X VP X *** x V 0 has a unique submodule. It is the dual St:m(o)t of

Stm(p). In this classification the Steinberg representation is
n-1
Stn( - _—2—> ’

2b. THEOREM:

(1) The representations Stm(p) and Stm(p)t are unitarizable if and only

if their central character is unitary.

. m . . .
(2) VNo other subquotient of 0 x Vo X *++ x V p 1s unitarizable.

The part (1) is known: it is clear for Stm(p) and is proved in (B) for
Stm(p)t which is a "segment" in the classification of (Z). The part (2)
generalizes a theorem of Casselman, which corresponds to m = n. Our proof
given in 2d follows closely the proof of this theorem given in (BW,X1,§4,

p. 340-343).



2c. Let us recall the description of the Jordan-Holder composition series

J of p x vp x *** x N o0 given in (Z,§2,p. 176-180), generalizing
(BW,X,4.6 and 4.2). We know that it is combinatorial, and depends only
on m. We set:

m-1 m~-1

om—

§ = \)T@...@\)— 2 .

The functor i = ig of unitary induction is related to the ordinary induc-
d
tion functor I = Ig by the relation
d
i = I8 .

Their left-adjoints r, R verify

-1

Let I be the standard set of roots of GL(m), A the subset of simple

positive roots, and W the Weyl group. Given a subset I of A, we set

W(I) = {wew , w@)>0 , Vo €I , w(@) <0 , Vo € A - I}

W acts naturally by permutation on GL(d)™ and by "transport de structure'

on the representations of GL(A)™. It is easy to deduce from (Z):

PROPOSITION: J has a composition series whose successive quotients are

the irreducible representations Tr such that:

R(']TI) = @ W(p@\)p@ --.@vm"l O) e 8
weEW(I)



each occurring with multiplicity one.

If I=¢,ﬂ¢=8tm(p) and if I =A, 1 =Stm(p)t. When m = n and

o = \)—(n-l)/z’ then

-1

R(m.) = ® w(§ )8 .
- weW(I)

2d. Proof of (2). Suppose I # ¢, A and that the central character of

m-1
P

T_ is unitary. Then the central character of w(p Y Vo *++ XV ) +8

I

verifies

I | = w(&™h) s
w

Let W! be the longest element of the Weyl group of A-1I. Then wl e W(I).
There is a canonical isomorphism of the center § of GL(d,F)™ to the
diagonal group of GL(m,F), then a natural action of I om S. The character

| X 1[ acts trivially on the set of elements
W

c = fces , |l , if ael, le

This set is unbounded modulo the center Z of G.

Recall a theorem of Casselman: 1if v € Ty and v € T. the contra-

gredient of TTI , and a € A (g) where

A (e) = {aegs , ]aOL| < e, va ¢ A} € > 0 small enough

we have

(1@, ) = (R(n)(adu, T



if u,u are the canonical images of v, v respectively in R(TTI) , R(TTI) .

~ ~ . . - -].
Let us choose u, u such that (u,u) #0 in W ---Q&-\)m ) ¢

and its contragredient. Let v, v which map onto u, u under the canonical

projections. For a € A (e), Cac A (g) and
(*) l(ﬂI(ca)v s = x (@] (u,u) .
wl

There exist a unitary character \)lx, x€R , of G = GL(n,F) such that

TTI\)ix is trivial on a subgroup Z' ¢ Z, with G/Z', with compact center
Z/Z' . We can apply to T the Howe theorem: 1if TTI is unitarizable

then the coefficients of T vanish at infinity. It follows from (%)

since C is unbounded modulo the center that T is not unitarizable. Then

Trl. is not unitarizable.

2e. We determine now the irreducible representations 71 of G whose
characters XTT do not vanish on the set Gel]' of elliptic regular conjugacy
classes.

We know (Z) that the products (unitary induction ) of quasi-square-
integrable representations form a Z-basis of K(G) . Denote by [7] the
image of 7 in K(G) . TFor every 7 & E(G), we have:

[r] = Zn(ﬂ,ﬂlx--'xﬁ)[ﬂ X eee X W]
r r

where ms € EZ(GL(ni,F)) y L n; =n. The sum is finite, contains at most
one St:m(p) , and

n(st ()%, St (p)) = -1yt



We know (BDKV) that the restriction to GE]'1 of the characters of

E2(G) form a complete orthonormal system. Moreover, for every 7 & H?(G)
there exists d)TTE H(G) in the Hecke algebra H(G), called a pseudo-

coefficient of T such that

(Tr,(b,n.) = 1

(m ’(b'rr) = 0
if 7w = Stm(p) and ™ 1is not a subquotient of p x Vo x ++» X N o,
T €E(G) .

We deduce from this the following:

PROPOSITION:

(1) X_ =0 on ¢t if 1 is not a subquotient of some

P X Vo X =+ X N o and )(TT = n(n ,St:m(p)) otherwise

X
St
20
(2) The square-integrable-irreducible representaticns and their duals
are the only irreducible unitary representations whose character

do not wvanish on Gell .

3a. We suppose now F global of characteristic zero. Denote by S a finite

set of non-archimedean places of F. We set

S
Gg = 1 G, ., G, = GgG .
ve S
By convention XS = (Xv) satisfies (P) if and only if each component Xv
ves

satisfies (P). We deduce from 2e the following corollary



COROLLARY: Let m, = T_ X ﬂs be an automorphic representation of GL(n)A.

A S
The character of 7. does not wvanish on Gell

g S if and only if

_ 2 . . .
g € E_(GS) if m, is cuspidal

_ 2 t . . .
Tg € E (GS) if m, is not cuspidal .

Proof: From 2e (2) we know that each component T, of g belongs to
EZ(GV) or Ez(Gv)t. If one of them is square integrable, then Ty is

. cuspidal (this seems to be well known and was indicated to me by Jacquet,
it results from the characterization of square integrable representation

by the exponents from Jacquet functors, and the computation of the constant
terms by Harish-Chandra). It follows that T, is not degenerated (Sh) at
all non-achimedean places v of F. Therefore, for v « S, T, is square-

integrable, because the elements of EZ(GV)t are degenerate.

3b. PROPOSITION: A cuspidal automoprhic representation of GL(n)A and

. S
a non-cuspidal one do not have the same G ~component.

Proof: 1If they had, their L-function would be equal. This is incompatible

with the existence of a pole for an L-function L(s, T, x UA) for o

A A

cuspidal of GL(m)A, m < n when T, is automorphic for GL(n)A is not

A
cuspidal (J.Sh).

3c. We now proceed to the proof of the global correspondence. Let D be
as in §1, and S be the set of places v of F where Dv is a division
algebra. The comparison of the trace formulas on GL(n) and D* made by

Langlands (L) gives:



(1) trace p(f ) = trace pd(f)

for all £ = ﬂfv , £ = nfv associated to f via orbital integrals:

- £ %= £ ¢ Han)®)

- The orbital integrals of fs on regular elements are zero

outside of G:ll, and equal to the orbital integrals of fS
D:ell naturally isomorphic to G:ll.

We use the notations of (BDKV) that we quickly recall: a central
characger w 1is fixed, p is the regular representation of GL(n)A in

. . X
its discrete part, P the one for D, .

L? (GL(n,F)\GL(n,A) ,w), P A

d
Using the standard simplification argument (JL) we write (1) in the
equivalent form: for all € E(GL(n)S).
s S
; =Y T m il
(2) In CHSCQ T7) trace ﬂé(fs) z n( s X)717) trace S(fs) where n(ﬂA)

is the multiplicity of 7, in S and n (HA) the one for o .

A
The following properties are equivalent:

® (2) does not vanish for all f_

bt T is the Gs-component of some LN Y

. ]
° T is the G - component of some T

. ell
T does not vanish on GS .

A C pd such that the character

We suppose that they are satisfied. We deduce from 3a, 3b, the strong
multiplicity one theorem for cuspidal representations of GL(n)A, and the
local correspondence (la), that two disjoint possibilities A, B can

occur:
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S

Al m is the G° -component of 7, cuspidal. Then m, is unique,

A A

with multiplicity n(TrA) =1, Mg is square-integrable. Let TT: € E(D:)
associated to Ty by the local correspondence and TTZ = TT;@‘!TS . We

have for all f_€ H(D’S‘) :
8 _ 0
In(n @m) trace m (f) = trace m (£) .

By linear independence we deduce that 7° is the Gs—component of a unique
automorphic representation of DX , equal to ‘ITZ y with multiplicity

n(TTZ) =1.

S

B] T is the Gs-component of 7w, residual. Then e is the dual of a

A

. . ; X .
square integrable representation. Let TT: «’:E(DS) associated to T_ by

the dual of the local correspondence and wg = TT;@TTS . We have for all

X
£ EH(DS) :
' S _ - S 0
Zn (Trs®ﬂ ) trace Trs(fs) = Ln(TrS@Tr ) trace Trs(fs)e(ﬂs)
where E(TTS) = zl .

By linear independence we deduce that the set of automorphic repre-

. . s , .
sentations of D: with G” -component TS is equal to the set of the repre-

sentations TTZ, where T, = TTS®TTS is residual for GL(n)

A with

A’

multiplicities n (TTZ) = n(ﬂA) . Moreover E:(TTS) =1 for all such Ty e
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Thursday Morning Seminar

DIVISION ALGEBRAS III

R. Langlands

There were three points left unsettled in the previous lecture that

I want to deal with here.

The fine & -expansion. As already suggested it appears best to write

the left side of the trace formula as a sum over L(M the set of Levi

0),

subgroups containing MO' Thus we write

M M M
T
o lsTey =3 81T =1 815w
Me LMy |27 | M |7 M |27
omitting as convenience suggests both the range of summation and the
parameter T.

Arthur expects that JM(¢) will be a sum over semi-simple conjugacy

classes & in M,

the JM(G’, $) having a form to be described below. I allow myself to
anticipate his results, in spite of the element of uncertainty this introduces.
It is intended to present them in the Friday morning seminar.

It will in particular have to be proved that

_ G, 2 -1 G
JM(Y, 6) = lD (Y)l IGY(AS')\ G(AS') ¢S.(g Yg)VM('Y, g)dg



is defined for those vy in M(AS,) such that 1-Ad(y) is invertible
on (J]/W. It will also have to be proved that it extends by continuity
to all of M(AS).

Fix a semi-simple y in o and let UY(MS') be the collection
of conjugacy classes of unipotent elements in MS' which commute with
Y, or, better, a set of representatives for such classes. Then for S'

sufficiently large

S! M
Lo, ¢) =c” (M) Cor (Ys 8)T (Y6, ¢)
M s€U,(Mg,) S M

i)
The constant cS (M) outside the summation depends only on S', M, and

G and is given by
! 1 1
cs (M) = meas(KS nM)\KS

The constant cI\SA,(Y, §) inside the summation depends on S', v, §, and
M but not in G.

Lemma 1 of the previous lecture remains valid first for vy such
that 1-Ad vy is invertible in aJ/nv , for which it is proved in the same

way, and then, by continuity, for all .

This makes it natural to modify the notion of a family Fg adapted
to fS
- Q
D Iyt fs ers'—s =l L MO Fs ers'-s ‘v
Qe*
Q=L

for all y. Lemma 2 remains valid, the proof for finite v being that



given in the first lecture. The proof for v = = will be given below.
This done we can proceed as in the previous lecture to prove the

existence of functions pr such that

Q
I (e, ¢) =) I (or, V™)
M Meq M
Q=G

Hwin

for every ¢ . Then

Q
@ =1 3,69
M =L o

G

Q=

and the measure-theoretic argument can proceed.

Revision of argument. Although I see no reason to doubt its validity I

am unable to prove Lemma 2 of the first lecture for v = » in the form
there stated. I can only prove it when S consists of « alone. This
entails some changes in the proof of the existence of the functions wQ.
Notice first that we had fused all the infinite places together into
one so that the statement with which the proof began was not strictly
correct. All the places (in the usual sense) at which &(y, d:v) =0
may be infinite. Then n = 2m, m is odd, and n; =n, =m. In
particular p(L) = 1.
Turning to the construction of the f wused to define wQ for
Q e P(M), p(M) > 2 we distinguish two cases: (a) o(vy, ¢°°) is not

identically zero for all y in M_ regular in G_. (b) It is.

In the first case we may continue to use the argument of the first



lecture, noticing that if M c Q then the two places at which &(y, ¢V) =90
for all v e MQ(FV) regular in GV are both finite. In the second case

we use Lemma 6 only to show that the function

Q
J(Y’¢)_ J(Y,IP)
M ZMEQ M
Q=G
Q¢ P(M)

is satisfactory away from «. (Note that in the definition of satisfactory

\
and in Lemmas 5 and 6 the function &(y, f) should be [D(y)|®¢(y, f)

2
satisfactory at = we use the argument on pp. 14-18 but with

;
and @(Yl, f: ) should be lD(yl)P@(Yl, f: )). To show that it is
2

St -
g, € GR x A7), g, € G(Asl), S;=8 - {=}

A lemma of Arthur. To complete the argument of the first lecture we must

therefore prove Lemma 2 when S = {»}, The first step is to reduce
ourselves to the case that S' = S. For this we need a variant of a lemma
of Arthur, but I first give the lemma itself, of which We‘shall in any case
have need.

Recall that the Harish-Chandra homomorphism 2z —> FT(z) can be

factored through Z,,., z —> I‘M(z) — I‘T(FM(Z)), where the T

M T

should really be written I'I,\I‘/I for it refers to the pair T, M. For the

next lemma G, M1 and M' can be any connected reductive groups over

R.

LEMMA 1. It is possible to attach to any pair M c M', any T c M,

any vy in M(R) regular in M', and any z e ZM an invariant




1
differential operator DI\M/I (v, 22 on T such that

G M! G
Iy, zf) =} D, (v, Ty (2))3 5 (v, £)
M McM'CG M M! M

for all 2z e ZG'

If M =G then Dﬁ(y, zZ) = I‘T(z) is given by the Harish-Chandra

homomorphism and the equality is well known. In general we can proceed

by induction and it is easy enough to see that we need only show that

1
f — Jﬁ(Y, zf) - ) Dx (v, FM,)JSI,(Y, )
MCM'CzG

is an invariant distribution, for it is then an elementary consequence of
the theory of distributions that it is given by { —> DJg(Y, f), Dbecause

it is obviously concentrated on the orbit of y. We define Dﬁ(y, z) to

be this D.
The proof of invariance relies on two simple, and more or less

obvious, identities. The first,

(Zf)Q,h = PMQ(Z)fQ,h

follows easily from the definition on p. 20 of the Annals paper and the

definition of the Harish-Chandra homomorphism. The second,

Iy () = 0,2

is almost formal.



This said, we must verify that

5,0rs 28 - 3lr, 2

is equal to

) oMy, o (@S, 8 - 3¢, 0)
MCM'%G M M M M

The first difference is equal to

J (v, T,, (z)f )
ZQ64(M)M My "R,k

QzG

which by induction is equal to

MI
Dy (Vs Ty ()T £ )
MeM'C Q=G M M M Q.h

On the other hand

DV (v, Ty(2) Ty, £ = 35, (v, £)

is equal to
M!
ZM'CchDM ST VNN T A
The required equality follows.
Observe that in the Friday afternoon seminar we used a special case
of the lemma, that for which p(M) - p(G) = 1, obtaining it by a direct

argument.



For the second lemma we consider a function £ = fsfs, fs being

S . . . _
_ﬂ_veS fv and f~  Dbeing erS‘-S fV with fV spherical for v e& S'-S.
We observe, for it is the key to the proof of the next lemma, that for a
spherical f = fV the function fQ depends only on MQ and thus may be

written as I‘M(fv) if M =M.. Moreover

Q
FM(TM.(fV)) = FM(fV)
If he G(AS) then

_ S
fan= fs,Q,hPMQ(f )

Thus the next lemma can be proved exactly like Lemma 1.

LEMMA 2. For any vy = (Yl, Yz) regular in G there are linear forms

1 1
¢ —> DI\I\jII (v, ¢) on the Hecke algebra of M‘(Ag) such that

S M! S
J (ff7) = Dy, (v, Ty (£ (v, £)
MAS EMCM,CG M M M1

\(l

Suppose then

- Q
QeF (M)
Q=L

for all M ¢ L. Then by the lemma (with G replaced by L)

S M! S
I (v, ££0) = ] Dy, (v, Ty (F90) 3 (v, fo)
M S vemeL M M! M1 S
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c Q=

_ M! s 0

- lecQzL DM (Y9 FM'(fQ))JM'(Yl’ FS)

_ Q.S
= ZQ InGys Fgfg)

Proof of Lemma 2 for S' =S = {2}, (Notice that in the statement of that

lemma v 1is to lie in L(FV) and be regular in it.) The function fS
is now denoted f and we establish the existence of FQ by induction on
0(Q). To warm up we begin with p(Q) - p(L) = 1, the weighting factor

being then linear. So Arthur's lemma yields differential equations,

(2) L0 2 = Ty, D

the inhomogeneous term falling away because the orbital integrals of f
are zero. Notice that at this point we are working entirely within the
group L. From the equations (2) and the estimates of the Inventiones
paper, to which we shall return, we deduce that JM(Y, f) defines a
piecewise smooth function on T(R).

We need to show that there exists a function F on Moo(]R), smooth

and of compact support, such that

JM(Y! f) = JM(Y’ F) ’

at first for y regular and semi-simple, and then for all y. Then we

set



Q _ 1

F*= ——
| POV |

F °

To do this we first use Shelstad's characterization of orbital integrals

to obtain an F in the Schwartz space (Shelstad, Characters and inner

forms of a quasi-split group over R, Comp. Math. (1979)), observing that

for the groups under consideration orbital integrals are necessarily stable,
and then we follow a technique of Clozel (App. to Clozel-Delorme, Le

théoréme de Paley-Wiener invariant pour les groupes de Lie réductifs) which

with the help of this Paley-Wiener theorem replaces F by a compactly
supported function.

According to Theorem 11 of Shelstad's paper there are several
conditions to verify. The first is formal and trivial to verify. The second,
invariance under the Weyl group, is clear from the definition. The others
refer to the behavior of JM(Y, fm) near semi-regular elements of T.
These are defined by a condition oc(yo) = 1 with o real or imaginary.

The conditions for o imaginary are the most difficult to state, but
the easiest to verify. The point is that near the orbit of such a Yo Wwe

can set

F(m) = og(m) [ [ ( )fm(k_lmuk)WI(\}/I(m, u) dudk
K N (R
Q

o

where

G _ G
WM(m, u) = VM(m, n)

if m—lnm = mu. There is a neighborhood X of the orbit of Yo such
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that (m, n) —> (m, u) is a homeomorphism of X x N_.(R) with itself.

Q

Moreover we can so choose X that Vla(m, n) is smooth on X x N _.(R).

Q
Finally

I(rs £) = 30y, F)

and is thus equal to the orbital integral of a smooth compactly supported
function near Yg- So the conditions at imaginary roots are obvious, and
need not even be stated. Indeed the conditions at all roots in M are,
for the same reason, clearly satisfied.

The condition at a semi-regular element defined by a real root is

smoothness. Continuity is already being taken for granted. Just as in

the lecture Cancellation of singularities at the real places it is sufficient

to verify that HocJM(Y’ foo) does not jump at Yor Ha being defined by

G ) = 32

" e ay

for all H'€ 4, and o now being a real root not in M.

This is a consequence of the results in Arthur's paper The characters

of discrete series as orbital integrals, Inv. (1976). We need only sort out

the notation. First of all, writing £ =1f and L =1L

(Rz, H: Y : D, ) = o |? f f(g'lyg)vﬁ(g)dg :
Yy(R)\ (R)

where vy = ¢ exp H, the factor ¢ is locally constant and equal to



s(H)  8(H)
e 2 - e 2
i R
B€RI !e 2 - e 2 l

+ . . . ses .
RI being the set of imaginary roots positive with respect to some order,

and Y is the A-orthogonal set obtained by projecting {w—lT} on o,
the split component of M,

The weight VII\;I(g) is defined by projecting w-l(T—H(wg)) on 01,
obtaining thereby for each chamber W in ¢ a point Xy e In essence
vi‘/l(g) is the volume of the convex hull of the Xog e To define Vh(y, g)

we have to replace Xy by

T . . . 2B8(H)
h . - .
where HB is the projection of HB on ¢t and <H HB> )

The sum is over all positive roots B whose restriction to 4t is not zero

and which separate W from W+.

Digression. It will be observed that we have modified our formulation of
Flicker's trick, replacing lnll-B—l(Y)l by 2n M—lgl- This is of no
importance if our only concern is to create a COIIBN(Z;I)HIOU.S function of v,
one modification serving as well as the other. The new modification has

however a symmetry which the old lacks and which we have implicitly used.

Namely, replacing vy by \VYW—l in

D% ) | f f(g_lvg)vhﬁ(g)
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or in
|DL(Y) IJ" ff(g_lvg)VhI,;(Y, g)

yields the same result as keeping Yy but replacing vh(g) by v&(wg)

1

and V&(Y, g) by VII;i(wYW— , wg). Now vﬁ(wg) is defined by

{s_lT—s-lH(swg)} = {w(w—ls-l-w—ls—lH(swg))}
L _.L .
Thus vM(wg) = vM(g) . So the replacement has no effect on the first
integral.

Before considering the second we notice that

1-8(y)
In — H, =) c_(B)H
s le(p |2 B T Y T

where Cy( 8) is defined for all B8 and cy(—B) CY( B). The sum is over

all roots separating W from W+, more precisely over those which are

positive on W_ and negative on W. To replace W+ by another chamber

W' is simply to add a common term, independent of W, to all these sums,

and that has no effect on the volume.

1

The factor V;(WYW- , wg) 1is defined by

1-1 -1

-1
w(w s -w s—lH(swg)) - ) en |1-8Cwyw )1| H

I8 (wyw D2

8

According to the preceding remark we may sum over B which are negative

on s ]’W+ and positive on WW+. Thus we write the sum as
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w(le (wieH ) .
Y w B
If sB is negative on W+ then sw(w-IB) is also, for they are equal.

Thus the sum is in fact equal to

( (8)H,)
w ZB>0 cY 8
sB<0

and VII\‘/'I(wyw—l, wg) = Vi’d(y, g). So both integrals are invariant under
the substitution y —> wyw_l, w lying in the Weyl group. This ends

the digression.

It is convenient to set XW = YW + ZW’ where

Z .= - In _‘______rl_l"B(Y) ﬁ-B
gz [B(Y)]®
and Y equals Xw if o does not separate W from W_ and is

w

otherwise equal to

xy ~ In _l___Ll-—a(y)1 ga
laly) |
The function ZW is varying smoothly near Yo So it is natural to
apply Lemma 6.3 of Arthur's Annals paper to write

- Q
Vi (v, g) =} (Y g (Y DUNEZD

Qe 3l

the notation being I hope obvious. The singularities of JM(y, f) at Yo

are therefore determined by those of JI'VI(Y, fQ) the prime indicating
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that we are using the weight factor determined by the family {Yw} rather
than that determined by {XW}.

There is a simple relation between Vﬁ(‘{, g, {Yw}) and VI\Q/I(g)’

namely
Q _.Q
Vatr, g 1Y, D = vXg)
unless o 1is a root in MQ' However if o« is a root in MQ and if

*
with @ =4 , equal to the null
M

*
M >M is the Levi subgroup of MQ

space of a then

Vy, g (Y1) = vig) + In % v@ )W)
oy M

where V(ﬁa) is the measure of the interval spanned by O and ﬁa.

The following diagrams illustrate a typical case of this relation:
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The points Xy and YW are the same if o 1is positive on W. The
volume of the unshaded region is vla(g) and that of the shaded region
is the difference between VSI(Y, g {YW }) and vﬁ(g) .

To verify the first identity suppose o is not a root M,.. Then

Q
it is either in NQ or not in Q at all. In the first case Xy = YW if

W=W({P) and P in P(M) is contained in Q. In the second case

Y., = x

W W Zn|l—cx-l(Y) Iﬁa' In either case the volumes of their span

are equal.

To verify the second we observe that a P € P(M) is specified by
*

* *
a P € PM) and a P'E PM (M), the second set containing exactly

two elements. Moreover if W = W(P) then Xy = YW unless o is not
a root in P', but then YW = Xy~ Q,Ml%-ﬁa. At this point one
‘ laly) ]

either regards the asserted equélity as geometrically obvious or proves it
with the algebraic formalism of the Annals paper.
Comparing these relations with the definitions on p. 227 of the

Inventiones paper we conclude first of all that

, = . v,
Iy, £y = RfQ(c, H:Y<: 1

if o 1is not a root in MQ' Observe that in this case an argument used
above reduces the study of the weighted orbital integrals near Yo to
that of ordinary orbital integrals. So we are provided with the required

smoothness at no cost. If a 1is a root in M then

Q

1 - g@ . vR.
JM(Y, fQ) - SfQ(C) H . Y . l)
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Incidentally, the family YQ

is defined in §6 of the Annals paper.
This last formula allows us to apply Theorem 6.1 of the Inventiones

paper. It asserts, in particular, that the jump in HOLJI‘VI(y, f.) 1is equal to

Q

na(A)JM*(YO, fQ)

We deduce that the jump in JM(Y, f) itself at Yo is equal to

A

2 -1
N , IDG(Y)I [ f(g Yog)vla*(g)ngQ({ZW}) ,
McQ

and another application of Lemma 6.3 shows that this is equal to

J (v, D)
M* 0

Notice that the projection of Ha on “M* is zero. At the moment we
are dealing with the case that p(M) = p(L) + 1. Thus M* =L and
J *(YO’ f) is the limit of ordinary orbital integrals and consequently
zero.

This éives us Shelstad's conditions. To convert the function she
provides into a compactly supported function we have to assume that f
is K-finite and fQ therefore K n M finite. This assumption was
overlooked in the statement of Lemma 2. It is a restriction that does not
hinder our real purpose. The use of Clozel's technique was suggested by

Arthur.

Let F be a function in the Schwartz class on M(R) with

JM(Y, f) = Jyly, F)
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Since the orbital integrals of F are well defined, even though F itself
is not, the trace trn(F) 1is well defined for any tempered representation
m of M(R) and does not depend on the choice of F. If 2z is the

Casimir operator, f = (z-Mf', A € C, and
1y = 1
T £ = 0, B

for all regular semi-simple y then we may take F = (I‘M(z) - AM)F'. We

conclude that if 7 is a tempered representation of M(R) and

Tr(I‘M( z)) = Al
then
trn(F) = trw((I’M(z) - A)FY) =0
A difficulty. If f is K-finite the equation f = (z-A)f' = 0 is solvable

for X positive and large as a consequence of the Plancherel theorem, but

it is solvable only in the Schwartz space (Arthur, Harmonic analysis in

the Schwartz space of a reductive Lie group (preprint)). Thus in order

to make use of the previous observation we must show that F exists not

just for compactly supported functions f but also for functions in the

Schwartz space, provided of course that their orbital integrals are zero.
To deal with this larger class of functions we need only establish

inequalities

D30, O] cc 1™
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where D is an arbitrary invariant differential operatc;r on T(R),
C = C(f, D)) is a constant, and vy = g exp H with ¢ in the maximal
compact subgroup of T(R) and with H = H(y) in the Lie algebra of
its vector part. It must of course be possible to choose the integer
n arbitrary.

Corollary 7.4 of Arthur's paper gives us pretty nearly what we

want. He works with vﬁ(g) rather than with Vﬁ(y, g). However

= (o)

< C+ [l

So it is easy to convert the corollary to an estimate for JM(Y, ).
Following Arthur we set L(y) equal to the absolute value of the
logarithm of the smallest of the numbers |vl-a(y)—1|, where o runs

over the roots of T which do not vanish on ¢t. The estimate is

\.c.

®

(3) 13,0 D1 s ca+ LN+ wh™ ,

where C = C(f, n). The question now is whether the technique of the
lecture on real groups allows us to rid ourselves of the annoying factor
(1+ L(y))P without losing the factor (1 + HHH)—n. A glance at that
lecture and a moment's reflection convinces us that what we need are

inequalities
(4) DI (v, O] < Ccre P+ 1™

valid for an arbitrary invariant differential operator in T(®R). The
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number p' depends on D and +t(y) is the distance from vy to the set

U (tle®) = 1)
o

This is what the second stage of the argument in §8 of the Inventiones
paper gives us. As Arthur remarks it is taken from Harish-Chandra.
Notice that (3) and the differential equation (2) provide us with an
inequality (4) whenever D 1is a I‘T(z) . This is not the place to recapitulate
the argument in all its details. It suffices to note that using the fact that the
algebra of invariant differential operators is a finite module over I‘T(ZL)
and the existence of a fundamental solution for powers of the Laplace
operator in T(R) one finds Dl’ cees DI; in I‘T(ZL) and functions
E ooy E_ BE such that

r
~ ~=1 ~ ~ -1~y 4>
Do) =] [ DiPME & "vdy- J ¢(B_(v "y)dy
=1 ’
Here ¢p is any function smooth on the set of regular elements in T(R)

and € = l('g_)" ©(y) being supposed small. I have allowed myself to

work in T(R) rather than in its Lie algebra as Arthur and Harish-Chandra

do.

We of course take Lp(y) = JM(y, f). The point is that the

functions E, c and the function Bs have support in a ball of radius

1

3e. Moreover the E, . are bounded and, as an explicit calculation of

b4

the fundamental solution shows,

B ("] < ce 4
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(See §29 of Harish-Chandra, Invariant eigendistributions on a semisimple

Lie group, Trans. AMS (1965).)

So the difficulty can be surmounted. We return to Clozel's technique,
taking f once again to have compact support. To show that F has the
same orbital integrals as a function with compact support we have to show
that the conditims of Theorem A.l of the appendix to the Clozel-Delorme
paper are satisfied. Take a cuspidal parabolic P of M and consider the
representations induced from a discrete series representation § @ X

S, A
on MP(R)° That

A ——> tr "S,A(F)

is of Paley-Wiener type follows from the explicit formulas for the character
of s, and the fact that the orbital integrals of F are compactly
supported.

Once this is granted all that is left is to verify that for all but
finitely many &, taken modulo central characters of M, the function
tr ns,A(F) vanishes on an open set of A. This however follows from the
observation that if 2z is the Casimir and A >> 0 then for all but finitely

many & there is a ) such that (z) = ul with u > A.

T8, A
We have now treated the case 0p(Q) = 1 + p(L) and we pass to the

general case, proceeding by induction.

All we need do is verify that, for all regular semi-simple v,

Y — I, 0 -] T, B = TGy, 6
M c Q=L

M=M
e
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is equal to JM(Y, F) where F is smooth and compactly supported on M.
Most of the argument has now been given, but we still have to verify the

differential equations
(5) T(y, zf) = Ip(2)T(y, 1)

and the jump conditions.
To verify the differential equations we have to observe that our
inductive assumption allows us to take the family associated to zf to be

{I‘M (z)FQ}. Consequently T(y, zf), which is not well defined unless

Q
the family attached to zf is specified for M€ Q, M = MQ’ may be

taken to be

Q
3y, zf) - ) J (v, I, (2)F~)
M -E(M) M My

00
. M

Applying Arthur's lemma we see that

Ml
I (v, zf) =} D, (v, Ty (2))T, (v, £)
M MeM! M M M
and that
Q M! Q
Ly, Ty (2)F%) = 7§ Dy, (v, Ty (2))J, (v, F~)
M Mq MeM'eQ M M M

Summing over Q and then taking a difference and using the relation

Q
Joaly, £) =) Iy, F)
M! M0 M!
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we obtain

Q
p(2) (v, 1) - ZMCQ Iylrs F)
Q¢ P(M)

This yields (5).

The jumps only cause difficulty at the semi-regular points defined by
roots not in M. Our discussion of the results of the Inventiones paper,
especially of Theorem 6.1. show that the jump in the normal derivative

of T(y, f) is given by

ng(MUW v H -1 T (g )
M cQ

By the induction assumption this is zero.
Observe that we are implicitly using a result of Harish-Chandra for
which no proof has been published. Namely, the induction assumption

asserts that

TN S NS MU O 1 B
M £ M
M cQ

for Yy semi-simple in M*(R) and regular in L(R). For the inductive
argument and, as we have seen, for the fine ¢ -expansion we need the
equality for any vy such that 1 - Ad vy is invertible on A#/#%. This
follows easily from the fact that for any Yo € M(R) there are differential

operators Dl’ . Dr on Cartan subgroups Tl’ cens Tr of M and
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sequences Y? of regular elements in Ti(R) such that

_ . n
JM(YO’ F) - 11m Z.DiJM(Yi’ F)
n+>« 1

for any compactly supported smooth function on M(R).

The measure-theoretic argument sketched. It involves of course the distri-

butions OM, which have never been explicitly defined. Their definition
requires an improved form of Theorem 8.2 in Arthur's second Amer. Jour.
paper. This involves two things, replacing the hypothetical normalization
of §6 of that paper by one deduced from results of Silberger, and proving
that the representation on the discrete spectrum is of trace class. These
are for the Friday morning seminar.

Observe first of all that we work with functions ¢ on G and not
*

G that appears in Arthur will be

on Gl. So the integration over iaz;/iot
an integration over imz.
As it is given by Theorem 8.2 the trace formula appears as an

absolutely convergent sum over x of terms JX(¢) . Each JX(¢) is

itself a sum but Arthur does not assert that the double sum is absolutely
convergent. Nonetheless it is hoped to present a proof of this in the
Friday morning seminar. So we can rearrange at will. The terms appearing
in the expression of JX(¢) as a sum are indexed by two Levi subgroups

M ¢ L and an irreducible unitary representation m of M(A) or, if

one prefers, of M(A)l. Only countably many 1 actually contribute.

There is another index s, but it is unimportant. Indeed it is better

to use the definition of M(P, s) given on p. 1309 and to express the
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sum over M, m, and s as a sum over unitary representations of L(A)
(induced from M(A). The result will be attributed to @L(¢) .

Thus GL(d)) is a sum

Y S tr(R_(\)I(o ® A, ¢))dr ,
o im °
L

the iterated operation being, as is to be shown, absolutely convergent. The
only o which actually occur are those which are unramified outside of S.

Thus if we choose a place Vo not in S and replace ¢ by ¢ * ¢v
0

where ¢v is a spherical function at Vo the sum is replaced by
0

(6) ZO jm* tr(R_(VI6 @ A, 0))a_g (¢v0)d>\ ,

L
e o being the homomorphism of the Hecke algebra into € attached to
c® A. Now v = ¢ @ is the homomorphism attached to the unitary
representation ¢ ® A and thus satisfies W = oz(q>i ) with

3 - -1 0 0
qbvo(g) = ¢V0(g ).

It is well known that the set of all such homomorphisms may be
identified with the quotient C of a compact subset of 01:_ ® C by the
Weyl group. The Hecke algebra may be identified with an algebra of
continuous functions in C. Just as in the study of base change for
GL(2) its closure is the algebra of all continuous functions and (6)
defines a linear form on this algebra, thus a measure on C. It is clear
that the measures associated to non-conjugate L are orthogonal.

What about the terms @M(wQ) . We observe that when ¢ is
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replaced by ¢ * ¢v the set S' may increase but the set S does not.

0
Now we have been very careful - because it is of crucial importance - to
insist that we could nonetheless take the family of functions wQ attached
to ¢ * ¢ to be \pQ o7 (6. ), where LpQ depends on ¢ alone,
Vo S MQ Vo S
or, to be more precise, on ¢ and the choice of S alone but not on ¢V
0
or the choice of S'.
Thus M is a sum of terms like

Q
/ s trace(R(A)I(c ® A, wS)ac®>\(FMQ(¢VO))d>\
iMM

So it is clear that ¢, —> G‘M(pr) may be regarded as a measure on C
0
and that measures associated to non-conjugate M are orthogonal.

Putting together the measures associated to G and taking ¢V
0
to be the identity we obtain

@G(¢) = @G,(¢')

We have had to assume that ¢ is K_-finite but that is of no consequence.






Afternoon Seminar

THE HYPERBOLIC TERMS FOR SL(3) AND SU(3’)

R. Langlands

1. Formal properties of JT. For the ordinary trace formula these are

taken from Arthur's paper The trace formula in invariant form. For

the twisted trace formula they will have to be verified in the morning
seminar, no serious modification of the proof being anticipated,'
The first point to keep in mind is that JT(qb) is a polynomial

in T. To express this more precisely we introduce for any standard

e~invariant parabolic the function ¢Q on M by

¢~(m) = o (m) [ [ ¢>(k—lmne(k))dndk
Q Q X N
Q

It has the same properties as ¢ but with respect to M rather than G.
In particular the twisted trace formula for M allows us to
introduce JT(sz)v There are polynomials Py on azé/d?;é of degree

equal to dim(ag/ﬂé) such that

-
(1) @ =13 Mgy (T-T))
QQPO

We conclude that JT(cb) is a polynomial in T.

¥
Observe that, contrary to what has been said more than once in these
seminars, the correct domain of integration for obtaining the trace

formula from the basic identity is G\Gi where
1 _ | _ * ;
G.=1{geGix(g]=1vxeX (G)}

%
the set XE(G) being the set of e-invariant rational characters of G

defined over @.



It is inconvenient to be tied to one PO' So we are going to modify the
formula in an essentially trivial way. We do however fix MO, an
e-invariant Levi factor of PO over Q. If M > MO is reductive and
e-invariant we let LE(M) be the set of e-invariant reductive groups
over ) containing M. We let FE(M) be the set of e-invariant
parabolics over @ containing M and PE(M) < Fe(M) the set of
e-invariant parabolics with M as Levi factor. When e = 1 if is not
included in the notation. Thus Pl(M) = P(M).

Arthur introduces the notion of K admissible relative to MO"
There is no need to rehearse the definition here. The only important
point is that the Cartan decomposition G = PbK is valid for any
P'O € P(MO)., Thus if s € Qe(d“?,o, 520) =0 s, dzg) is represented
by w = W and P‘O = W—lPOW then we can define truncation with
respect to P'O, If T lies in the positive chamber with respect to P'O

and is sufficiently regular then T' = swlT + H(W;l) lies in the chamber

positive with respect to P'O and truncation with respect to Pb allows
us to Introduce JT'(cb), We take T to be e-invariant and to ensure
that T' is also e-invariant we take Hs(w;l) to be the projection of
H(w;l), calculated with respect to PO’ on 026:.

We have
(2) 74y = %)

Notice that T' = T'S is determined by s alone and is independent of

the choice of W An analogue of the identity (1) is valid.
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1
J7 (¢) = J (9 pq  (T=T)
ZQ';.aPO QUER 1

Q 1

1
TQ be the projection of T' on 02.0 . It follows readily

Let

from (2) that

Ql
T! _ T
7 g0 =TT )

depends only on Q' and not on s, two different choices of s differing

M 1
by an element in e (0’(8, 01,8). Moreover it follows readily from Arthur's

definition that

Poi(T'-T}) = po(T-T )

We denote this polynomial in T—Tl by Pu (T«Tl).

Q
The identity (1) may be written
M
T ™ e Rl a )l
(3)  T(e) =) I 0y —5——— Py (T-Ty)
Q & §‘E(MO) lQ <m09 Jz,o) I Q
T and T] being sufficiently regular and in the Weyl chamber positive
with respect to PO' We abbreviate the quotient appearing here to
M
Q
2 2]
kN

€

If & 1is a semi-simple conjugacy class in G and M € LE(MO)

then 6 A M= O“l Voo where the 0, are semi-simple e

conjugacy classes in M., If P € P(M) set



P P
T _ J
Iy (bp) = Zi T, (0P
There is an analogue of (3),
Q My
(4) OIS JT1<¢ ) 1o (T-T.)
= p b
o QefF vy & 8 My T

Notice that the value of JgQwQ) is 0 if & n MQ is empty.
Now associated to y we have the split center A of the e-centralizer
of v and &) = dim A - dim O'ié is an invariant of & . Clearly
&N MQ is empty unless dim az,g/m:é < &(¢ ). We conclude that
J;(d)) is a polynomial of degree at most &( ).

Having recalled how JT(c,b) and the terms J§(¢) of the coarse
T

¢ -expansion depend upon T, we now see how far JT and JO"

depart from e-invariance. If h € G set

1

0%(g) = ¢(hge(h™ 1))

Observe that we can write h = ah' with a € Aé and h' e Gi, This

is important if the argument in §3 of Arthur's paper is to be imitated

to vyield
M
T h TR 2, "]
(5) I = ] I7 Gy )
QeFM,) ’ |9
€
where

(m) = pQ(m) f

I ¢<k"1mna(k>>ub<k, h) dndk
K N

Q

°Q,h



Although we use the same notation as Arthur for the weight factor it
does depend on «e.
: T, h
There is a formula analogous to (5) for Jﬁ,(cb ).
M
Tihy - ] T 2|
(5" J (¢7) = J o (bn 1) ——5—
o nermay 7 MR8
€
We will be guided by these formulas in our definition of Jl\jjl(w .

We shall seek to impose at least two conditions:

M
(a) 7 o) = 7 IQQQ!JT?w (T-T.)
a b=y p -
M ceFm) la_| M d Moo !
M
|2 Ql Q
T, h! e T
(b) J (¢ ) = Joo (¢ )
T e A 2 B VIR

Observe that F(G) consists of G alone, and that pPg is
identically 1. Thus (a) and (b) assert in particular that Jg is

independent of T and e-invariant.

2. The hyperbolic terms for a Chevalley group. We are concerned

with the ordinary trace formula and we want to define JI’\T/I (¢) as a
0

sum

1 T
— ] I (v, ¢)
G fyem, Mo

If Yo lies in I\/IO and MO is the connected component of the

centralizer of Yo then the contribution of the semi*simple' class



& = O‘(yo) containing Yo has been described in the morning seminar.
If we divide that contribution among the conjugates of Yo in MO we

see that

T 1 1 -1 G
T (¢) = —=— meas(M \M ) } [ b(g “vglvy, (g)dg
o IQGI 0 0 y MO\G MO

Recall that VI(\}/I (g) is the volume of the compact convex set spanned
0
by the points

{s"ir - sulH(wsg)Is €Nl ,

when o = Q(()‘LO, m.o), Notice also that
{s“lT - s~lH(WSwrg) s eql= {r(s—lT - S~1H(ng)>}
Since the action of the Weyl group preserves volume, we conclude that

J ¢<g~1vg)vlio(g>dg = JI\T40(Y’ $)

M\ G

is a symmetric function of .
It is for the moment defined only for quasi-regular elements in MO°

To define it more generally we write the integral as

(6) f f <1>(k"lr1_]‘\(rw_k)vsI (nk)dndk ,
K NO 0

observing that

G G G
v,y (g) = v, (nk) ~ v (n)
MO MO M0



if g =ank. For vy in MO and quasi-regular the transformation

-1 -1

n—> u=vy n’ - yn

is a measure-preserving bijection from NO to itself. So we can change

variables in (6) to obtain

(7) S e yuvy (v, w)dudk
K NO 0

We have set

Vﬁ (v, u) = VIC\E/I (n)
0 0

If (7) were defined on all of MO we would simply define JI\T/I (v, ¢)
0
to be its value at vy. It is not. If W = W(s) = s l(W_P) is the Weyl

chamber associated to s we set

_ -1, -1
XW('Y, u) =s T s H(Wsn)
The difficulty is that some of the xw(y, u) may go off to infinity as vy
approaches a singular Yor U remaining fixed, so that the volume
VI\(jI (y, u) becomes infinite. We could tolerate this for some u but if
0

it happens for all u there is no chance of defining the integral (7) at Yo

We examine first the group SL(2) for which

X =T Xy

= -T + H(w n)
+ _ S



We have
1 x 0 -1
n = W=
0 1 ° 1 0
and H(Wsn) is the sum of local contributions H(wsnv) . Since
0 -1
won o=
S 1 X
the standard choice of K vyields the following results:

(i) v real,

1 0
H(Wn)=—!¢nfl+x2/ >
s v v 0

-1

(ii) v complex,

(iii) v finite
1 0
H(w n ) = -4n max{l, !X |}
sV v 0 -1

Notice that

If



and

1 x!

u =

0 1

then
x! = ( 1~ E) be
a

Thus, for a fixed =x', both |x| and H(wsnv) run off to infinity as
b5,

To rectify the situation we notice the following simple identities:

(i) v real,

fr—— 2
In 1+X\27=21’l\/(1“§'> +xl’2~£nll"~g—|v
(ii) v complex,
2 b 2 b
In(1 + |xvl ) = an|1 - é—’ + [x“/I - gnll - a_IV

(iil) v finite,

b

¢n max{l, [xV]} = ¢n max{|l - Eiv’

%! [} - a1 - 2
v a'v

In all three cases the first term behaves reasonably well as

|1 - g'v —> (0 provided

}*-'\,’ # 0. The second term behaves badly,

but we begin with regular, retional vy and for these



10

] wmij1-2| =0

Thus we could have begun by defining VI(\:;I (y, u) to be the volume
0

of the convex hull of

and

- - : _ - b
= =T + I—I(V»Sn) I 5&n|l y

A4

H

W

1
Ew

There is no difference for regular, rational v.

This leads to difficulties. A little more care is called for. We
first observe that for a fixed ¢ there are only finitely many vy in MO
for which gb(k—lyuk) does not vanish identically in u and k. So there
is a finite set of places S(¢) such that |1 - glv =1 if v g S(¢), v
is quasi-regular in M!, and ¢(k”1yuk) does not vanish identically as
a function of u and k. Thus we begin by defining VI(\;A (y, u) to be

0

the volume of the convex hull of

and

b
X, =~ T + H(w.n) - ) enjl - =| H
W S v €S(8) a'v

We so choose S(¢) that it contains S.

With this definition of VI%/I (v, u). we have, for vy regular in MO,
" 0
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(8) J;\EA (v, ¢) =cxtv) [ [ ¢S(¢)(k_lvuk)VI(\},I (v, u)dudk
0 K NO(ASM)) 0

Here x(y) 1is the characteristic function of the set of elements in MO

SON £ S(#)

whose projection on G(A lies in and

c = du
NO<AS(¢));~»,K
We are assuming that K = —i”IiVKV°
To see this we have to observe first of all that x(y) # 0 and
1yuk) £ 0 imply that ¢(kalyuk) Z 0. We also have to observe

b5 () &
that when this is so then

max{l, |x_ |} =1
v

. s -1
on NO(QV) N KV, which is the support of u —> ¢V(k yuk) .

The sequence of steps leading to (8) I refer to as Flicker's trick.
Before seeing how it works for other Chevalley groups we examine the
right side of (8) more carefully for SL(2). If d is the volume of the

interval [0, H] the double integral is equal to the product of

S(9)

d meas K

with the sum of

2T | / . ¢S(¢)(k”1yuk)dudk
0%s(9)
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and

-1 G
)(k Yuk)VM (v, uv)dudk

f f 4504 .

veSte) Kgrgy Nols(yy

where

G _ -1 o b
VMO(Y, uv)H = -5 H(Wsnv) Qn]l aiv

The previous formulas make it clear that we can dominate

vlc\i (v, uv) by a locally integrable function of u on any compact set

0
of v and thus that (8) defines JE‘:I (v, ¢) as a continuous function of v

0
on MO° Thus we can define ng (¢) to be
0
1 T
TZ JM (v, ¢)
|27 | veM, 0

One establishes directly for regular 7y and by continuity for general

v that
(9) 7Ty, 9) =) QMQ JT?(Y 6Py, (T-T.)
My neray [ Mo T TRTMg o
and that
M
Q Q
T h lo “] 4T
(10) I (v, ) =) — T Yy 6 4)
Mon Qe F(My) 109 Mo Q.5

Observe that if Q ‘is minimal then

TQ
JMO(Y, ¢Q) = ¢Q(Y)
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and

TQ
JMO(Y, ¢Q,h) = ¢Q9h(Y)

We now set

T T 1 v T
J (@w9 (b) =] (<}5) - WZ J (Yi ¢>
G v 9] “ye oM, My

We readily deduce from (4), (5), (9), (10) and the definition that
(a) Jg(ﬁ‘, ¢) = 0 if ¢ is hyperbolic (that is, not elliptic)
(b) Jg(d’g ¢) 1is independent of T
() Jg(@‘, ¢) is invariant.

We shall set
T, \ _ T
TGl =1 Igler, ¢

For an arbitrary Chevalley group the appropriate modification is

to replace x., = xW(y, u) by

W

(11) X, =%, - ) T oenll- o ty)|LH
ve&S(¢) a Ve

where Ha is defined by
B(H ) = (8, o)

and the inner sum runs over the positive rodts separating W from W+.
It is up to the morning seminar to justify this assertion. We shall have

to examine it more carefully when we discuss the cancellation of singularities,
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but for the moment we need it only as a guide for the quasi-split case
to which we now turn, contenting ourselves with SU(3), which we

realize as the unitary group of the form

taken on a quadratic extension E of the global field F. (Notice that

by working only with groups over ()} we have backed ourselves into a
corner, for we have no formalism for dealing easily with an arbitrary
number field. It is however easy to imagine what that would be, and even
easier to construct it. So we feel free to use it, and in particular to

apply the above treatment to Chevalley groups over F.)

The hyperbolic terms for SU(3). The weighting factor is at first

defined by

and

Xy = s”lT - san(WSn)

where s is the one non-trivial element in the Weyl group. It is

represented by
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As before we regard the resulting weight factor as a function of vy and
u. Thus
G G
vy () = vy (v, u)
0 0

where

_ ~-1-1
u=v n yn

We want to modify as before to obtain VSI (v, u). It is clear that the
0
choice of XW (y, u) 1is determined by what we have already done, for

the group is split at half the places and we shall need to invoke the
product formula.

To make this more precise we observe that the global bty which

may be identified in the present case with

()

is contained in the local 010, denoted ozg. If v vremains prime in E

x &€ R

then 6, = L., If it splits then GLX

0 0 may be identified with
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2, v, zER, x +yv + 2z =0

()

In addition

-1 _ -1
S H(Wsl’l) = EV s H(msnv)

and to calculate s 1I—I(Wsnv) at a place split in E we first calculate it

on G‘Z,X and then project to 010, the projection being

()= )

2

N

If }

the modification to be undertaken in the split group is to subtract

b 1 a 1
enl1l - 2 -1 + 4l - £ 1 +n|1 - £ 0
a’'v 0 v -1 a'v -1

However we are interested only in the projection, which is

o'l

3 1
b
(12) zn)l—;m»%iv( 0 —l>+£n|1—§|v< 0 —1)

The split center AO of

2 with ay = Zul. Set

MO has two weights in W sy oy

and o
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3 1
H = 0 , H_ = 0
* -3 *2 ~1

Furthermore if o is one of these two weight let ‘Zﬁ/o(cx) be the corre-
sponding weight space in 'WO and consider

AOL(Y> = ad 'Y"%/O(OL)

The expression (12) is equal to

on |det(1 - A;i(m lvHul + g0 |det(1 - Ag;(m ]Huz

We can therefore expect to define XW (v, u) by

-1
X (v, w) = x0 (y, u) - ) ) Inldet(1 - A “(y))|.H ,
W W v €5(0) o o v

the existence of the set S(¢) being proved as before. The inner sum
runs over o, and PY the positive roots separating W+ from W_.
The XW (v, u) allow us once again to introduce weight factors
VMO(y, u), b;t we still must verify that the formula (8) serves to
define Jl\ao(y, ¢) as a continuous function on all of MO. This is a local

problem and we carry out the calculations only for the case that x does

not split in E. The question will have to be taken up afresh in the

next lecture anyhow.

Let
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If v does not split in E there are relations to satisfy:
bb =1, ac =1, x =y, z4+z = xx, x' = y', z'+z' = x'x’

The bar denotes conjugation in Ev/Fv
If v is not split in E and is finite we have to choose from amongst
those X in Ev with trx = 1 one for which |A| is minimal. Then an

appropriate choice of Kv is apparently the stabilizer in G(FV) of the

lattice

v u, v, w integral

AW

Thus Kv consists of the matrices (aij) in G(Fv) for which
ayqs 31y 8575 855 Agas >\a13, )\a23, a31/>\, a32/>\ are integral. If w
is real then Kv can be taken to be the intersection of G(Fv) with the

unitary group attached to the form
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Since

with the following factor
(i) -% In(1 + |x|2 + |zl2) if v is real.
(ii) -g2n(1 + !x]2 + |z |Z) if v is complex.

A if v is finite.

(iti) -2n max{l, |x|, [2z|} + ¢n
The second term in (iii) is harmless, and certainly does not affect the
singular behavior at any Yo

It is easy to express 'x', y', z' in terms of x, y, z

b c c c b

Vo - 2 1 = - ) Ve (1 - 2 o 2D
x (1 a)x y Y (1 b)}‘ y Z ( a)z + (a a)xy

Thus

—s_ll—l(wsnv) - zu en|det(1 - A;I(Y)) lHoa

is equal to the product of H with the factor

@ -3 (- 2P - P P - P 2= D Ryt v s real,
(ii) - In( |1 - g—]zll - g—]z + ]X'|2!1 - g—lz + |z'(1 - éb—) + gx'y'}z if v is ‘complex,

b i b b _,
(iii) -on(max{]|1 - ;Hl - :—’, '] |1 - §—|, Ix]]z'(1 - é_) + ;x'y‘|}) + 2n |2 |
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if v is finite.

This factor we denote vI?/i (v, uv), We need to verify that
0

-1 G
S bg (oK TR Vg (v, u)dudk
¢) M v
Ks(s) Nolhg(yy 0

defines a continuous function of v in MO(AS(d))) .

To do this we choose a small ¢ and consider the domains
b b
20 - B eyl - B s eyl
separately. On the first domain we can suppose that

G
VMO(Y, u ) <cy tc,in |x'y! |

when ¢S(qb)(k“ 1yuk) is not zero., Since In|x'y'| is locally integrable
the dominated convergence theorem is applicable. Since 2z' is bounded

on the support of (bS(q))(k_ lYuk), we can replace the second domain by
wi] < eqlal o Iyl <eglol

where o € Ev and !u'2(1 - g) | is bounded away from infinity and zero.
i

We set x' = ax", y' = ay" and change variables to obtain an integral over

|| < Cqs ly"| < C3 |2'] < Cy of a function dominated by
1 - 2](05 t ey en |l - gl + c7ln]Bz' + xy"|)

where B8 = g(y) 1is bounded away from infinity and zero. The dominated

convergence theorem is applicable once again.
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We have discussed the quasi-split groups SL(2) and SU(3). We
could as easily have discussed a group G whose derived group was
isogeneous to one of these two groups, introducing the distribution JG"

The tactics outlined in the previous lecture demand that we show that

H
J (¢) - (G, H)SJ (¢ )
G ZH¢G1 H

is a stably invariant distribution.
For an anisotropic group G obtained from one of the above by an

inner twisting there are no hyperbolic terms and we set

_ .1 -
T5(8) = I5(6) = T (o)

Now we must show that
_ H
Jg(#) = ] (G, H)SIL(¢™)
H

These two problems will be dealt with by Rogawski after Christmas.

In the next lecture we will turn to a different matter, cancellation of

singularities.



