Notes I for the seminar "Analytical Aspects of the Trace Formula II"

Preliminary Facts About Unitary Groups in Three Variables

J. Rogawski

§1. Definitions. Let E/F be a separable quadratic extension of fields
and let ¢ (E/F) = {1, ¢} be the Galois group of E/F. Let D be a
simple algebra which is central over E. An involution of the second
kind 1 is an anti-automorphism of order two of D such that the
restriction of 1 to the center E of D coincides with o. If A is
a commutative F-algebra, then o extends to an automorphism of

E ®F A and 1 extends to an involution of D ®F A whose restriction
to E ®F A is o. Given a pair (D, 1), we obtain an algebraic group

UT defined over F such that for every F-algebra A, the group of

A-rational points is given by:
*
U (a) =1{ge (DA : <(glg=1}

We call UT the unitary group defined by (D, 1). We also obtain the

groups

SU_(A) = fg e (D 8, A) : w(g)g = 1, Nm(g) = 1)

GU_(A) = {ge (D 8, A) : (e € (B O I

where Nm is the reduced norm map.

Let Mn(R) be the algebra of n X n matrices over R for any



ring R. If D = Mn(E), an involution of the second kind <t is of the

form +t(x) = ®_10(tx)® for x € Mn(E) and © & GLn(E) is Hermitian,

t

i.e., ®» = og(®). In this case, UT is the unitary group attached to the
e ot ]
Hermitian form <v1, v2> = O(vl)@vz where vy and v, are column
. n
vectors in E .
Let
0 1 1
@n' = . € GLn(E)
1° 0

and let Un denote the unitary group with respect to E/F defined by
the Hermitian form CZDn. Then Un is qgasi—split (a reductive group over
a field F is called quasi-split if it contains a Borel subgroup over F)
since the subgroup of upper-triangular matrices in Un is a Borel
sﬁbgroup over F.

We recall the definition of an inner form of an algebraic group. Let
G and G' be algebraic groups over a field F and suppose that there
is an isomorphism @ : G —> G' defined over a Galois extension E/F
with Galois group ?(E/F). For o e?(E/F), a_ = cp_l ° qu is an
automorphism of G over E and a__=a_° O(ar) for all 1 € ¢#(E/F).
Hence {ac} € Hl(%(E/F), Aut(3)) and if a_ is an inner automorphism
for all o e ?(E/F), then G' 1is called an inner form of G. Every
connected reductive group is an inner form of a unique guasi-split
reductive group. Hence all unitary groups are inner forms of the groups

Un defined above.



§2. Unitary groups in three variables. In this section, suppose that

(D, 1) 1is a pair as in §1 where dimED = 9. The group UT is called
a unitary group in three variables. We list some facts about unitary groups

in three variables.

Fact (i): If F =R and E =C, all unitary groups in three variables
are isomorphic to either the quasi-split form U3 or the compact form

100
defined by the Hermitian form <O 1 O).
001

Fact (ii): If F 1is a p-adic field, all unitary groups in three Variablés
are quasi-split, hence isomorphic to U3.

Now let E/F be a quadratic extension of number fields and let v
be a place of F. Let UT be a unitary group in three variables with
respect to a pair (D, r) for the extension E/F. From the definition of

UT and the above facts, we get:

Fact (iii): a) If v is infinite, then UT(FV) is isomorphic to U3(R)
or its compact form if v is ramified and it is isomorphic to GLB(R) or
GL3(C) if v is unramified and FV =R or FV = C, respectively.

b) If v 1is finite and does not split in E, then UT(FV) is
isomorphic to U3(FV) .

c) If v is finite and splits in E, then UT(FV) is isomorphic
to (D ®E EW)* where w 1is a place of E lying above v (the groups

for the two different places are isomorphic).

Fact (iv): The isomorphism class of UT is determined by the isomorphism

classes of the groups U_(FV) for all places v of F, i.e., UT is
t
1



isomorphic to U if and only if U (FV) is isomorphic to U_(F_) for
T, Ty T,V

all places v of ¥, where (Dl’ ’El) and (DZ, TZ) are pairs as in §1.

§3. L-groups. The L-group of a connected reductive group G over a

field F 1is a complex Lie group of the form LG = LGO b WE/F where

E/F is a Galois extension over which G splits (we may take E/F as
large as desired, or may take E to be an algebraic closure of F) and

WE/F is the Weil group of E/F. The L-group depends only on the

*

guasi-split group G of which G 1is an inner form: LGO is the group

of complex points of the connected reductive group over € whose root

L_ o .
on G is

E/F
defined through the action of Y (E/F) on the root data defined by a

*
data is inverse to that of G and the action of W

Borel subgroup of G* defined over F . We refer to Borel's article in
[ ] for precise definitions. We simply state what is needed for this
seminar.

(i) Let E/F be a separable guadratic extension and let G = UT

be a unitary group in mn-variables with respect to E/F. Then

Lo _ L. _L.o ) Lo
AG = GLn(C) and G ="G = WE/F where WE/F acts on G
through its projection onto % (E/F) = {1, ¢} and o acts on Lgo by
the automorphism g b— J;l tg—l Jn with
1
0 p 7t
J =
n
0



(ii) With G, E/F as in (i), let G = Res.,.(G) where Res

E/F E/F

denotes restriction of scalars. Then

Lo _ Lx _ Lxo
G —GLn(C) XGLn(C), G =7G NWE/F

where WE/F acts on LGO through its projection onto %4 (E/F) and

L~ . .
o acts on G° by the automorphism:

-1t -1 -1t -1
(gl’ gZ) (Jn g2 Jn’ Jn g1 Jn)

L—..
for (gl, gz)é G°

. S /- T S
There is a homomorphism G —— TG defined by

< LO
wG(gXW)Z(g, g) xw for gxwe€ G ﬁwE/F’

§4. Unramified Representations.

Let G be a connected reductive group over a p-adic field F. It
is called unramified if G 1is quasi-split over F and splits over an
unramified extension E/F. If G is unramified, it contains a "hyper-
special” maximal compact subgroup K (see [ 1) and an irreducible
admissible representation w of G(F) 1is called unramified if the space
TrK of vectors in 7 which are fixed by some such K is non-zero.

Let G be unramified with E/F as above and let

LG = LGO ) 7(E/F). Let @ € 4(E/F) be the Frobenius element.

un
Then the set W (G) of unramified representations of G is

parametrized by the set of LGO—conjugacy classes in LG which contain

an element of the form vy x ¢ with vy g LGO semisimple.



If w is unramified and irreducible, then dim ’ITK = 1 and the
Hecke algebra HK of bi-K-invariant, compactly supported functions on
G(F) acts on TTK through a character X : HK —> C. The above

assertion amounts to an identification of the characters of the commutative
algebra HK with the conjugacy classes {y x &}. See Borel's article

in [ ] for details.

§5. Functoriality in the unramified case.

If G1 and GZ are connected reductive groups over F  (local .

= Lo ww and TG. = TG% xw

. L
or global) with L-groups G, = 1 B /T 5 = 5 B /F

respectively (we take E large enough to define both L-groups), then a

map of L-groups is a homomorphism:

L. ¢ L
Gy /;Gz

Wer

such that the above diagram commutes, where the maps to WE are the

/F

projections on the second factor.

Now assume that F is ‘p—adic and that G1 and GZ are un-

ramified. Take E to be an unramified extension of F over which both

G, and G, split. By §4, an L-group map ¢ :LGl—>LG2 gives

ur un
a map || (Gl) — [] (GZ) by associating the unramified representation

corresponding to the LG(l)-conjugacy class of y x © +to the one corre-

sponding to the LG(2)~conjugacy class of @ (y x ¢).



§6. The basic diagram of L-group homomorphisms.

Let E/F be a guadratic extension of number fields with Galois

group YF(E/F) = {1, o}. We define the following five groups:

G = U3 with respect to E/F
H = U, with respect to E/F
G = ReSE/F(G)

H = ResE/F(H)

T = El X El

where E = is the algebraic group over F defined by the group

1

E ={x¢eE : NE/F(X) = 1} of norm one elements in E. Thus, for any
1
field extension XK/F, E(K) = {x € E ®_. K : N (x) = 1}. We will
F E®FK
define a diagram of L-groups:
1, ~
G
e , ”E
My
Lg La
AH un w;It
A 1
Lo T Ly ¥ L,
. un
such that IPG o AH = }\H o wH }
*
For any number field k, let Ak, A, and Ck denote the

adeles, ideles, and idele classes of k, respectively. Recall that there

is an exact sequence 1 CE WE/F — ‘{](E/F) —> 1, We



regard CF as contained in CE in a natural way and NE/F(CE) c CF'

All L-groups occurring in the basic diagram have been defined in

L_o

§3 except LT. We have LT ="T %W where

E/F

L..o _ a 0
T _{(O b) € GLZ(C)}

E/F acts on LTO “through its projection onto 92(E/F), and
L

o acts on T° through the automorphism

and W

<<a ) <a—1 O >

o > = _

0 b, o bl

The maps in the basic diagram are defined as follows.
(i) wG is the map defined in §3.

is the fnap ng defined in §3.

Let o : GLZ(C) — GL3(C) be the map

a 0 b
a b -1
o << )) = 0 & 0 where § = ad-bc
c d 0 4

C

We fix an element w € WE/F which projects to ¢ € F(E/F) and a
character u of CE whose restriction to CF is the character of order

two associated to E/F by class field theory. We have wi € CF - NE/F

and hence u(wi) = -1,

(1ii) AH maps h x 1€ LH to a(h) x 1 GLG,

(Cp)



u(z)

AL(Ixz) = u(z)_2 X z € LG for z e C
H E

u(z)

1
Ao (Ixw ) = 1 X w _ & LG
H o} o
-1
Then }‘H defines a map of L-groups

(iv) Ay maps (h hZ’ z) € LETIO x C to (cx(hl), u(hz), z) € Lé and

H

1
Agl(L, 1) x w ) :<< 1 ) , <
1

1’ E

-1

(v) w;n maps h><1€LH to (h, h)XlELI—N{ and

u(z) - ulz)
w;n(1XZ) = << > , < >> xz €
u(z) u(z)
1 -1
un _ L
R << 1>’ < —1>> R

T

§7. What to expect.

One would like to understand functoriality for the basic diagram as
completely as possible. The general problem and technigues for solving it

(stable, twisted trace formula and matching orbital integrals) were
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outlined by Langlands. Contributions (in chronological order) are as

follows: )

Rogawski: existence of quasi-lifts for AH and matching orbital integrals
for }‘H (part of thesis, 1980, and unpublished manuscript, 1981)

Kottwitz: matching orbital integrals for Ve (unpublished manuscript,
1981) ,

. . . un st
Flicker: discussion of wH and wH (Duke J. Math. 49, no. 3, 1982)

and preliminary draft dealing with IPG

Further references are: :

Labesse-Langlands: L-indistinguishability for SL(2), Can. J. Math. 31 p
(1979). (This paper treats the analogue of the map )\T for SL{2)
and applies, with minor modifications, to )\T. It was a motivating
example for subsequent work on L-indistinguishability.)

Langlands:‘ Les débuts’ d'une formule des traces stable, Pub. Math. Paris

VII, 1982.

D. Shelstad has an extensive bibliography of papers dealing with L-
indistinguishability for real groups. See Langlands Paris VII notes

and further notes of this seminar for references.

What follows is a sketch of results which one would like to prove and
questions one would like to answer. Some are suggested by the unpublished
manuscript of Flicker cited above. In some cases, certaln facts are already
known and one wants to understand the compatibility of what is known with
the formalism of‘ L-groups.

For the definition of an automorphic representation, we refer to the
article of Borel and Jacquet in [ ]. An automorphic representation will
be called cuspidal, discrete residual, or Eisenstein according as it occurs in the

space of cusp forms, residues of Eisenstein series, or in the orthogonal



11

complement of the discrete spectrum, respectively. It occurs discretely
if it is cuspidal or residual.

If G is a connected reductive group over a local (resp. global)
field F, [[(G) will denote the set of irreducible, admissible (resp.
automorphic) representations of G(F) (resp. G(A)). If F is global
T[_V(G) will denote W(G{FV) and Win((}) will denote the set

un

T (G/F ).
L L

If G1 and GZ are groups over a global field and ¢ : G1 —> GZ
is a map of L-groups, we obtain maps @ : Lle —> LGZV by restriction,

where LGV is the L-group of G/FV. Hence ¢ gives rise to maps
un un
@ : ﬂ—v (Gl) ——>WV (GZ) for all places v at which G, and GZ

are unramified as in §5.

1 1
Definition: With ¢, Gl’ GZ as above, let 7 =@ T, QW(GI) and
2

7T = ® ﬂi € TRGZ)' Then Tr2 is called a quasi-transfer of wl (with respect

to (P) if ’ﬂ'i: <p(1r3_) for almost all v at which Gl’ GZ and T,

are unramified.

The following is a list of questions:
Q1. Do quasi-transfers exist for all maps in the basic diagram? This is known

so far for all of the maps except Ve (for it follows from the theory

KI:I’

of Eisenstein series and for the other maps from the references cited above).
We want to define transfers locally and globally and there are two points

to understand beforehand. First, in general it makes no sense to transfer a

representation to an individual representation because, for example, in

the local tempered case, transfers should satisfy certain character identities
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and these identities can only be formulated in terms of stable conjugacy.
Postponing details for the time being, it suffices to say that one can

only compare certain linear combinations of characters of irreducible 7
with such linear combinations on other groups and not the characters
themselves. The linear combinations are built out of elements in finite sets
of representations called }fpackets, in the local case. Second, transfers
and L-packets for non-tempered representations will generally not obey
the same formalism as that which one hopes for in the tempered case. This
comes under the rubric of "anomalous" representations discussed below:

To define L-packets for G locally means to partition WV(G) into
finite sets WV - it will consist either entirely of tempered or entirely of
non-tempered representations. Tempered Wv should satisfy character
identities defined by functoriality and be compatible with global transfer.
The definition for non-tempered WV is reduced to the tempered case via
the Langlands classification.

Suppose local L-packets for a group G have been defined. A
global L-packet TI_: ® Wv is then, by definition, obtained by choosing
a local L-packet WV for all v such that Wv contains an unramified

representation “S, for almost all v and setting

TTZ ® _H—V = {® T, ot “n've —[TV for all v, T, unramified for a.a.v.}

It should be stressed that apart from the case F =R or C, there
is no general definition of local L-packets. See [Langlands, Paris VII notes]

for a description of the formalism one would like L-packets to satisfy. For
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GL(n), all L-packets have one element (locally and, hence, globally).
For SL(n), local L-packets consist of the sets of representations

which are equivalent under conjugation by GL(n), and one may use the
same definition globally. For a torus, L-packets consist of one element.
These are the only cases in which L-packets have been defined for all
places. In particular, this defines L-packets for the groups G, H, and
T in the basic diagram since L:}(F) = GL3(E), g = GLZ(E), and T is.

a torus.

For the group H, L-packets can also be defined because the
derived group Hd of H is BSL(2). Hence GL(2) acts on H by
conjugation and L-packets are defined via conjugation by GL(2) as in
the case of SL(2).

To formulate Kansfer results, it remains to define L-packets for G.
We give an ad hoc definition - the trace formula can be expected to show
that this definition has the properties wanted. Fix a Borel subgroup
B =AN of G and for ¥ a character of A(Fv), let i(y) = indzzivix
(unitary induction). N

(i) For x a character of A(Fv), define an L?packet

i(x) if i(yx) is irreducible

TG =
{constituents of i(x)} if x is unitary
(Gi) If 7w € WV(G) is non-tempered and is not of the form i(x),
7 is in an L-packet by itself.
By the Langlands classification, the only 7 € TTV(G) not covered by

(1) and (ii) are square-integrable. To define the L-packet W(’IT) of
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for 7 square integrable, we shall assume that there exists an element

=0 1° € W(G) such that #° = 1 and such that there exists a
v Fransgiee v
cuspidal quasi- A 7 =® 7 with respect to
_ W G
—%—r&wi’ge—f

we call TNrV a (via gbG) of T, The trace formula should imply that

(see Q1). In this case,
T exists and that 7~TV is uniquely determined by T,

(iii) For square-integrable lifting to ;Tv as above, set

%(w"ggats -

THm =1{n" € fo(G) st toom ]

v

A global L-packet [[=® ﬂ—v is called automorphic if some

T E is automorphic.

Q2. Let ¢ : LG1 —_— LGZ be one of the maps in the basic diagram

and let || be a global L-packet for Gl' Set

QQ(TD = {1 e TT(GZ) : 7 is the quasi-transfer of some = € || via ¢}

If W is tempered, is CP(TD a global L-packet for GZ? One expects
so in all cases and it is known for all maps except XH and q)Go If it
is true, say (P (TD = —ﬁ—z & ﬁv’ then it is reasonable to set
¢ (WV) = ﬁv and thereby obtain a map for local tempered L-packets. The
$-transfer of non-tempered L-packets is defined in all cases by using
the Langlands classification.
For each character H of El(FV), let St(uv) denote the

associated Steinberg representation in WV(H). Then {St(pv)} is a

local L-packet for H. Flicker's paper suggests the following question.
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Q?)- IS X ({St(]-l )]) - T I wiere s S({i a{e_.l egra )[e E) 1
v ]J 1—1 u

not supercuspidal and ”lT; is supercuspidal?

. . . + .
Q4. Is T unipotent in the sense of Lusztig? Does T have Iwahori-

. . + . .
fixed vectors and if so, are Tl’u and TTU related as in Lusztig's
conjectural classification of representations with Iwahori-fixed vectors

for Chevalley groups?

Q5. Is the set of local and global L-packets for G with more than

one element equal to the image under )\H of local and global L-packets.

on H.

Q6. Suppose || € J](G) is a discretely-occurring global L~packet for
G such that QJG (TD does not occur discretely. Is _]T: AH(WH) for

some discretely-occurring global WH c [J(H)?

Q7. Suppose ﬂ_C W(H) is a discretely-occurring global L-packet

for H such that XH(W) does not occur discretely. Is _ﬂ_= XT(WT)

for some W’I’ CTT(T)?

Recall that G(F) = GL,(E). Let = =@ m_ be a cuspidal
automorphic representation of M(AE), where M 1is the Levi factor
of a parabolic subgroup P of GL3. Let w be the central character
of 7 and suppose that Re(iw }) € X*(AP) ® R lies in the closure of
the positive Weyl chamber defined by P, where AP is the center of
M. For all v, the induced representation I('ITV) has a unique

irreducible quotient ’IT; and the global representation I(r) has

T =@ ﬂ;/_ as a quotient. All automorphic representations ' obtained
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in this way are called isobaric; all other non-cuspidal automorphic
representations are called anomalous.

Let [[ =8 _ﬂ—v be a global automorphic L-packet for G and

let ﬁ =@ ﬁ—v where WV = gbG‘(]_TV). If W is anomalous, we call

the L-packet TT anomalous (note that W is a single representation).

Q8. Are all discretely—ocgufring anomalous representations of G obtained

as the ¢H~transfer of a one-dimensional automorphic representation of H?

Q9. Are the tempered components of a discretely-occurring anomalous

representation of G of the form . ?
v

There are a number of questions regarding multiplicities in the :
discrete spectrum for G which are suggested by the results for SL(2)
of Langlands-Labesse. ‘Let Wd(G) = {5 ¢ W(G) : m occurs discretely}.
If [Jc J[(G) is a global L-packet such that 1T n ﬂ—d(G) + 0 we will
say that I—T occurs discretely. For = éWd(G), let m(w) be the

multiplicity of 1w in the discrete spectrum of G.
Q10. Is m(m =1 for all = e [[;(G)?

Q11. If WC W(G) .occurs discretely and is not in the image of AH,

is m(m) the same for all 1 € Tl—?

Q12. Let [[ < [[(G) be a tempered, global L-packet which occurs
discretely and suppose that || = AH(WH) for some WH c [[H). 1Is

it possible to define a positive rational number n(|]) and maps

* . ,
. - R~ U
€y HV————> C for i i, ..., N-1
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such that for 2all =@ 1 ¢ WV,
N-1
m(n) = £ D+ ] e )
i=1

= = f ?
where Ei(”ﬂ') U—eiv(ﬂv) and Eiv(ﬂv) 1 for a.a.v.?

H
Q13. If ] and [ are global, isobaric, discretely-occurring L-packets

} it
for G such that WV:WV for a.a.v., is WV :WV for all v?

One would like to know the image of gf)G. If 7 1is a local or global

admissible representation of é, define w° by the formula ’ITO( ) = n(a(g))
P Y g

. O

and call 7 o-invariant if =x T .

Ql4. Does the image of Ve consist of o¢-invariant representations? If

=2

is o-invariant and not in the image of LpG, is it in the image of
st
~ ?
Ag oo Vg
If W(G) can be analyzed, one can attempt to compare G with

its inner forms, the other unitary groups in three variables. One question

is:

Q15. Do anomalous representations occur discretely for an inner form G' of

if and only if G' is not defined by a pair (D, t) where D is a

division algebra?

Finally, one would like to understand any possible relations between
the residual spectrum and the cuspidal spectrum of G. For example,
do analogues of the 'ACAP" representations for Sp(4) constructed by
Piatetski-Shapiro occur for G? The residual spectrum, which is spanned

by the residues of Eisenstein series, is determined by the behavior of
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certain L-functions as follows.
Let B = AN be the Borel subgroup of upper-triangular matrices

in G, where A 1is the diagonal subgroup of G and N is the

unipotent radical of B. Then
aB
*
A(F) = .. B e B, e E
o

E/F(Gm)) X El. Let x be a character A'o,f

A(F)\A(A) and let I(y) = indg((ﬁix.

and A is isomorphic to (Res

A constituent of I(yx) is of the

form & =« with 7« a constituent of i(yx_ ) for all v and 7 un-
v v v v

ramified for almost all T,

Q16. Which constituents of I(yx) occur in the cuspidal spectrum of G?

Suppose that x 1is unitary and consider the Eisenstein series E(s)

associated to the character X where

The poles of E(s) are the same as those of the function

L(s, xl)‘L(Zs, xzw)
e(s) = oo X)L, 3w

where X1 is the character of C obtained by restricting x to the

E
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image of the map

X5 is the character of CF obtained by restricting X, to the image of
CF in CE’ and w is t%é character of order two of CF associated to
E/F by class field theory.

The residues of E(s) for\ s € [0. 1] contribute to the discreté\
spectrum. If Xy 1s trivial, g£(s) has a simple pole at s = 1. For ¥
such that X1 is non-trivial, £(s) has a pole for s € [0, 1] if and

only if x,w is trivial and L(%, x,) # 0, in which case the pole occurs
Yy 2 1 A p

at s = % and is simple.

Q17. If X W is trivial and L(%, Xl) = 0, so that £(s) is finite at

s = z, do constituents of I(y) occur in the cuspidal spectrum of G?



