Afternoon Seminar

THE STRUCTURE OF TRACE FORMULAS AND THEIR COMPARISON

R. Langlands

1. Credo. There are now many results on the trace formula and many

ideas, so that we can now begin to look beyond the analytic difficulties
and attempt to put it in a form suitable for applications. Since obstacles
remain, some of the ideas are only tentative. One purpose of the after-
noon seminar is to test them in particular cases where the difficulties
can be overcome.

In this part of the seminar 1 want to review the general ideas, at
first briefly; state the result towards which it seems all efforts are
tendings and then, in the context of U(3) or SU(3), explain the
ideas in more detail, and at least partially justify them. However much
will be left for later.

I begin by recalling what we have available in the Wa? of results
and ideas, introducing some catchwords whose meaning it is one of my
purposes to explain.

1. First and foremost, the trace formula of Arthur, both the
ordinary and the twisted forms.

2. The observation that the twisted formula can be used for the
transfer of automorphic representations from one group to another, due
to Saito-Shintani for base change and to Jacquet for the Gelbart-Jacquet
transfer from SL(2) to PGL(3).

3. Stabilization.
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4. Shelstad's formalism of endoscopic groups in the twisted case.

5. For (3) and (4) one needs the transfer of orbital integrals to
endoscopic groups and the fundamental lemma. These represent perhaps
the major obstacle at present, but results of Shelstad, Kottwitz, Rogawski,
and Kazhdan permit considerable confidence that the transfer is possible
and the lemma wvalid.

6. Hierarchical structure of the trace formula and decomposition of
measures.

7. This hierarchical structure will be obtained by paring off the
contributions from proper parabolic subgroups by a procedure that I refer
to as Flicker's trick. It is the necessity of utilizing this device, whose
value was first emphasized by Flicker, that forces us to modify the basic
identity, using ecf rather than Oi.

8. The principle of cancellation of singularities. This is a
suggestion of Arthur, who may feel that its elevation to the status of a
principle is premature.

Recall that to obtain the trace formula we start from the basic
identity (modified) and integrate both sides over G\Gl, obtaining on
the left JT(¢) and on the right @T(qb) . They both depend on the
parameter T and are both distributions in ¢, in general non-invariant.

The fine @ -expansion will - it is hoped - allow us to decompose

JT(d)) as a sum

T T
J™) =) T (¢)
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the sum being over conjugacy classes of Levi subgroups of e-invariant
standard parabolics, and thus over associate classes of e~invariant
parabolics.

We will go into this decomposition in more detail later. For now
there are only two points to r-emark:

(a) Both JT(q;) and all J&(M are polynomials in T. The degree
of Jl\jjl(d)) is  dim dz&/ozé. In particular JG(qJ) = Jg(qb) is independent
of T.

(b) The larger M is the closer JI\T/I is to being e-invariant. In
particular JG is e-invariant.

The distribution J will have a simple form. To describe it, it

G
may be best to fix once and for all a finite set of places S containing
all infinite places ‘and all places ramified for G and to assume that
outside of S, ¢, is the characteristic function of Kv divided by the
measure of Kv' Thus we are assuming that

o(g) =TI o.(g)

v v TV

and ¢ is determined by

qu:TT ¢V
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Let 0 = OS be the set of conjugacy classes in G(AS) with

elliptic representatives in G(R). Then

J(¢) =) < f sz tvg)dg
G v U G (Ag\G(Ag) S



vy in G(Q) being a representative of the class ¢ .

There will be a similar decomposition
T T
07(¢) =] 0,(¢)
M

and conditions (a) and (b) will be satisfied. To describe the form of

T
% = %

Recalling the presence of w in the definition of R(8) (I now

we need some simple definitions.

shift to the better afternoon notation replacing ¢ by 8) we agree to

call an automorphic representation 6-invariant if it satisfies

(h —> 7(h)) ~ (A — w(8 T (h))m(e *(h))
and of type §& if

m(z) = &(2)I, z € Z

Two 6-invariant automorphic representations 7, 7' of type £ will be

called projectively equivalent if

x being a character of G trivial on ZO and satisfying
_ -1
x(h) = x(8 “(h))

Denote the set of such characters by X(g, ZO) = %.

There will be a countable set Y of projective equivalence classes



such that

(c) oge) = I 4y jg@ tr(r (6) (8))dx
yeY

7 denoting some arbitrary element of y. The meaning of vx(e) will
be explained later. It should also be observed that the numbers d(y)
may not be positive and, indeed, may not even be real.

As observed in Shelstad's lectures we proceed now in two steps.
We first stabilize the ordinary trace formula for quasi-split groups in-

ductively. This is going to lead us from the formula

T T
Jo(¢) = 0, ()
L v Y
to a formula
T T
ST A(¢) =) S8 (¢)
EM M Mo M

If H is a cuspidal endoscopic group for G then, G being
quasi-split every associate class ¥ for- H determines one for G.
Namely an element of the class has a Levi factor M and the center of
M has a maximal split torus A which can be transferred to a torus A'
in G. The centralizer of A' 1is the Levi factor M' of a parabolic
whose class ’?' is the image of ? We write '? = }{?H or M = MH
and ?’ = ?G or M :MH and write ’?H — ?G or MH — MG°

We set

STE () = Th ) - T el sah )
G G H MH+MG



the prime indicating that we sum over all cuspidal endoscopic groups
(or better data) except G itself and <bH being a function associated
to ¢ by transfer of orbital integrals.

In the same way we define

T

T f T, H
ser (¢) =0, (¢) - ) WG,H)) s (¢7)
G MG H M
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Since all the H are cuspidal they have the same split center as G.
Thus (c) will continue to hold for S@G(¢) = Seg(q)) and (a) and (b)
will hold for the SJI\I;I(cb) and the S@I\rﬁ(d))a Moreover the inductive

definition has been so made that
T _ T
ZM SIy(4) = 1S6,(¢)

holds.
We are interested in the distribution S@G and we would like to

*
know in particular that it is stable. In this case G = G is already

*
*
quasi~split, but ¢ = d)G is not necessarily equal to ¢. It need only

have the same stable orbital integrals as ¢, and the assertion that

S@G is stable is the assertion that

S0 ) = Se(6)

. *
for all choices of ¢

The plan of attack, and we will see how it works out in particular

cases, is to show that SJG, which is a sum of orbital integrals, is in



fact a sum of stable orbital integrals and thus that
%

This leaves us with the equality of

T T, * T T, *
(A) (ST (4) = ST (¢ )) - (Se.(¢) - Se (s ))
ZM:AG M M ZMzG M M
and
N
(B) Son(9) - 50,09 )

The idea is to add one unramified place Vo to S, working then
sk
with S' = Sv{v,} rather than S, and to take ¢ = ¢ to be an
0 Vo Vo
element of the Hecke algebra H = H(G, Qv). We then prove the equality

of (A) and (B) by treating them as linear forms on substituting

finally the identity of the Hecke algebra for ¢, to obtain the identity
0

desired.

This is an argument already used to prove base change for GL(2).

The Hecke algebra has an involution 9, T cwbv i g —> 9 (g_l)-

0 0 0
The linear forms (A) and (B) may be represented by measures on the

set 61 of homomorphisms A of the Hecke algebra into € satisfying

Moy ) =G

for all ¢
v
0



It follows from (c), applied to Seg, that the measure attached to
(B) is of Lebesgue type and dimension equal to dim #, which is often
zero, whereas one can expect to prove that (A) is a sum of measures of
Lebesgue type and dimension between dim %#+1 and dim 3% + dim ()‘iMO/ﬁzG.
The conclusion must be that (A) and (B) are separately 0.

At the moment I only have a clear idea how to do this when G is
of rational rank 1 and quasi-split, but this will do for the purposes of
this seminar. In this case, as we shall see

T T
SIT () = ST, (4 )
My My Mg

where ¢I\T/I is a function on MO. In the same way

0
STt uﬁ3 = S8J (¢*T}
MO MO MO
T «T
Neither ¢M nor ¢M will be smooth in general. However the difference
T «T
YRRV will be smooth (cancellation of singularities). So we can apply
0 0

the trace formula on MO to the difference obtaining
Y

T T, * T
SIZ (¢) - ST (¢ ) = S0, (b = &)
M, M, My M, Mg

Then it will be easy to show that all three linear forms

¢ so,, (40 o)
—_-—>- p—
Yo MO MO MO
T
6 —> S0 (9)
0 My
T



are given by measures of Lebesgue type and dimension equal to
dim #+1.

The stable trace S@G(¢) once defined we can at least state what
appears to be our final goal. Thus for any group G and any 8 we

want to show that

: 0g(®) = I 1(G,8,H)Se ()
H

The sum is over all cuspidal endoscopic groups for the pair (G, 6).
The proof will of course be about the same. One will show directly,

or almost directly, that
H
(C) Jo(e) = ] 1(G,0,H)ST (6 )
H

and then apply cancellation of singularities and decomposition of measures.
At least one extra difficulty will arise. For example, for the ordinary

trace formula the term
meas{G \Gl)¢(1)

will occur on the left side of (C) and the term
1 *

s e
meas(G \G )¢ (1)

*
will occur on the right, G  being the quasi-split form of G. The
*

relation between ¢(1) and an (1) will be simple, presumably

85 (1) = ¢(1)
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Thus to achieve cancellation we will need to show that

% w1
meas(G \Gl) = meas(G \G )

In some cases this will be known from results on Tamagawa numbers, but
it will be preferable to derive it from the trace formula itself, by an
elaboration of the measure-theoretic arguments.

Shelstad has explained in her lectures the meaning of the identity
* for the twisted trace formula arising from base change for U(l). In
this case there are several endoscopic groups, all isomorphic to U(1).
Some other cases of the identity are implicit in the literature. If G is
the multiplicative group of a quaternion algebra the only cuspidal
endoscopic group is GL(2). So the identity is quite simple, and was
used in effect in §16 of Jacquet-Langlands. In general if G is the
multiplicative group of a division algebra of degree nz then there is
only one cuspidal endoscopic group, namely GL(n) and weak forms of
the identity have been used by Deligne-Kazhdan and Rogawski. For
SL(2) there are many cuspidal endoscopic groups, SL(2) itself and all
anisotropic tori. For base change for GL(n) there is only one
cuspidal endoscopic group and that is GL{(n). For U(3) or SU(3)
there are, as we have seen, more than one cuspidal endoscopic group.
The consequences of this are, as we shall see, quite fascinating.

There are two papers which explore, in a somewhat tentative way
but for general groups, the consequences and meaning of * for the

ordinary trace formula:
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1. J. Arthur, On some problems suggested by the trace formula.

2. R. Kottwitz, Stable trace formula: cuspidal tempered terms.
Our purpose at the moment is however to concentrate on U(3)

and SU(3) and to see whether the plan of attack outlined here is

feasible or nothing but a pipe dream.



