Afternoon Seminar

THE HYPERBOLIC TERMS FOR SL(3) AND SU(3’)

R. Langlands

1. Formal properties of JT. For the ordinary trace formula these are

taken from Arthur's paper The trace formula in invariant form. For

the twisted trace formula they will have to be verified in the morning
seminar, no serious modification of the proof being anticipated,'
The first point to keep in mind is that JT(qb) is a polynomial

in T. To express this more precisely we introduce for any standard

e~invariant parabolic the function ¢Q on M by

¢~(m) = o (m) [ [ ¢>(k—lmne(k))dndk
Q Q X N
Q

It has the same properties as ¢ but with respect to M rather than G.
In particular the twisted trace formula for M allows us to
introduce JT(sz)v There are polynomials Py on azé/d?;é of degree

equal to dim(ag/ﬂé) such that

-
(1) @ =13 Mgy (T-T))
QQPO

We conclude that JT(cb) is a polynomial in T.

¥
Observe that, contrary to what has been said more than once in these
seminars, the correct domain of integration for obtaining the trace

formula from the basic identity is G\Gi where
1 _ | _ * ;
G.=1{geGix(g]=1vxeX (G)}

%
the set XE(G) being the set of e-invariant rational characters of G

defined over @.



It is inconvenient to be tied to one PO' So we are going to modify the
formula in an essentially trivial way. We do however fix MO, an
e-invariant Levi factor of PO over Q. If M > MO is reductive and
e-invariant we let LE(M) be the set of e-invariant reductive groups
over ) containing M. We let FE(M) be the set of e-invariant
parabolics over @ containing M and PE(M) < Fe(M) the set of
e-invariant parabolics with M as Levi factor. When e = 1 if is not
included in the notation. Thus Pl(M) = P(M).

Arthur introduces the notion of K admissible relative to MO"
There is no need to rehearse the definition here. The only important
point is that the Cartan decomposition G = PbK is valid for any
P'O € P(MO)., Thus if s € Qe(d“?,o, 520) =0 s, dzg) is represented
by w = W and P‘O = W—lPOW then we can define truncation with
respect to P'O, If T lies in the positive chamber with respect to P'O

and is sufficiently regular then T' = swlT + H(W;l) lies in the chamber

positive with respect to P'O and truncation with respect to Pb allows
us to Introduce JT'(cb), We take T to be e-invariant and to ensure
that T' is also e-invariant we take Hs(w;l) to be the projection of
H(w;l), calculated with respect to PO’ on 026:.

We have
(2) 74y = %)

Notice that T' = T'S is determined by s alone and is independent of

the choice of W An analogue of the identity (1) is valid.
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J7 (¢) = J (9 pq  (T=T)
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1
TQ be the projection of T' on 02.0 . It follows readily

Let

from (2) that

Ql
T! _ T
7 g0 =TT )

depends only on Q' and not on s, two different choices of s differing

M 1
by an element in e (0’(8, 01,8). Moreover it follows readily from Arthur's

definition that

Poi(T'-T}) = po(T-T )

We denote this polynomial in T—Tl by Pu (T«Tl).

Q
The identity (1) may be written
M
T ™ e Rl a )l
(3)  T(e) =) I 0y —5——— Py (T-Ty)
Q & §‘E(MO) lQ <m09 Jz,o) I Q
T and T] being sufficiently regular and in the Weyl chamber positive
with respect to PO' We abbreviate the quotient appearing here to
M
Q
2 2]
kN

€

If & 1is a semi-simple conjugacy class in G and M € LE(MO)

then 6 A M= O“l Voo where the 0, are semi-simple e

conjugacy classes in M., If P € P(M) set
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T _ J
Iy (bp) = Zi T, (0P
There is an analogue of (3),
Q My
(4) OIS JT1<¢ ) 1o (T-T.)
= p b
o QefF vy & 8 My T

Notice that the value of JgQwQ) is 0 if & n MQ is empty.
Now associated to y we have the split center A of the e-centralizer
of v and &) = dim A - dim O'ié is an invariant of & . Clearly
&N MQ is empty unless dim az,g/m:é < &(¢ ). We conclude that
J;(d)) is a polynomial of degree at most &( ).

Having recalled how JT(c,b) and the terms J§(¢) of the coarse
T

¢ -expansion depend upon T, we now see how far JT and JO"

depart from e-invariance. If h € G set

1

0%(g) = ¢(hge(h™ 1))

Observe that we can write h = ah' with a € Aé and h' e Gi, This

is important if the argument in §3 of Arthur's paper is to be imitated

to vyield
M
T h TR 2, "]
(5) I = ] I7 Gy )
QeFM,) ’ |9
€
where

(m) = pQ(m) f

I ¢<k"1mna(k>>ub<k, h) dndk
K N

Q

°Q,h



Although we use the same notation as Arthur for the weight factor it
does depend on «e.
: T, h
There is a formula analogous to (5) for Jﬁ,(cb ).
M
Tihy - ] T 2|
(5" J (¢7) = J o (bn 1) ——5—
o nermay 7 MR8
€
We will be guided by these formulas in our definition of Jl\jjl(w .

We shall seek to impose at least two conditions:

M
(a) 7 o) = 7 IQQQ!JT?w (T-T.)
a b=y p -
M ceFm) la_| M d Moo !
M
|2 Ql Q
T, h! e T
(b) J (¢ ) = Joo (¢ )
T e A 2 B VIR

Observe that F(G) consists of G alone, and that pPg is
identically 1. Thus (a) and (b) assert in particular that Jg is

independent of T and e-invariant.

2. The hyperbolic terms for a Chevalley group. We are concerned

with the ordinary trace formula and we want to define JI’\T/I (¢) as a
0

sum

1 T
— ] I (v, ¢)
G fyem, Mo

If Yo lies in I\/IO and MO is the connected component of the

centralizer of Yo then the contribution of the semi*simple' class



& = O‘(yo) containing Yo has been described in the morning seminar.
If we divide that contribution among the conjugates of Yo in MO we

see that

T 1 1 -1 G
T (¢) = —=— meas(M \M ) } [ b(g “vglvy, (g)dg
o IQGI 0 0 y MO\G MO

Recall that VI(\}/I (g) is the volume of the compact convex set spanned
0
by the points

{s"ir - sulH(wsg)Is €Nl ,

when o = Q(()‘LO, m.o), Notice also that
{s“lT - s~lH(WSwrg) s eql= {r(s—lT - S~1H(ng)>}
Since the action of the Weyl group preserves volume, we conclude that

J ¢<g~1vg)vlio(g>dg = JI\T40(Y’ $)

M\ G

is a symmetric function of .
It is for the moment defined only for quasi-regular elements in MO°

To define it more generally we write the integral as

(6) f f <1>(k"lr1_]‘\(rw_k)vsI (nk)dndk ,
K NO 0

observing that

G G G
v,y (g) = v, (nk) ~ v (n)
MO MO M0



if g =ank. For vy in MO and quasi-regular the transformation

-1 -1

n—> u=vy n’ - yn

is a measure-preserving bijection from NO to itself. So we can change

variables in (6) to obtain

(7) S e yuvy (v, w)dudk
K NO 0

We have set

Vﬁ (v, u) = VIC\E/I (n)
0 0

If (7) were defined on all of MO we would simply define JI\T/I (v, ¢)
0
to be its value at vy. It is not. If W = W(s) = s l(W_P) is the Weyl

chamber associated to s we set

_ -1, -1
XW('Y, u) =s T s H(Wsn)
The difficulty is that some of the xw(y, u) may go off to infinity as vy
approaches a singular Yor U remaining fixed, so that the volume
VI\(jI (y, u) becomes infinite. We could tolerate this for some u but if
0

it happens for all u there is no chance of defining the integral (7) at Yo

We examine first the group SL(2) for which

X =T Xy

= -T + H(w n)
+ _ S



We have
1 x 0 -1
n = W=
0 1 ° 1 0
and H(Wsn) is the sum of local contributions H(wsnv) . Since
0 -1
won o=
S 1 X
the standard choice of K vyields the following results:

(i) v real,

1 0
H(Wn)=—!¢nfl+x2/ >
s v v 0

-1

(ii) v complex,

(iii) v finite
1 0
H(w n ) = -4n max{l, !X |}
sV v 0 -1

Notice that

If



and

1 x!

u =

0 1

then
x! = ( 1~ E) be
a

Thus, for a fixed =x', both |x| and H(wsnv) run off to infinity as
b5,

To rectify the situation we notice the following simple identities:

(i) v real,

fr—— 2
In 1+X\27=21’l\/(1“§'> +xl’2~£nll"~g—|v
(ii) v complex,
2 b 2 b
In(1 + |xvl ) = an|1 - é—’ + [x“/I - gnll - a_IV

(iil) v finite,

b

¢n max{l, [xV]} = ¢n max{|l - Eiv’

%! [} - a1 - 2
v a'v

In all three cases the first term behaves reasonably well as

|1 - g'v —> (0 provided

}*-'\,’ # 0. The second term behaves badly,

but we begin with regular, retional vy and for these
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] wmij1-2| =0

Thus we could have begun by defining VI(\:;I (y, u) to be the volume
0

of the convex hull of

and

- - : _ - b
= =T + I—I(V»Sn) I 5&n|l y

A4

H

W

1
Ew

There is no difference for regular, rational v.

This leads to difficulties. A little more care is called for. We
first observe that for a fixed ¢ there are only finitely many vy in MO
for which gb(k—lyuk) does not vanish identically in u and k. So there
is a finite set of places S(¢) such that |1 - glv =1 if v g S(¢), v
is quasi-regular in M!, and ¢(k”1yuk) does not vanish identically as
a function of u and k. Thus we begin by defining VI(\;A (y, u) to be

0

the volume of the convex hull of

and

b
X, =~ T + H(w.n) - ) enjl - =| H
W S v €S(8) a'v

We so choose S(¢) that it contains S.

With this definition of VI%/I (v, u). we have, for vy regular in MO,
" 0
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(8) J;\EA (v, ¢) =cxtv) [ [ ¢S(¢)(k_lvuk)VI(\},I (v, u)dudk
0 K NO(ASM)) 0

Here x(y) 1is the characteristic function of the set of elements in MO

SON £ S(#)

whose projection on G(A lies in and

c = du
NO<AS(¢));~»,K
We are assuming that K = —i”IiVKV°
To see this we have to observe first of all that x(y) # 0 and
1yuk) £ 0 imply that ¢(kalyuk) Z 0. We also have to observe

b5 () &
that when this is so then

max{l, |x_ |} =1
v

. s -1
on NO(QV) N KV, which is the support of u —> ¢V(k yuk) .

The sequence of steps leading to (8) I refer to as Flicker's trick.
Before seeing how it works for other Chevalley groups we examine the
right side of (8) more carefully for SL(2). If d is the volume of the

interval [0, H] the double integral is equal to the product of

S(9)

d meas K

with the sum of

2T | / . ¢S(¢)(k”1yuk)dudk
0%s(9)
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and

-1 G
)(k Yuk)VM (v, uv)dudk

f f 4504 .

veSte) Kgrgy Nols(yy

where

G _ -1 o b
VMO(Y, uv)H = -5 H(Wsnv) Qn]l aiv

The previous formulas make it clear that we can dominate

vlc\i (v, uv) by a locally integrable function of u on any compact set

0
of v and thus that (8) defines JE‘:I (v, ¢) as a continuous function of v

0
on MO° Thus we can define ng (¢) to be
0
1 T
TZ JM (v, ¢)
|27 | veM, 0

One establishes directly for regular 7y and by continuity for general

v that
(9) 7Ty, 9) =) QMQ JT?(Y 6Py, (T-T.)
My neray [ Mo T TRTMg o
and that
M
Q Q
T h lo “] 4T
(10) I (v, ) =) — T Yy 6 4)
Mon Qe F(My) 109 Mo Q.5

Observe that if Q ‘is minimal then

TQ
JMO(Y, ¢Q) = ¢Q(Y)
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and

TQ
JMO(Y, ¢Q,h) = ¢Q9h(Y)

We now set

T T 1 v T
J (@w9 (b) =] (<}5) - WZ J (Yi ¢>
G v 9] “ye oM, My

We readily deduce from (4), (5), (9), (10) and the definition that
(a) Jg(ﬁ‘, ¢) = 0 if ¢ is hyperbolic (that is, not elliptic)
(b) Jg(d’g ¢) 1is independent of T
() Jg(@‘, ¢) is invariant.

We shall set
T, \ _ T
TGl =1 Igler, ¢

For an arbitrary Chevalley group the appropriate modification is

to replace x., = xW(y, u) by

W

(11) X, =%, - ) T oenll- o ty)|LH
ve&S(¢) a Ve

where Ha is defined by
B(H ) = (8, o)

and the inner sum runs over the positive rodts separating W from W+.
It is up to the morning seminar to justify this assertion. We shall have

to examine it more carefully when we discuss the cancellation of singularities,
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but for the moment we need it only as a guide for the quasi-split case
to which we now turn, contenting ourselves with SU(3), which we

realize as the unitary group of the form

taken on a quadratic extension E of the global field F. (Notice that

by working only with groups over ()} we have backed ourselves into a
corner, for we have no formalism for dealing easily with an arbitrary
number field. It is however easy to imagine what that would be, and even
easier to construct it. So we feel free to use it, and in particular to

apply the above treatment to Chevalley groups over F.)

The hyperbolic terms for SU(3). The weighting factor is at first

defined by

and

Xy = s”lT - san(WSn)

where s is the one non-trivial element in the Weyl group. It is

represented by
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As before we regard the resulting weight factor as a function of vy and
u. Thus
G G
vy () = vy (v, u)
0 0

where

_ ~-1-1
u=v n yn

We want to modify as before to obtain VSI (v, u). It is clear that the
0
choice of XW (y, u) 1is determined by what we have already done, for

the group is split at half the places and we shall need to invoke the
product formula.

To make this more precise we observe that the global bty which

may be identified in the present case with

()

is contained in the local 010, denoted ozg. If v vremains prime in E

x &€ R

then 6, = L., If it splits then GLX

0 0 may be identified with
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2, v, zER, x +yv + 2z =0

()

In addition

-1 _ -1
S H(Wsl’l) = EV s H(msnv)

and to calculate s 1I—I(Wsnv) at a place split in E we first calculate it

on G‘Z,X and then project to 010, the projection being

()= )

2

N

If }

the modification to be undertaken in the split group is to subtract

b 1 a 1
enl1l - 2 -1 + 4l - £ 1 +n|1 - £ 0
a’'v 0 v -1 a'v -1

However we are interested only in the projection, which is

o'l

3 1
b
(12) zn)l—;m»%iv( 0 —l>+£n|1—§|v< 0 —1)

The split center AO of

2 with ay = Zul. Set

MO has two weights in W sy oy

and o
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3 1
H = 0 , H_ = 0
* -3 *2 ~1

Furthermore if o is one of these two weight let ‘Zﬁ/o(cx) be the corre-
sponding weight space in 'WO and consider

AOL(Y> = ad 'Y"%/O(OL)

The expression (12) is equal to

on |det(1 - A;i(m lvHul + g0 |det(1 - Ag;(m ]Huz

We can therefore expect to define XW (v, u) by

-1
X (v, w) = x0 (y, u) - ) ) Inldet(1 - A “(y))|.H ,
W W v €5(0) o o v

the existence of the set S(¢) being proved as before. The inner sum
runs over o, and PY the positive roots separating W+ from W_.
The XW (v, u) allow us once again to introduce weight factors
VMO(y, u), b;t we still must verify that the formula (8) serves to
define Jl\ao(y, ¢) as a continuous function on all of MO. This is a local

problem and we carry out the calculations only for the case that x does

not split in E. The question will have to be taken up afresh in the

next lecture anyhow.

Let
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If v does not split in E there are relations to satisfy:
bb =1, ac =1, x =y, z4+z = xx, x' = y', z'+z' = x'x’

The bar denotes conjugation in Ev/Fv
If v is not split in E and is finite we have to choose from amongst
those X in Ev with trx = 1 one for which |A| is minimal. Then an

appropriate choice of Kv is apparently the stabilizer in G(FV) of the

lattice

v u, v, w integral

AW

Thus Kv consists of the matrices (aij) in G(Fv) for which
ayqs 31y 8575 855 Agas >\a13, )\a23, a31/>\, a32/>\ are integral. If w
is real then Kv can be taken to be the intersection of G(Fv) with the

unitary group attached to the form
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Since

with the following factor
(i) -% In(1 + |x|2 + |zl2) if v is real.
(ii) -g2n(1 + !x]2 + |z |Z) if v is complex.

A if v is finite.

(iti) -2n max{l, |x|, [2z|} + ¢n
The second term in (iii) is harmless, and certainly does not affect the
singular behavior at any Yo

It is easy to express 'x', y', z' in terms of x, y, z

b c c c b

Vo - 2 1 = - ) Ve (1 - 2 o 2D
x (1 a)x y Y (1 b)}‘ y Z ( a)z + (a a)xy

Thus

—s_ll—l(wsnv) - zu en|det(1 - A;I(Y)) lHoa

is equal to the product of H with the factor

@ -3 (- 2P - P P - P 2= D Ryt v s real,
(ii) - In( |1 - g—]zll - g—]z + ]X'|2!1 - g—lz + |z'(1 - éb—) + gx'y'}z if v is ‘complex,

b i b b _,
(iii) -on(max{]|1 - ;Hl - :—’, '] |1 - §—|, Ix]]z'(1 - é_) + ;x'y‘|}) + 2n |2 |
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if v is finite.

This factor we denote vI?/i (v, uv), We need to verify that
0

-1 G
S bg (oK TR Vg (v, u)dudk
¢) M v
Ks(s) Nolhg(yy 0

defines a continuous function of v in MO(AS(d))) .

To do this we choose a small ¢ and consider the domains
b b
20 - B eyl - B s eyl
separately. On the first domain we can suppose that

G
VMO(Y, u ) <cy tc,in |x'y! |

when ¢S(qb)(k“ 1yuk) is not zero., Since In|x'y'| is locally integrable
the dominated convergence theorem is applicable. Since 2z' is bounded

on the support of (bS(q))(k_ lYuk), we can replace the second domain by
wi] < eqlal o Iyl <eglol

where o € Ev and !u'2(1 - g) | is bounded away from infinity and zero.
i

We set x' = ax", y' = ay" and change variables to obtain an integral over

|| < Cqs ly"| < C3 |2'] < Cy of a function dominated by
1 - 2](05 t ey en |l - gl + c7ln]Bz' + xy"|)

where B8 = g(y) 1is bounded away from infinity and zero. The dominated

convergence theorem is applicable once again.
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We have discussed the quasi-split groups SL(2) and SU(3). We
could as easily have discussed a group G whose derived group was
isogeneous to one of these two groups, introducing the distribution JG"

The tactics outlined in the previous lecture demand that we show that

H
J (¢) - (G, H)SJ (¢ )
G ZH¢G1 H

is a stably invariant distribution.
For an anisotropic group G obtained from one of the above by an

inner twisting there are no hyperbolic terms and we set

_ .1 -
T5(8) = I5(6) = T (o)

Now we must show that
_ H
Jg(#) = ] (G, H)SIL(¢™)
H

These two problems will be dealt with by Rogawski after Christmas.

In the next lecture we will turn to a different matter, cancellation of

singularities.



