Thursday Morning Seminar

DIVISION ALGEBRAS III

R. Langlands

There were three points left unsettled in the previous lecture that

I want to deal with here.

The fine & -expansion. As already suggested it appears best to write

the left side of the trace formula as a sum over L(M the set of Levi

0),

subgroups containing MO' Thus we write

M M M
T
o lsTey =3 81T =1 815w
Me LMy |27 | M |7 M |27
omitting as convenience suggests both the range of summation and the
parameter T.

Arthur expects that JM(¢) will be a sum over semi-simple conjugacy

classes & in M,

the JM(G’, $) having a form to be described below. I allow myself to
anticipate his results, in spite of the element of uncertainty this introduces.
It is intended to present them in the Friday morning seminar.

It will in particular have to be proved that

_ G, 2 -1 G
JM(Y, 6) = lD (Y)l IGY(AS')\ G(AS') ¢S.(g Yg)VM('Y, g)dg



is defined for those vy in M(AS,) such that 1-Ad(y) is invertible
on (J]/W. It will also have to be proved that it extends by continuity
to all of M(AS).

Fix a semi-simple y in o and let UY(MS') be the collection
of conjugacy classes of unipotent elements in MS' which commute with
Y, or, better, a set of representatives for such classes. Then for S'

sufficiently large

S! M
Lo, ¢) =c” (M) Cor (Ys 8)T (Y6, ¢)
M s€U,(Mg,) S M

i)
The constant cS (M) outside the summation depends only on S', M, and

G and is given by
! 1 1
cs (M) = meas(KS nM)\KS

The constant cI\SA,(Y, §) inside the summation depends on S', v, §, and
M but not in G.

Lemma 1 of the previous lecture remains valid first for vy such
that 1-Ad vy is invertible in aJ/nv , for which it is proved in the same

way, and then, by continuity, for all .

This makes it natural to modify the notion of a family Fg adapted
to fS
- Q
D Iyt fs ers'—s =l L MO Fs ers'-s ‘v
Qe*
Q=L

for all y. Lemma 2 remains valid, the proof for finite v being that



given in the first lecture. The proof for v = = will be given below.
This done we can proceed as in the previous lecture to prove the

existence of functions pr such that

Q
I (e, ¢) =) I (or, V™)
M Meq M
Q=G

Hwin

for every ¢ . Then

Q
@ =1 3,69
M =L o

G

Q=

and the measure-theoretic argument can proceed.

Revision of argument. Although I see no reason to doubt its validity I

am unable to prove Lemma 2 of the first lecture for v = » in the form
there stated. I can only prove it when S consists of « alone. This
entails some changes in the proof of the existence of the functions wQ.
Notice first that we had fused all the infinite places together into
one so that the statement with which the proof began was not strictly
correct. All the places (in the usual sense) at which &(y, d:v) =0
may be infinite. Then n = 2m, m is odd, and n; =n, =m. In
particular p(L) = 1.
Turning to the construction of the f wused to define wQ for
Q e P(M), p(M) > 2 we distinguish two cases: (a) o(vy, ¢°°) is not

identically zero for all y in M_ regular in G_. (b) It is.

In the first case we may continue to use the argument of the first



lecture, noticing that if M c Q then the two places at which &(y, ¢V) =90
for all v e MQ(FV) regular in GV are both finite. In the second case

we use Lemma 6 only to show that the function

Q
J(Y’¢)_ J(Y,IP)
M ZMEQ M
Q=G
Q¢ P(M)

is satisfactory away from «. (Note that in the definition of satisfactory

\
and in Lemmas 5 and 6 the function &(y, f) should be [D(y)|®¢(y, f)

2
satisfactory at = we use the argument on pp. 14-18 but with

;
and @(Yl, f: ) should be lD(yl)P@(Yl, f: )). To show that it is
2

St -
g, € GR x A7), g, € G(Asl), S;=8 - {=}

A lemma of Arthur. To complete the argument of the first lecture we must

therefore prove Lemma 2 when S = {»}, The first step is to reduce
ourselves to the case that S' = S. For this we need a variant of a lemma
of Arthur, but I first give the lemma itself, of which We‘shall in any case
have need.

Recall that the Harish-Chandra homomorphism 2z —> FT(z) can be

factored through Z,,., z —> I‘M(z) — I‘T(FM(Z)), where the T

M T

should really be written I'I,\I‘/I for it refers to the pair T, M. For the

next lemma G, M1 and M' can be any connected reductive groups over

R.

LEMMA 1. It is possible to attach to any pair M c M', any T c M,

any vy in M(R) regular in M', and any z e ZM an invariant




1
differential operator DI\M/I (v, 22 on T such that

G M! G
Iy, zf) =} D, (v, Ty (2))3 5 (v, £)
M McM'CG M M! M

for all 2z e ZG'

If M =G then Dﬁ(y, zZ) = I‘T(z) is given by the Harish-Chandra

homomorphism and the equality is well known. In general we can proceed

by induction and it is easy enough to see that we need only show that

1
f — Jﬁ(Y, zf) - ) Dx (v, FM,)JSI,(Y, )
MCM'CzG

is an invariant distribution, for it is then an elementary consequence of
the theory of distributions that it is given by { —> DJg(Y, f), Dbecause

it is obviously concentrated on the orbit of y. We define Dﬁ(y, z) to

be this D.
The proof of invariance relies on two simple, and more or less

obvious, identities. The first,

(Zf)Q,h = PMQ(Z)fQ,h

follows easily from the definition on p. 20 of the Annals paper and the

definition of the Harish-Chandra homomorphism. The second,

Iy () = 0,2

is almost formal.



This said, we must verify that

5,0rs 28 - 3lr, 2

is equal to

) oMy, o (@S, 8 - 3¢, 0)
MCM'%G M M M M

The first difference is equal to

J (v, T,, (z)f )
ZQ64(M)M My "R,k

QzG

which by induction is equal to

MI
Dy (Vs Ty ()T £ )
MeM'C Q=G M M M Q.h

On the other hand

DV (v, Ty(2) Ty, £ = 35, (v, £)

is equal to
M!
ZM'CchDM ST VNN T A
The required equality follows.
Observe that in the Friday afternoon seminar we used a special case
of the lemma, that for which p(M) - p(G) = 1, obtaining it by a direct

argument.



For the second lemma we consider a function £ = fsfs, fs being

S . . . _
_ﬂ_veS fv and f~  Dbeing erS‘-S fV with fV spherical for v e& S'-S.
We observe, for it is the key to the proof of the next lemma, that for a
spherical f = fV the function fQ depends only on MQ and thus may be

written as I‘M(fv) if M =M.. Moreover

Q
FM(TM.(fV)) = FM(fV)
If he G(AS) then

_ S
fan= fs,Q,hPMQ(f )

Thus the next lemma can be proved exactly like Lemma 1.

LEMMA 2. For any vy = (Yl, Yz) regular in G there are linear forms

1 1
¢ —> DI\I\jII (v, ¢) on the Hecke algebra of M‘(Ag) such that

S M! S
J (ff7) = Dy, (v, Ty (£ (v, £)
MAS EMCM,CG M M M1

\(l

Suppose then

- Q
QeF (M)
Q=L

for all M ¢ L. Then by the lemma (with G replaced by L)

S M! S
I (v, ££0) = ] Dy, (v, Ty (F90) 3 (v, fo)
M S vemeL M M! M1 S
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Proof of Lemma 2 for S' =S = {2}, (Notice that in the statement of that

lemma v 1is to lie in L(FV) and be regular in it.) The function fS
is now denoted f and we establish the existence of FQ by induction on
0(Q). To warm up we begin with p(Q) - p(L) = 1, the weighting factor

being then linear. So Arthur's lemma yields differential equations,

(2) L0 2 = Ty, D

the inhomogeneous term falling away because the orbital integrals of f
are zero. Notice that at this point we are working entirely within the
group L. From the equations (2) and the estimates of the Inventiones
paper, to which we shall return, we deduce that JM(Y, f) defines a
piecewise smooth function on T(R).

We need to show that there exists a function F on Moo(]R), smooth

and of compact support, such that

JM(Y! f) = JM(Y’ F) ’

at first for y regular and semi-simple, and then for all y. Then we

set



Q _ 1

F*= ——
| POV |

F °

To do this we first use Shelstad's characterization of orbital integrals

to obtain an F in the Schwartz space (Shelstad, Characters and inner

forms of a quasi-split group over R, Comp. Math. (1979)), observing that

for the groups under consideration orbital integrals are necessarily stable,
and then we follow a technique of Clozel (App. to Clozel-Delorme, Le

théoréme de Paley-Wiener invariant pour les groupes de Lie réductifs) which

with the help of this Paley-Wiener theorem replaces F by a compactly
supported function.

According to Theorem 11 of Shelstad's paper there are several
conditions to verify. The first is formal and trivial to verify. The second,
invariance under the Weyl group, is clear from the definition. The others
refer to the behavior of JM(Y, fm) near semi-regular elements of T.
These are defined by a condition oc(yo) = 1 with o real or imaginary.

The conditions for o imaginary are the most difficult to state, but
the easiest to verify. The point is that near the orbit of such a Yo Wwe

can set

F(m) = og(m) [ [ ( )fm(k_lmuk)WI(\}/I(m, u) dudk
K N (R
Q

o

where

G _ G
WM(m, u) = VM(m, n)

if m—lnm = mu. There is a neighborhood X of the orbit of Yo such
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that (m, n) —> (m, u) is a homeomorphism of X x N_.(R) with itself.

Q

Moreover we can so choose X that Vla(m, n) is smooth on X x N _.(R).

Q
Finally

I(rs £) = 30y, F)

and is thus equal to the orbital integral of a smooth compactly supported
function near Yg- So the conditions at imaginary roots are obvious, and
need not even be stated. Indeed the conditions at all roots in M are,
for the same reason, clearly satisfied.

The condition at a semi-regular element defined by a real root is

smoothness. Continuity is already being taken for granted. Just as in

the lecture Cancellation of singularities at the real places it is sufficient

to verify that HocJM(Y’ foo) does not jump at Yor Ha being defined by

G ) = 32

" e ay

for all H'€ 4, and o now being a real root not in M.

This is a consequence of the results in Arthur's paper The characters

of discrete series as orbital integrals, Inv. (1976). We need only sort out

the notation. First of all, writing £ =1f and L =1L

(Rz, H: Y : D, ) = o |? f f(g'lyg)vﬁ(g)dg :
Yy(R)\ (R)

where vy = ¢ exp H, the factor ¢ is locally constant and equal to



s(H)  8(H)
e 2 - e 2
i R
B€RI !e 2 - e 2 l

+ . . . ses .
RI being the set of imaginary roots positive with respect to some order,

and Y is the A-orthogonal set obtained by projecting {w—lT} on o,
the split component of M,

The weight VII\;I(g) is defined by projecting w-l(T—H(wg)) on 01,
obtaining thereby for each chamber W in ¢ a point Xy e In essence
vi‘/l(g) is the volume of the convex hull of the Xog e To define Vh(y, g)

we have to replace Xy by

T . . . 2B8(H)
h . - .
where HB is the projection of HB on ¢t and <H HB> )

The sum is over all positive roots B whose restriction to 4t is not zero

and which separate W from W+.

Digression. It will be observed that we have modified our formulation of
Flicker's trick, replacing lnll-B—l(Y)l by 2n M—lgl- This is of no
importance if our only concern is to create a COIIBN(Z;I)HIOU.S function of v,
one modification serving as well as the other. The new modification has

however a symmetry which the old lacks and which we have implicitly used.

Namely, replacing vy by \VYW—l in

D% ) | f f(g_lvg)vhﬁ(g)
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or in
|DL(Y) IJ" ff(g_lvg)VhI,;(Y, g)

yields the same result as keeping Yy but replacing vh(g) by v&(wg)

1

and V&(Y, g) by VII;i(wYW— , wg). Now vﬁ(wg) is defined by

{s_lT—s-lH(swg)} = {w(w—ls-l-w—ls—lH(swg))}
L _.L .
Thus vM(wg) = vM(g) . So the replacement has no effect on the first
integral.

Before considering the second we notice that

1-8(y)
In — H, =) c_(B)H
s le(p |2 B T Y T

where Cy( 8) is defined for all B8 and cy(—B) CY( B). The sum is over

all roots separating W from W+, more precisely over those which are

positive on W_ and negative on W. To replace W+ by another chamber

W' is simply to add a common term, independent of W, to all these sums,

and that has no effect on the volume.

1

The factor V;(WYW- , wg) 1is defined by

1-1 -1

-1
w(w s -w s—lH(swg)) - ) en |1-8Cwyw )1| H

I8 (wyw D2

8

According to the preceding remark we may sum over B which are negative

on s ]’W+ and positive on WW+. Thus we write the sum as
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w(le (wieH ) .
Y w B
If sB is negative on W+ then sw(w-IB) is also, for they are equal.

Thus the sum is in fact equal to

( (8)H,)
w ZB>0 cY 8
sB<0

and VII\‘/'I(wyw—l, wg) = Vi’d(y, g). So both integrals are invariant under
the substitution y —> wyw_l, w lying in the Weyl group. This ends

the digression.

It is convenient to set XW = YW + ZW’ where

Z .= - In _‘______rl_l"B(Y) ﬁ-B
gz [B(Y)]®
and Y equals Xw if o does not separate W from W_ and is

w

otherwise equal to

xy ~ In _l___Ll-—a(y)1 ga
laly) |
The function ZW is varying smoothly near Yo So it is natural to
apply Lemma 6.3 of Arthur's Annals paper to write

- Q
Vi (v, g) =} (Y g (Y DUNEZD

Qe 3l

the notation being I hope obvious. The singularities of JM(y, f) at Yo

are therefore determined by those of JI'VI(Y, fQ) the prime indicating
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that we are using the weight factor determined by the family {Yw} rather
than that determined by {XW}.

There is a simple relation between Vﬁ(‘{, g, {Yw}) and VI\Q/I(g)’

namely
Q _.Q
Vatr, g 1Y, D = vXg)
unless o 1is a root in MQ' However if o« is a root in MQ and if

*
with @ =4 , equal to the null
M

*
M >M is the Levi subgroup of MQ

space of a then

Vy, g (Y1) = vig) + In % v@ )W)
oy M

where V(ﬁa) is the measure of the interval spanned by O and ﬁa.

The following diagrams illustrate a typical case of this relation:
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The points Xy and YW are the same if o 1is positive on W. The
volume of the unshaded region is vla(g) and that of the shaded region
is the difference between VSI(Y, g {YW }) and vﬁ(g) .

To verify the first identity suppose o is not a root M,.. Then

Q
it is either in NQ or not in Q at all. In the first case Xy = YW if

W=W({P) and P in P(M) is contained in Q. In the second case

Y., = x

W W Zn|l—cx-l(Y) Iﬁa' In either case the volumes of their span

are equal.

To verify the second we observe that a P € P(M) is specified by
*

* *
a P € PM) and a P'E PM (M), the second set containing exactly

two elements. Moreover if W = W(P) then Xy = YW unless o is not
a root in P', but then YW = Xy~ Q,Ml%-ﬁa. At this point one
‘ laly) ]

either regards the asserted equélity as geometrically obvious or proves it
with the algebraic formalism of the Annals paper.
Comparing these relations with the definitions on p. 227 of the

Inventiones paper we conclude first of all that

, = . v,
Iy, £y = RfQ(c, H:Y<: 1

if o 1is not a root in MQ' Observe that in this case an argument used
above reduces the study of the weighted orbital integrals near Yo to
that of ordinary orbital integrals. So we are provided with the required

smoothness at no cost. If a 1is a root in M then

Q

1 - g@ . vR.
JM(Y, fQ) - SfQ(C) H . Y . l)
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Incidentally, the family YQ

is defined in §6 of the Annals paper.
This last formula allows us to apply Theorem 6.1 of the Inventiones

paper. It asserts, in particular, that the jump in HOLJI‘VI(y, f.) 1is equal to

Q

na(A)JM*(YO, fQ)

We deduce that the jump in JM(Y, f) itself at Yo is equal to

A

2 -1
N , IDG(Y)I [ f(g Yog)vla*(g)ngQ({ZW}) ,
McQ

and another application of Lemma 6.3 shows that this is equal to

J (v, D)
M* 0

Notice that the projection of Ha on “M* is zero. At the moment we
are dealing with the case that p(M) = p(L) + 1. Thus M* =L and
J *(YO’ f) is the limit of ordinary orbital integrals and consequently
zero.

This éives us Shelstad's conditions. To convert the function she
provides into a compactly supported function we have to assume that f
is K-finite and fQ therefore K n M finite. This assumption was
overlooked in the statement of Lemma 2. It is a restriction that does not
hinder our real purpose. The use of Clozel's technique was suggested by

Arthur.

Let F be a function in the Schwartz class on M(R) with

JM(Y, f) = Jyly, F)
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Since the orbital integrals of F are well defined, even though F itself
is not, the trace trn(F) 1is well defined for any tempered representation
m of M(R) and does not depend on the choice of F. If 2z is the

Casimir operator, f = (z-Mf', A € C, and
1y = 1
T £ = 0, B

for all regular semi-simple y then we may take F = (I‘M(z) - AM)F'. We

conclude that if 7 is a tempered representation of M(R) and

Tr(I‘M( z)) = Al
then
trn(F) = trw((I’M(z) - A)FY) =0
A difficulty. If f is K-finite the equation f = (z-A)f' = 0 is solvable

for X positive and large as a consequence of the Plancherel theorem, but

it is solvable only in the Schwartz space (Arthur, Harmonic analysis in

the Schwartz space of a reductive Lie group (preprint)). Thus in order

to make use of the previous observation we must show that F exists not

just for compactly supported functions f but also for functions in the

Schwartz space, provided of course that their orbital integrals are zero.
To deal with this larger class of functions we need only establish

inequalities

D30, O] cc 1™
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where D is an arbitrary invariant differential operatc;r on T(R),
C = C(f, D)) is a constant, and vy = g exp H with ¢ in the maximal
compact subgroup of T(R) and with H = H(y) in the Lie algebra of
its vector part. It must of course be possible to choose the integer
n arbitrary.

Corollary 7.4 of Arthur's paper gives us pretty nearly what we

want. He works with vﬁ(g) rather than with Vﬁ(y, g). However

= (o)

< C+ [l

So it is easy to convert the corollary to an estimate for JM(Y, ).
Following Arthur we set L(y) equal to the absolute value of the
logarithm of the smallest of the numbers |vl-a(y)—1|, where o runs

over the roots of T which do not vanish on ¢t. The estimate is

\.c.

®

(3) 13,0 D1 s ca+ LN+ wh™ ,

where C = C(f, n). The question now is whether the technique of the
lecture on real groups allows us to rid ourselves of the annoying factor
(1+ L(y))P without losing the factor (1 + HHH)—n. A glance at that
lecture and a moment's reflection convinces us that what we need are

inequalities
(4) DI (v, O] < Ccre P+ 1™

valid for an arbitrary invariant differential operator in T(®R). The
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number p' depends on D and +t(y) is the distance from vy to the set

U (tle®) = 1)
o

This is what the second stage of the argument in §8 of the Inventiones
paper gives us. As Arthur remarks it is taken from Harish-Chandra.
Notice that (3) and the differential equation (2) provide us with an
inequality (4) whenever D 1is a I‘T(z) . This is not the place to recapitulate
the argument in all its details. It suffices to note that using the fact that the
algebra of invariant differential operators is a finite module over I‘T(ZL)
and the existence of a fundamental solution for powers of the Laplace
operator in T(R) one finds Dl’ cees DI; in I‘T(ZL) and functions
E ooy E_ BE such that

r
~ ~=1 ~ ~ -1~y 4>
Do) =] [ DiPME & "vdy- J ¢(B_(v "y)dy
=1 ’
Here ¢p is any function smooth on the set of regular elements in T(R)

and € = l('g_)" ©(y) being supposed small. I have allowed myself to

work in T(R) rather than in its Lie algebra as Arthur and Harish-Chandra

do.

We of course take Lp(y) = JM(y, f). The point is that the

functions E, c and the function Bs have support in a ball of radius

1

3e. Moreover the E, . are bounded and, as an explicit calculation of

b4

the fundamental solution shows,

B ("] < ce 4
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(See §29 of Harish-Chandra, Invariant eigendistributions on a semisimple

Lie group, Trans. AMS (1965).)

So the difficulty can be surmounted. We return to Clozel's technique,
taking f once again to have compact support. To show that F has the
same orbital integrals as a function with compact support we have to show
that the conditims of Theorem A.l of the appendix to the Clozel-Delorme
paper are satisfied. Take a cuspidal parabolic P of M and consider the
representations induced from a discrete series representation § @ X

S, A
on MP(R)° That

A ——> tr "S,A(F)

is of Paley-Wiener type follows from the explicit formulas for the character
of s, and the fact that the orbital integrals of F are compactly
supported.

Once this is granted all that is left is to verify that for all but
finitely many &, taken modulo central characters of M, the function
tr ns,A(F) vanishes on an open set of A. This however follows from the
observation that if 2z is the Casimir and A >> 0 then for all but finitely

many & there is a ) such that (z) = ul with u > A.

T8, A
We have now treated the case 0p(Q) = 1 + p(L) and we pass to the

general case, proceeding by induction.

All we need do is verify that, for all regular semi-simple v,

Y — I, 0 -] T, B = TGy, 6
M c Q=L

M=M
e
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is equal to JM(Y, F) where F is smooth and compactly supported on M.
Most of the argument has now been given, but we still have to verify the

differential equations
(5) T(y, zf) = Ip(2)T(y, 1)

and the jump conditions.
To verify the differential equations we have to observe that our
inductive assumption allows us to take the family associated to zf to be

{I‘M (z)FQ}. Consequently T(y, zf), which is not well defined unless

Q
the family attached to zf is specified for M€ Q, M = MQ’ may be

taken to be

Q
3y, zf) - ) J (v, I, (2)F~)
M -E(M) M My

00
. M

Applying Arthur's lemma we see that

Ml
I (v, zf) =} D, (v, Ty (2))T, (v, £)
M MeM! M M M
and that
Q M! Q
Ly, Ty (2)F%) = 7§ Dy, (v, Ty (2))J, (v, F~)
M Mq MeM'eQ M M M

Summing over Q and then taking a difference and using the relation

Q
Joaly, £) =) Iy, F)
M! M0 M!
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we obtain

Q
p(2) (v, 1) - ZMCQ Iylrs F)
Q¢ P(M)

This yields (5).

The jumps only cause difficulty at the semi-regular points defined by
roots not in M. Our discussion of the results of the Inventiones paper,
especially of Theorem 6.1. show that the jump in the normal derivative

of T(y, f) is given by

ng(MUW v H -1 T (g )
M cQ

By the induction assumption this is zero.
Observe that we are implicitly using a result of Harish-Chandra for
which no proof has been published. Namely, the induction assumption

asserts that

TN S NS MU O 1 B
M £ M
M cQ

for Yy semi-simple in M*(R) and regular in L(R). For the inductive
argument and, as we have seen, for the fine ¢ -expansion we need the
equality for any vy such that 1 - Ad vy is invertible on A#/#%. This
follows easily from the fact that for any Yo € M(R) there are differential

operators Dl’ . Dr on Cartan subgroups Tl’ cens Tr of M and
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sequences Y? of regular elements in Ti(R) such that

_ . n
JM(YO’ F) - 11m Z.DiJM(Yi’ F)
n+>« 1

for any compactly supported smooth function on M(R).

The measure-theoretic argument sketched. It involves of course the distri-

butions OM, which have never been explicitly defined. Their definition
requires an improved form of Theorem 8.2 in Arthur's second Amer. Jour.
paper. This involves two things, replacing the hypothetical normalization
of §6 of that paper by one deduced from results of Silberger, and proving
that the representation on the discrete spectrum is of trace class. These
are for the Friday morning seminar.

Observe first of all that we work with functions ¢ on G and not
*

G that appears in Arthur will be

on Gl. So the integration over iaz;/iot
an integration over imz.
As it is given by Theorem 8.2 the trace formula appears as an

absolutely convergent sum over x of terms JX(¢) . Each JX(¢) is

itself a sum but Arthur does not assert that the double sum is absolutely
convergent. Nonetheless it is hoped to present a proof of this in the
Friday morning seminar. So we can rearrange at will. The terms appearing
in the expression of JX(¢) as a sum are indexed by two Levi subgroups

M ¢ L and an irreducible unitary representation m of M(A) or, if

one prefers, of M(A)l. Only countably many 1 actually contribute.

There is another index s, but it is unimportant. Indeed it is better

to use the definition of M(P, s) given on p. 1309 and to express the
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sum over M, m, and s as a sum over unitary representations of L(A)
(induced from M(A). The result will be attributed to @L(¢) .

Thus GL(d)) is a sum

Y S tr(R_(\)I(o ® A, ¢))dr ,
o im °
L

the iterated operation being, as is to be shown, absolutely convergent. The
only o which actually occur are those which are unramified outside of S.

Thus if we choose a place Vo not in S and replace ¢ by ¢ * ¢v
0

where ¢v is a spherical function at Vo the sum is replaced by
0

(6) ZO jm* tr(R_(VI6 @ A, 0))a_g (¢v0)d>\ ,

L
e o being the homomorphism of the Hecke algebra into € attached to
c® A. Now v = ¢ @ is the homomorphism attached to the unitary
representation ¢ ® A and thus satisfies W = oz(q>i ) with

3 - -1 0 0
qbvo(g) = ¢V0(g ).

It is well known that the set of all such homomorphisms may be
identified with the quotient C of a compact subset of 01:_ ® C by the
Weyl group. The Hecke algebra may be identified with an algebra of
continuous functions in C. Just as in the study of base change for
GL(2) its closure is the algebra of all continuous functions and (6)
defines a linear form on this algebra, thus a measure on C. It is clear
that the measures associated to non-conjugate L are orthogonal.

What about the terms @M(wQ) . We observe that when ¢ is
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replaced by ¢ * ¢v the set S' may increase but the set S does not.

0
Now we have been very careful - because it is of crucial importance - to
insist that we could nonetheless take the family of functions wQ attached
to ¢ * ¢ to be \pQ o7 (6. ), where LpQ depends on ¢ alone,
Vo S MQ Vo S
or, to be more precise, on ¢ and the choice of S alone but not on ¢V
0
or the choice of S'.
Thus M is a sum of terms like

Q
/ s trace(R(A)I(c ® A, wS)ac®>\(FMQ(¢VO))d>\
iMM

So it is clear that ¢, —> G‘M(pr) may be regarded as a measure on C
0
and that measures associated to non-conjugate M are orthogonal.

Putting together the measures associated to G and taking ¢V
0
to be the identity we obtain

@G(¢) = @G,(¢')

We have had to assume that ¢ is K_-finite but that is of no consequence.






