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la. Let D be a division algebra of degree n?

over a global field F
of characteristic zero. We suppose that for each place v of F, DV is
M(n,Fv) or a division algebra. We will use the comparison between the
trace formula on GL(n) and D* and local results to get the global corre-
spondence between automorphic representations of GL(n) and p*

The case n = 2 is already known (JL or GJ). We suppose n > 2.
Then at infinity D_ is M(n,F_) . At a finite place v, Zelevinski (Z)

equivalence classes

introduced a duality in the Grothendieck group K(GL(n F )) of the/representa=-
tions of finite length of GL(n,FV) . This duality generalizes the duality
introduced by Alvis and Curtis for finite groups, and exchanges the class of
the Steinberg representation with the trivial one.

We denote by A the adele ring of F. Recall that an irreducible
subrepresentation of LZ(GF\GA,w) for some central character « 1s called
a discrete automorphic representation of GA . We denote by S the set of
finite places v of F where DV is a field. Let Ty be an equivalence
class of irreducible representations of GL(n)A, such that for every v £ §,

T, is square integrable or the dual of a square integrable representaticn.

By the local correspondence (BDKV), we associate to T, an equivalence class

TT;X of irreducible representation of D::

7! = T, ifv¢S



1 . . .
-m, s such that the characters of ﬂ; and T, on the regular elliptic

conjugacy classes satisfy

X, = €(Trv)XTT where e(ﬁv) e {+1} .
v v

We will prove the following theorem:

1b. THEOREM: The map 7, — T,

induces a bijection from the set of auto-
morphic discrete representations of GL(n)A such that for every v < §, ﬂv
is square integrable or the dual of a square integrable representation onto
the set of automorphic representations of D:.

With the natural definition of duality at infinity for n = 2, this
theorem includes the theorem of Jacquet-Langlands. We restrict ourselves
to the case where DV is M(n,Fv) or a division algebra because of our
ignorance of the residual spectrum for GL(n). In §2, we collect some

results on local representations of GL(n). We determine the irreducible

representations of GL(n,FV) whose characters do not varish on the set

Gell

v of regular elliptic conjugacy classes, and we prove that the square-

integrable representations and their dual are the only ones which are
unitarizable. This last result is a sharpening of a theorem of Casselman

(BW). We will use these local results to prove the theorem in §3.

2a. We suppose F local, non-archimedean, of characteristic zero. We

let G = GL(n,F) and E(G) be the set of equivalence classes of irreducible
representations of G. We denote by £?(c), E Z(G)t , E°(G) the subsets
given by the quasi-square-integrable, dual of quasi-square-integrable,
quasi-cuspidal representations respectively. Recall that a quasi-square-

integrable representation is the product of a square-integrable one by a



power of v, where v(g) = |detg|, g € G.
Let us recall the classification of E?(G) given in (Z). Let X2(G)
be the set of (m,0) where m|n and p & E°(GL(d,F)) if md = n. The

unitarily induced representation

-1 -1

D X VP X s+ X o p = ig (p@vp@---@vm 0)
d
where Pd is the standard parabolic whose Levi factor is isomorphic to
GL(d,F)m , has a unique irreducible quotient. This quotient denoted by
Stm(p) is quasi-square-integrable. Every quasi-square-integrable irreducible
representation of G is equivalent to a unique Stm(p). The representation
m-1

D X VP X *** x V 0 has a unique submodule. It is the dual St:m(o)t of

Stm(p). In this classification the Steinberg representation is
n-1
Stn( - _—2—> ’

2b. THEOREM:

(1) The representations Stm(p) and Stm(p)t are unitarizable if and only

if their central character is unitary.

. m . . .
(2) VNo other subquotient of 0 x Vo X *++ x V p 1s unitarizable.

The part (1) is known: it is clear for Stm(p) and is proved in (B) for
Stm(p)t which is a "segment" in the classification of (Z). The part (2)
generalizes a theorem of Casselman, which corresponds to m = n. Our proof
given in 2d follows closely the proof of this theorem given in (BW,X1,§4,

p. 340-343).



2c. Let us recall the description of the Jordan-Holder composition series

J of p x vp x *** x N o0 given in (Z,§2,p. 176-180), generalizing
(BW,X,4.6 and 4.2). We know that it is combinatorial, and depends only
on m. We set:

m-1 m~-1

om—

§ = \)T@...@\)— 2 .

The functor i = ig of unitary induction is related to the ordinary induc-
d
tion functor I = Ig by the relation
d
i = I8 .

Their left-adjoints r, R verify

-1

Let I be the standard set of roots of GL(m), A the subset of simple

positive roots, and W the Weyl group. Given a subset I of A, we set

W(I) = {wew , w@)>0 , Vo €I , w(@) <0 , Vo € A - I}

W acts naturally by permutation on GL(d)™ and by "transport de structure'

on the representations of GL(A)™. It is easy to deduce from (Z):

PROPOSITION: J has a composition series whose successive quotients are

the irreducible representations Tr such that:

R(']TI) = @ W(p@\)p@ --.@vm"l O) e 8
weEW(I)



each occurring with multiplicity one.

If I=¢,ﬂ¢=8tm(p) and if I =A, 1 =Stm(p)t. When m = n and

o = \)—(n-l)/z’ then

-1

R(m.) = ® w(§ )8 .
- weW(I)

2d. Proof of (2). Suppose I # ¢, A and that the central character of

m-1
P

T_ is unitary. Then the central character of w(p Y Vo *++ XV ) +8

I

verifies

I | = w(&™h) s
w

Let W! be the longest element of the Weyl group of A-1I. Then wl e W(I).
There is a canonical isomorphism of the center § of GL(d,F)™ to the
diagonal group of GL(m,F), then a natural action of I om S. The character

| X 1[ acts trivially on the set of elements
W

c = fces , |l , if ael, le

This set is unbounded modulo the center Z of G.

Recall a theorem of Casselman: 1if v € Ty and v € T. the contra-

gredient of TTI , and a € A (g) where

A (e) = {aegs , ]aOL| < e, va ¢ A} € > 0 small enough

we have

(1@, ) = (R(n)(adu, T



if u,u are the canonical images of v, v respectively in R(TTI) , R(TTI) .

~ ~ . . - -].
Let us choose u, u such that (u,u) #0 in W ---Q&-\)m ) ¢

and its contragredient. Let v, v which map onto u, u under the canonical

projections. For a € A (e), Cac A (g) and
(*) l(ﬂI(ca)v s = x (@] (u,u) .
wl

There exist a unitary character \)lx, x€R , of G = GL(n,F) such that

TTI\)ix is trivial on a subgroup Z' ¢ Z, with G/Z', with compact center
Z/Z' . We can apply to T the Howe theorem: 1if TTI is unitarizable

then the coefficients of T vanish at infinity. It follows from (%)

since C is unbounded modulo the center that T is not unitarizable. Then

Trl. is not unitarizable.

2e. We determine now the irreducible representations 71 of G whose
characters XTT do not vanish on the set Gel]' of elliptic regular conjugacy
classes.

We know (Z) that the products (unitary induction ) of quasi-square-
integrable representations form a Z-basis of K(G) . Denote by [7] the
image of 7 in K(G) . TFor every 7 & E(G), we have:

[r] = Zn(ﬂ,ﬂlx--'xﬁ)[ﬂ X eee X W]
r r

where ms € EZ(GL(ni,F)) y L n; =n. The sum is finite, contains at most
one St:m(p) , and

n(st ()%, St (p)) = -1yt



We know (BDKV) that the restriction to GE]'1 of the characters of

E2(G) form a complete orthonormal system. Moreover, for every 7 & H?(G)
there exists d)TTE H(G) in the Hecke algebra H(G), called a pseudo-

coefficient of T such that

(Tr,(b,n.) = 1

(m ’(b'rr) = 0
if 7w = Stm(p) and ™ 1is not a subquotient of p x Vo x ++» X N o,
T €E(G) .

We deduce from this the following:

PROPOSITION:

(1) X_ =0 on ¢t if 1 is not a subquotient of some

P X Vo X =+ X N o and )(TT = n(n ,St:m(p)) otherwise

X
St
20
(2) The square-integrable-irreducible representaticns and their duals
are the only irreducible unitary representations whose character

do not wvanish on Gell .

3a. We suppose now F global of characteristic zero. Denote by S a finite

set of non-archimedean places of F. We set

S
Gg = 1 G, ., G, = GgG .
ve S
By convention XS = (Xv) satisfies (P) if and only if each component Xv
ves

satisfies (P). We deduce from 2e the following corollary



COROLLARY: Let m, = T_ X ﬂs be an automorphic representation of GL(n)A.

A S
The character of 7. does not wvanish on Gell

g S if and only if

_ 2 . . .
g € E_(GS) if m, is cuspidal

_ 2 t . . .
Tg € E (GS) if m, is not cuspidal .

Proof: From 2e (2) we know that each component T, of g belongs to
EZ(GV) or Ez(Gv)t. If one of them is square integrable, then Ty is

. cuspidal (this seems to be well known and was indicated to me by Jacquet,
it results from the characterization of square integrable representation

by the exponents from Jacquet functors, and the computation of the constant
terms by Harish-Chandra). It follows that T, is not degenerated (Sh) at
all non-achimedean places v of F. Therefore, for v « S, T, is square-

integrable, because the elements of EZ(GV)t are degenerate.

3b. PROPOSITION: A cuspidal automoprhic representation of GL(n)A and

. S
a non-cuspidal one do not have the same G ~component.

Proof: 1If they had, their L-function would be equal. This is incompatible

with the existence of a pole for an L-function L(s, T, x UA) for o

A A

cuspidal of GL(m)A, m < n when T, is automorphic for GL(n)A is not

A
cuspidal (J.Sh).

3c. We now proceed to the proof of the global correspondence. Let D be
as in §1, and S be the set of places v of F where Dv is a division
algebra. The comparison of the trace formulas on GL(n) and D* made by

Langlands (L) gives:



(1) trace p(f ) = trace pd(f)

for all £ = ﬂfv , £ = nfv associated to f via orbital integrals:

- £ %= £ ¢ Han)®)

- The orbital integrals of fs on regular elements are zero

outside of G:ll, and equal to the orbital integrals of fS
D:ell naturally isomorphic to G:ll.

We use the notations of (BDKV) that we quickly recall: a central
characger w 1is fixed, p is the regular representation of GL(n)A in

. . X
its discrete part, P the one for D, .

L? (GL(n,F)\GL(n,A) ,w), P A

d
Using the standard simplification argument (JL) we write (1) in the
equivalent form: for all € E(GL(n)S).
s S
; =Y T m il
(2) In CHSCQ T7) trace ﬂé(fs) z n( s X)717) trace S(fs) where n(ﬂA)

is the multiplicity of 7, in S and n (HA) the one for o .

A
The following properties are equivalent:

® (2) does not vanish for all f_

bt T is the Gs-component of some LN Y

. ]
° T is the G - component of some T

. ell
T does not vanish on GS .

A C pd such that the character

We suppose that they are satisfied. We deduce from 3a, 3b, the strong
multiplicity one theorem for cuspidal representations of GL(n)A, and the
local correspondence (la), that two disjoint possibilities A, B can

occur:
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S

Al m is the G° -component of 7, cuspidal. Then m, is unique,

A A

with multiplicity n(TrA) =1, Mg is square-integrable. Let TT: € E(D:)
associated to Ty by the local correspondence and TTZ = TT;@‘!TS . We

have for all f_€ H(D’S‘) :
8 _ 0
In(n @m) trace m (f) = trace m (£) .

By linear independence we deduce that 7° is the Gs—component of a unique
automorphic representation of DX , equal to ‘ITZ y with multiplicity

n(TTZ) =1.

S

B] T is the Gs-component of 7w, residual. Then e is the dual of a

A

. . ; X .
square integrable representation. Let TT: «’:E(DS) associated to T_ by

the dual of the local correspondence and wg = TT;@TTS . We have for all

X
£ EH(DS) :
' S _ - S 0
Zn (Trs®ﬂ ) trace Trs(fs) = Ln(TrS@Tr ) trace Trs(fs)e(ﬂs)
where E(TTS) = zl .

By linear independence we deduce that the set of automorphic repre-

. . s , .
sentations of D: with G” -component TS is equal to the set of the repre-

sentations TTZ, where T, = TTS®TTS is residual for GL(n)

A with

A’

multiplicities n (TTZ) = n(ﬂA) . Moreover E:(TTS) =1 for all such Ty e
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