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Lecture 1

INTRODUCTION

R. Langlands

Basic notation

G: reductive group over Q.
P: parabolic subgroup of G with unipotent radical N and Levi factor

PO: fixed minimal over Q parabolic subgroup of G. If P 2P, then

0
P is called standard.

ge: automorphism of G of finite order £ which fixes PO.

E: group of order & generated by e.

G': G =qE,.

For simplicity I will also usually denote G(Q), P(Q) and so on by

G, P, ... while designating G(A), PA), ... by G, P,

Z: connected center of G,

ZO: closed ¢-invariant subgroup of Z with ZOG closed. We fix
once and for all a unitary character & of Z0 trivial on
ZO = ZO N G. It will always be there but will ultimately disappear
from the notation. The group Z0 is in manv applications {1}
and we urge the reader to fix his attention on this case.

L: space of measurable functions y on G\G satisfying the following

two conditions

(i) p(zg) = £(2)¥(g) VzelZ

(ii) f lw(g) lzdg <
Z,G\G



We define a unitary representation R of G on L by
R(g)y : h —> w(hg)
Let w be a unitary character of G trivial on G and satisfying
o M2 E(eH2) = &(2)
Then the operator R(e) defined by
R(e)y : h —> ol H(h))p(e  (h))

acts on L. This definition does not necessarily yield a representation

of the group G'. The relations satisfied are:

R(e)R(g) = u L(g)R(e(g))R(e)

and

R(eMuh) = w(e Xh)e %) ... € “(h))u(h)

If ¢ 1is a continuous compactly supported function on G then

R(4) is the operator defined by
R(¢)¥(h) = [ ¢(g)u(hg)dg
G
The operator of interest is however R(¢)R(e) and this is given by

R(¢)R(e)y(h)

jGw<e'1<hg>)¢<g>w<e"1(hg>)dg

i {Z S w(g)E(Z)ﬁ(h_les(g))dZ} ¥(g)dg .
ZOG\G YEZO\Gﬁ ZO -



Thus it is an integral operator with kernel

K(h, g) = ] [ w(@)E(eh tyzelg))dz .
Y€ZO\G ZO

In order to simplify the formulas it is convenient to denote the

function

g —> [ &£(2)¢(zg)dz
ZO

by ¢, the original function playing no further role. Then the kernel

may be written

K(h, g) = u(g) § _ o(h Tye(g))
ZO\G
Recall: If the quotient ZOG \G is not compact then R(¢)R(g) is

usuaily not of trace class even for smooth ¢.

Truncation

This is a process for transforming sufficiently smooth slowly
increasing functions on ZOG \G into rapidly decreasing functions.
Composition of the truncation operator with K vields an operator of
trace class. For now I contenf myself with a formal description of the
operator, postponing proofs and a precise description of its properties

until later.

If P gPO let 0L be X, (P) ® R, X,(P) being the lattice

*
dual to the lattice X (P) of rational characters of P.

* *
We have — P, thus X (P) — X (P.) X*(PO) — X, (P),

P
-0 0’



and so 010 —> 0. On the other hand if A0 is a maximal split torus

over Q in P, we can identify 6, with X4 (A)) ® R or with the
Lie algebra of AO(R) and we can choose A in AO to be a maximal
split torus in P. This yields & —> 0. Thus we have a natural

e L

decomposition

P

n =0ZP€B0‘L0 ,

0

where to emphasize its dependence on P we have written @& = ﬂzP.
It is convenient to fix A0 once and for all,

Let 44 be the set of simple roots of o, and let AI(; be the

simple roots in M. Thus AIS c AO. On a-;,(o} we introduce an inner
product compatible with the root system 4, and let /SO be the dual
basis. Thus

<m‘a, 8> =6a8 a, BGAO, m‘ae AO

We let %P be the characteristic function of

- _ P
n,=1{He ool (H) >0, aebdg-ay)

b P P
i = 1=
Observe that if H HP + H™, HP "lP, H e @ 0 then

%P(H) = 1p(Hp)

We choose once and for all a maximal compact subgroup K of G

such that G = POK = NOMOK. It is important to observe that many



operations and many formulas, including the trace formula itself, contain

K implicitly. We define H(g), g € G by g = pk and

Ix(p) | = e <H(g)’x> , X € X*(PO) . \—\u)\ eox,

In order to define the truncation operator we have to choose
T € ULO. This done we define AT()U y P 2 continuous function on

G\G, by

dim o;P/ﬂG

ATLP(g) = ZP (-1) q(nsg)dn%P(H(ag) - T)

§E€P\G N\N

Facts (to be provided later)

(a) Each of the inner sums is finite.

) T (aTq) = 2T .

(c) AT transforms sufficiently smooth slowly increasing functions into
rapidly decreasing functions.

(d) AT extends to an orthogonal projection on L.

If ¢ is a continuous function on P, \G we can more generally

T,P, 1
introduce a truncated function A given by
T,P dim ot /o P
vt =7 (-1) R p(nsg) iy (H(sg) - T) .
=]
P,CREP §ER\P, "N\ Ny
P P P Pp P
Here TR isa function on ao = JZP @ 01.0 and R (H) = TR (H 7).
1
Pl Pl Pl
On & 9 the function is defined by a dual basis A‘0 to AO/ . Itis
" & '{\L [ G EAE
the characteristic function of 0



P P P
+acgl= {H€en 1|ma(H) > 0,7, € by .
& z\l T
P1 P 1 P1
S o e It is often convenient to define AR ’ AR , and & R * Here & R is
e P P
e \\ the orthogonal complement of JIIO{ in 6 01 and ARl is the collection
.
3 N~ - 1 R P . P
Lpyo © of restrictions of o & AO - AO to fpo- The dual basis to ARl
e = P P1 R, _:1
is A which may be identified with {'Grala € 8,7 -4, }e Ay for
P
R _ . A1 R
m‘aluo—o if 'm’aeAO,aéAo.
T,P T
The operator A has properties similar to those of A7.

The basic identity

If P is an e-invariant standard parabolic subgroup we define a

kernel KP by

KP(h, g) = Z f ¢(h_1yne(g))dn
Y€ ZO\ M N .

Thus Kp is a function on NP\G x NP\G and K, =K. ' '

If Pl € P, are two standard parabolic subgroups we let ci be

the characteristic function of the set of H in oty (= & p ) or an

1
(depending on one's point of view) for which M4
. . ~ _ = _ AG p— \\\XSO
(i) ma(H) > 0 v:ra € 4,(= Apl = API) & o
P %
N
(ii) a(H) > 0 Va € APZ (= Ai) 6’;36
1 G PZ ol & bo/
(iii) a(H) <0 Va€ed, (=25) - Ap -
- "1 "1 1

The basic identity is the equality



dim n;/né _

Y (-1) ) Kp(dg, 8g)T (H(8g) - T)
POC'.P 5eP\G
dimaS/nf T,P
-3 ) o (H(sg) - T)<z - PG lKP(Gg,ch)> .
P,cP,cP, S€P \G P,CPCP,

The sum over Pl and P2 is over all standard parabolic subgroups, but
the sum over P is on both sides the sum over all e-invariant standard
parabolics. The symbol 01,; denotes the space of ¢-invariants in dt.P
and the truncation AT,P is carried out on the first variable in KP(h, g)
before substitution of (8g, §g) for (h, g). The symbol %P is an
abbreviation for fg.
Let

Gl=tgeGllxg|=1VyeX (G}

We shall expand the integral of the left side over G \Gl as a sum over
conjugacy classes ¢, obtaining finally the fine 6€-expansion and the
integral of the right as a sum over automorphic representations obtaining
ultimately the fine y-expansion. The resulting equality is the (twisted)
trace formula. Observe that all integrals that arise will be shown to be
convergent.

Since the twisted case remains to be worked out as we go along
I will confine myself on the whole in the remainder of this introduction
to the ordinary trace formula. Even here it remains uncertain that the
formal statements have the form given until various papers in preparation

are written.



The @ -expansions

The fine ¢ -expansion that we ultimately obtain will be formed by
sums over conjugacy classes, but the first step is to obtain a coarse
¢ -expansion and this runs over semi-simple conjugacy classes. If
vy€G'=G «E then vy may be written as vy = YYa with Yg semi-simple
and Ya unipotent. The two elements y and Yq have the same érojection

on E and we are interested only in those vy which project on e. Two

such elements vy and ¥y are in the same conjugacy class if y' =6 "v¢,

m
(9]

§ € G. They are the same semi-simple classes if y’s = cS_lyscS, 8

The fine & -expansion will have the form

(T ) (9)
P ee O(M) Mo

The sum is over (e-invariant) standard parabolics, &(M) is the set of

conjugacy classes in M, and Cor is a «:onstan'i:‘L I{: ~\1_‘5( 0 \{lf :7 \\»\,@_
[y —3\; DY O ¥ T

not elliptic, the class of y in M being elliptic if the/(center of the/\

centralizer of v, 18 contained in 0ty = T ,‘,@

2, s the (twisted) orbital integral over the adelic orbit of ¥

G . L ; .
and Tbea. is a distribution associated to <I>°_ and is a weighted

(twisted) orbital integral over the class in G induced from ¢ in the

sense of Lusztig-Spaltenstein. For M = G we have T%@U = 0u.
A

Thus the distribution

o]

QO

eef(G) ¢

is (twisted-) invariant.



The y-expansion

The x-expansion is also obtained in two stages. The coarse
expansion is derived first. It is a sum over cuspidal pairs. A cuspidal
pair consists of a standard parabolic subgroup P and a cuspidal
representation p of M/‘. Two pairs (p, P) and (p', P') are said
to be equivalent if there is an s ¢ Q(8t, 0t') with representative W

such that the representations p' and
m' — p(w-lm'w )
s s

are equivalent. Q(6t, 6L') is the set of linear transformations from g
to @' obtained by restriction of some element w, € G(Q).

The fine x-expansion has the form

I [ am(Ty o) (e)dr

TT)
The sum is over all (e-invariant?) standard parabolics and the integral
is over all (e-invariant?) unitary automorphic representations of M,

or at least a part of them which will be described later together with

the measure dn. In the integrand appear a function d(w)

G

G . . .
and TMOW' Here o  is the (twisted) trace of o but TMUTr is

a distribution associated to o by means of derivatives of intertwining
operators on IndgTr. Like TSIQD, the distribution TI\G/IOTr will in
general not be (twisted) invariant for M # G. But if M =G then

G __
TGO'TT =0 and
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f d(Tr)Tgondvr

TG)

is a (twisted) invariant distribution.
Thus apart from the explicit determination of the functions clo)
and d(m), problems which have not yet been solved completely, the

final form of the trace formula, from an analytic point of view and before

stabilization, is

G _ . G
. Z”mM) c p(Tyy8p)(8) = ZP ITT d(m) (Typ ) (9)dn
(M)
Any further modification, especially any transfer of terms from one side to
the other to obtain an identity between invariant distributions, will probably

be determined by the problem to be solved.

A final remark. Let Ld be the direct sum of all irreducible invariant

subspaces of L. In the course of deriving the fine x~-expansion one
has to show that the restriction of R(9¢) to Ld is of trace class for
sufficiently smooth ¢. As I indicated the proof of this has not yet been
completely worked out. So this result and its consequences remain for

the moment uncertain.

\\\w\w S - '\—k"*'—-\g "‘\""“"\ N G g"“""‘“*‘*— © b

. . O e Q
R N Jos (S )






Lecture 2

THE BASIC IDENTITY PROVED

R. Langlands

Recall that the identity asserts the equality of

dim u;/azé
) (1) ) Kp(sg, 8g)ip(H(sg) - T)

POCP SEP\G P

and
. £ €
dim aP/ﬂLG T,Pl

of(mg)-’r)(z (-1 N Kp(sg, sg‘=>

c
P,cP,cP, PI\G p,cPCP,

0 "1 2

Once it is shown that the sums occurring on both sides are finite, the

proof will be a purely combinatorial matter.
Recall that we can define a height function on A" by setting

v z lXIZ v archimedean
Tl

l=ll, =4 °

max lxi | v non-archimedean

=l = TT M=l

Then we can choose a height function on V(A) for any vector space
over Q simply by choosing a basis for V over Q and then
identifying V(A) with A". It will be useful to recall briefly the
properties of these height functions and other functions derived from

them.



(a) If ””1 and “”2 are the height functions associated to

different bases of V(Q) then there is a positive constant c¢ such
that
s lxlly < Il < cli=l
c 1 - 2 - 1
for all x.
(b) If a is an idéle then [ax| = |a]ljx]|.
(c) ||+]] is bounded on compact sets.
such that for all Xyy vees X
n

(d) There is a constant ¢

Iy @ oo ® x| < clixyll o [l

() If @ : V — W is linear over Q then there is a positive

constant ¢ such that

le Goll < clix|

(f) If v € V(Q) then |v| >1, provided v # 0.

A basis of V defines in a natural way a basis of the space

M(V) of linear transformations of V which we use to introduce a

height function on M(V, A) and on GL(V, A). We have

(g) eyl < ll=dllivl x, v € M(V, A)

(h) =¥l < llxll, [Iv]] x € M(V, A), v € V(A)



We introduce a set Pps +eer Py of rational representations of
G over R with the following two properties:
(i) Every representation of G over R can be obtained from
s seer P by the formation of tensor products and direct summands.
(ii) For each a € AO there is an 1 = i(a), a vector vy in Vi’

the space of Py and a positive integer da such that

p(p)va =8y (p)va
o a

for all p € P.
We let o be the direct sum of the oy It acts on V =8 Vi'

We set

gl = lgl, = lle(2)]
This height function on G(A) has several obvious properties.
(1) lhg| < [h]le]
() If ¢ : G —H then

N
lp(e)] < clgl

where ¢ and N depend upcn ¢ alone.
(k) If G = GL(n) then

N
lell < clel

where ¢ and N are independent of Qz(

%



(2) There are constants ¢ and N such that the number of

elements in

{gllgl <M}

is at most cMN.
It is enough to prove this for GL(n) € M(n), the space of n x n

matrices. We have a morphism from GL(n) to Pl x PM(n) given by
-1
g —> (deg g, det "g) x g

and the assertion is a consequence of standard properties of heights in
projective spaces, the inverse image of a point in Pl x PM(n)
consisting of at most two in GL{(n).

(m) If A is a split torus we have a homomorphism

H:A — X,(A) ® R such that

e)\(H(a)) = ng(a)[

*
for all X € X (A). There are constants ¢ and N such that
{al [H(2) || 5/1(1} cA@{alla] < M}

Lo
It is enough to prove t}‘d/s for GL{(1) where it is clear.
To prove that the sum occurring on the left of the basic identity

if finite we need only establish the following lemma.



LEMMA 2.1. There are constants ¢ and N such that the number of

§ in P\G for which

T (H(sg) - T) >0

1
for all o € fp is at most c( Ig[e”T”)N.

To prove the lemma we need only show that we can find a set of

H

representatives for these § each of which satisfies ls]<c'(]g [e“T“)N .
According to reduction theory we can find a compact set C and a

TO € 0’(.0 and representatives § for which §g = am, a € AO(A),

\ -
SN S VP . V- G
(L) o(H(a)) - u(TD) >0 ,
P .
o € AO and m € C. Since
07 e . el
(6] < Log 121V = Jam 1Y < clal 1 :
all we need show, according to (m), is that
(2) [H(2)] <c(1+ mlg| + [TID
Observe that o
- _ _ -d w (H(a))
1< lots™Hv )l = fletedetse) vl < lelletee) ol <clele ®®
Consequently
(3) m‘a(H(a)) <c(l+ |g)h >
A

l-'
the constant ¢ varying from time to tir&e.



Moreover by assumption

& &
(4) 7,(H(a) > g,(T) aég)

Se
!
Also O Ae
*
(5) IAa) | = [ag) ], e X
for o e &P' The inequality (2) is an immediate consequence of (1), (3),

(4), and (5) and standard geometric properties of root systems which we

P
now recall. They are actually valid for each of the systems Ap .
1
The first is
PZ
(a) (a, B) <0 if a# B8, and @, B €A
1
It implies
(b) (IIYOL, wB) >0 Wa, B, where (‘Gra, B) = éaB' We denote the set {'Gra} by A
As a consequence
2+ 2 Pa. + 2 2 -
(¢c) a7 = {Hem]|a(H) > 0Ve e 2, c @ ={Heas|T(H) > OVw € A
1 1 P1 = 1 117 a
Moreover if P1 CPCcP, and a € Ag then
“ 1
P
k= 1 , 2 — 2
w, ma+z , € ¥ (AP—AP)
p

with m'a € &g » W, € A Applying (c¢) to &g we see that

1

=N

2

P

1



o = ) d_ vy
o

P

Y€ AP

1

with dY > 0. Thus
1
(@, g) <0

P
for BeAP -AP and
0=(m:1, B) +c, ,

so that cB > 0.

We conclude

P P2 P2
(d) {H|a(H) >0, c e, , w(H) >0, aed;"} c{Hlw (H) >0Vae
Pl o P = o Pl

}

This is all that is necessary to complete the proof of the lemma.
Returning to the basic identity we show that the sums on the right

are finite. This will be an immediate consequence of the following lemma.

LEMMA 2.2. For a given Pl’

This lemma is clear because if 'm'a(H) >0Va e Al then there is a

P P
dhique P2 such that o(H) > 0Wa € APZ and a(H) < Vo e AP - APZ.
1 1 1

For the group SL(3) we can easily describe these sets geometrically.

The lattice of standard parabolic subgroups is



Then

Q—

all




Moreover

We return to the identity and on the right side consider a fixed

pair Plc P and sum over all P2 D P. This means we have to consider
N 0§(H)
2
P2 P
LEMMA 2.3. For fixed P1 C P,
) ol=< 7
pop ! P P

The sum on the left is a characteristic function, namely of

“u(k-%‘-‘\

G
N
— o 0'3&‘:55
{HIUa(H)>0, C!EAP,OL(H)>0,OL€A§} , .':'e.\“\ s °

1 1

while the function on the right is the characteristic function of
\V\ot\"\ S
P 376
{Hlw.(H) >0, a € 4, o(H) >0, a & A5 } . = W
a P P1 « =
e B
The first conditions clearly imply the second. So we need only show
that the second imply the first. This is however (d).
v ¢
Srm = \—\-.u\\ﬁ\\e, 0’\.\ ) \_\-\3 >o N o €& I>t/ W ‘r-t)( oy
b
N ~pea R NSRRIV, RV S PARLL SN oW BN e

L —
Nose N, = it'.T'(\_\-\\ 70 N D Ny ey ) LAWY T
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This leaves us with a sum over P on the left and a sum over P1

and P on the right. All we need do is show that for a fixed P the

contribution from P on the left is equal to the sum over Pl with the

same fixed P on the right. Dropping factors which are obviously equal

we see that we are reduced to showing that

K_ (8g, 6g)T (H(sg) - T)
S€P\G T P

T,P

=7 ] tp (H(Sg) - T)ip(H(sg) - T)A
P, P\G 1

1
KP(Sg, sg)

The inner sum on the right may be written as a double sum, first over

P/\P and then over P\G. Since

Tp(H(8,6g) - T) = To(H(sg) - T), 8, € P

1
and

T,P T,P

n TKR(s0g, s6g) =4 K(5,6g, 6g)

we need only show that

o T’Pl
(1 7 ) e (H(8.g)-T) A Kp(8,8, h) = K (g, h)
P, P;\P 71

LEMMA 2.4, Suppose P 1is a standard paraboclic subgroup and ¢

a continuous function on P \G. Then

T’Pl P
A ¢(8, g)rl(H(é, g) -T) =/ ¢(ng)dn
P,CP P \P N\N
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T,P
Recalling the definition of A 1 we see that the left side is

dim clR/nl

52 (-1) i $(nv,8,g)dn  ip (H(y8,g)-T) o (H(8,g)-T)
RCP CP CPl\P'(eR\Pl N\N,
In the double sum over R and P1 we fix R and sum over Pl' Thus
we have
dim nt /ot
~ P

) ) v 2 laa ey $(nyg)dn

R R\P | RCP,CP Np\ N
with

H =H(yg) - T
Observe that if v € P1 then
P _ P B
t (H(y8,g) - T) = 1(H(8) - T)

If R =P the sum over Pl in the parentheses is clearly 1. We

need to show that it is 0 otherwise. Once this is done the left side of

(1) will have been shown to equal

f K _(ng, h)
N\N P

Since Kp(ng, h) = Kp(g, h) and

N\N

the basic identity is proved.
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We prove now a more general combinatorial statement, of which the

desired identity is a special case. We fix R and P, R€ P, and a
P

A in 01.11; Let aRl(A) be +1 or -1 according as the number of
P P

roots o € ARl such that (a, A) < 0 is even or odd. Let ¢R1(A, H)

be the characteristic function of those H in ng such that

m‘a(H) >0 if (a, A) <0 and ura(H) <0 if (o, A) > 0.

LEMMA 2.5.

P P
1 1 P

RCPlcP 1

is 0 if (A, a) <0 for some aeAPl; and is 1 otherwise.

The identity we need is the special case that (4, a) <0 for all
a € Ai. We observe first of all that an identity very similar to the one

we need is easy to prove, namely that if R # P then

dim & /0t
(1) ) - R g

(H)E(H) = 0
RCP1CP

For a given H all terms are 0 wunless ‘LIS'&(H) > 0 for all aEAg.

If m’a(H) >0 for all « EAP

R then

b= (o€ agla(H) > 0}

is not empty. For this H the sum on the left is

Py
; (_l)dirnozR/’azl_ lag™ | )
P = =

~1

(-1) 0
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Returning to the lemma we replace in (1) R by P1 and the sum

over Pl by a sum over PZ' This enables us to conclude that for
Pl #P

dim oo

P 2 -

(-1) D) (-1) 1 2. 23

c
1 Pl chxP 1 2

We substitute in the sum of the lemma, obtaining the difference between

P P
(2) eR(A)d)R(A, H)
and
dimuPZ/uP Pl Pl Pz o
(-1) €R (Mog (n, H)tp (H)p (H)
RCP1CP2§P 1 2

We can apply induction. The sum over P1 is 0 unless (a, A) >0

P
for all roots a in ARZ, thus unless PZCPA where PA is defined by
P
A P
Ap- = {a € oy |(a, 1) > 0}

1

If P2 C PA the sum over P1 is equal to

dim OIPZ/JIP .
(-1) £ (H)
2
Thus we obtain
dim “PZ/“P -
(3) ) (-1) th (H)
RcP.cP 2

2 A
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unless PA = P when we obtain this expression minus 1. To prove
the lemma we need only show that (2) equals (3), for we are trying to

show that the difference is 0 unless PA =P when it is 1.

It is however clear that (3) is equal to zero unless

w(H) >0
o

P PA

R AR

satisfied it is equal to

for a € A thus for (a, A) < 0, but that if this condition is

dim OIPZ/QP
(-1)
QCPZCPA
where
2= (aea lo (H) < 0}
R R'"™a -
The sum is clearly 0 wunless Q = P,\ when it is
dim “P/\/“P

which is eg(A). The lemma follows.



Lecture 3

THE COARSE 0-EXPANSION

J.-P. Labesse

3.1. Statement of the main result.

Let G be a connected reductive group and G' an extension of

G, over Q, by a finite group E generated by €y

Notice that we do not assume that the extension is split. Choose
a minimal parabolic PO and a Levi component MO; there is an ¢ € G'

projecting on such that e(Py) = EPOE—I =P, and e(My =M

0 0
Let AO be the split component of the center of MO; the action of ¢

€0

on A0 is of finite order. All parabolics considered below will be
assumed to be standard.

Any g € G' has a Jordan decomposition g = 8,8 with g
semisimple in G' and Su unipotent in G.

We shall use the following equivalence relation in G, which could
be called e-semisimple-conjugacy.

Two elements Y1 and P in G will be called equivalent if
Y] = Yq€ and *{'2 = v,E have conjugate semisimple parts. In particular
if Y4 and Y'Z are semisimple this means that Y1 and Y, are &-

conjugate, i.e., there exist ¢ € G such that Y, = G-lys((‘i).



LEMMA 3.1.1. Given P an e-invariant parabolic and y € P, denote

by N° the centralizer of the semisimple part of ' = ye in N the

unipotent radical of P. Let ¢ be a function with finite support on P,

then

) ¢(ny) = ) T 406 L aye(s))
neN 5§ eN°\N neN°

Notice that N° is normalized by y'. Let us denote by 6 the
automorphism of N defined by the conjugation by ye. We shall prove
a slightly generalized version of the above lemma. Consider a nilpotent

group N1 and an automorphism 6 (over Q), let N2 be a subgroup

p-invariant such that N2 contains the subgroup of es-fixed peints in

N1 (where es is the semisimple part of 6), then given ¢ on N1

with finite support one has

-1
. Y ¢(n) = ) Y e(8 Tne(s))
EYR\
“j&*“* neN, §eN,\N, neN,
. i We can now proceed by "dévissage" and it is enough to prove this
ol L . : . .
when N2 is invariant in N1 and NZ\ N1 abelian; in such a case 6
yops
G‘f) v induces in the Lie algebra of NZ\ Nl a linear map ©' which is such
1\'\ L.-s-.-hk\_.x .
at 6'-1 is invertible, and the lemma follows. {1
\D\.y\f\.u\/\(‘)

The preceding lemma shows that if P 1is an e-invariant parabolic

and & an e¢-semisimple-conjugacy class then

Pne& =N.(Pag)



We can now define

Kp gz ¥) = S ) w(Y)¢(x_1n_lYE(Y))dn
@YEP nT

where @ = N(Q)\ N(A). Obviously one has

where 0 1is the set of ¢-semisimple-conjugacy classes. Now introduce

T ap
ko, (x) = ) Y (-1) © tp(H(Sx) - K, (8%, &)
e(P)=P $8€P\G

(Undefined notations are taken over from Lectures 1 and 2.)

The aim of this lecture is to prove the

THEOREM 3.1.2. Provided T is sufficiently regular, the sum

I Ik o ex
. - @1

is finite. (Here @l stands for G(Q)\G(A)l.)

3.2. Some partitions of G(A).

Let P be a parabolic and TO a vector in 01.6, define GP(TO)
to be the set of x € G(A) such that

.~

a(H(x) - Ty) >0 Ve AS»%

S
> v
\( 9
N

W



According to reduction theory we know that if —TO is sufficiently

regular then
P. GP(TO) = G(A)

We shall assume that TO is fixed so that the above property holds for
all P. Let P, € P and consider T € az,g; define G];L’(TO’ T) to be

the set of x € GP(TO) such that

w(H(x) - T) <0 Vm'e&é

We shall denote Fé(u T) the characteristic function of the set

1
PIGP(TO, T).

PROPOSITION 3.2.1. Assume T is sufficiently regular, then given P

we have
) ) Fé(dx, T)TI;(H((SX) -T) =1
{P,|P,cP} s€P\P
for all x € G(A).

The proof relies on the following particular case of the combinatorial

Lemma 2.5 {(of Lecture 2). Assume A € azg then

T

) so(h, H)Th(H) = 1
{P1|P1CP}

for all H € 0'(0. Recall that for A € 01; the function H — q’:é(A, H)



is the characteristic function of the set of H such that w®(H) <0 for
all weht
0
Now fix x € G(A); thanks to reduction theory we know that there
exist at least one & € P such that 6x € GP(TO); the combinatorial
lemma applied with H = H(éx) - T provides us with exactly one parabolic

Pl C P such that

Fh(sx, T)TE;(H(SX) -T) =1

Hence, the sum in the proposition is at least 1. To prove that it is
exactly 1 consider x € Gp(TO) and 6 € P such that d&x € GP(TO).

The combinatorial lemma provides us with two parabolics P1 and P

2
such that
Fo(x, T)7 (H(x) - T) = Fi(6x, T)r5(H(ex) - T) = 1
We need to show that this implies & € P, (and hence P1 = PZ) . We

1

need two lemmas.

LEMMA 3.2.2. Given Plc P and H € aP such that

0
(1) a(H) > 0 Voert
(ii) T(H) < 0 Vrel,
then the following holds
(iii) a(H) > 0 Vae Ag - Aé.

In fact one can write



ure_&]i Q€A

o

The hypotheses (i) and (ii) imply that c¢_> 0 and ¢,z 0. Now consider
o z

v

Be aP - Al, of course B(W) > 0 but since B ¢ Al at least one of the
0 0 - 0

1
0

TE &LI is not orthogonal to B8; moreover B(&) <0 for all o€ A and

hence B(H) > 0. J

LEMMA 3.2.3. Assume that x and &x are in GP(TO) with 8§ € P

and that
P
a(H(x) - T) >0 VaEAO-Aé

then provided T is sufficiently regular one has & € P

1’
This is a standard result in reduction theory, but we should maybe

recall the proof. We may assume § € M the Levi component of P

containing MO’ and consider the Bruhat decomposition of § in M:

P M

with vy € NO = NO aM, Te€ PO nM and w_ Trepresents s € Q the

Weyl group of M. Write x = nak with n € NO, a€e M, and kg K,

0
then

H(8x)= (s .H(a)).H(wsnl)

for some ny € NO. But since &x € GP(TO) we know that



B(H(sx)) > B(TO) for any B € A?,M generally for any positive

root of M. The factor B(H(Wsnl)) is negative. Now if s § ol the

Weyl group of M1 there is an a € Ag - A(l) such that -8 = s~1oa is a

negative root of M and then B8(sH(a)) cannot be bounded from below

independently of T. O

The proposition follows from these two lemmas, the first one being

applied to H = H(gx) - T for some ¢ € P.. |

1

Thanks to the above proposition we see that kz(x) is the sum over

all pairs of parabolics Plc P with e(P) =P of

a€
I -1 PFLex, DrhG(ex) - T) Fp(H(8x) - TIKp (6%, 6x)
5€ P \G

Recail that

) o%(H) = <5 ()75 (H)
®, IPlC PCP,}

and define H%(x)g to be the sum over all e-invariant parabolics P

such that PIC PC PZ of

£
a

(-1) T Fi(x, TIo(HE) - TIK, (x, x)

Then obviously



To obtain the Theorem 3.1.2 all we need to prove is the

PROPOSITION 3.2.4. Provided T is sufficiently regular

2 T
o€l Pl\G(A)

is finite.

This will be proved in the next lecture.



Erratum to Lecture 3

The proof of the Lemma 3.2.3 in the notes is incorrect and should

be replaced by the following one. We first recall the statement.

LEMMA 3.2.3. Assume x and &x are in GP(TO) with &6 € P and

that

1

«(H(x) - T) >0 VaeAIg—AO

then provided T is sufficiently regular one has § € P;.

We are free to modify 8 and x by elements in PO’ on the left,
so that we need only to consider the case & = W where W represents

s € QM the Weyl group of M. We have
H(§x) = H(WSX) = sH(x) + H(Wsn)

+
if x = ank with aEMO, n €N and k € K. There exists T, € 0

0 1 0
such that for any n € NO and any s € Q
X =s H(wn)+ T, - s T
s s 1 1

is a positive linear combination of coroots é of M such that g > 0
+

and sB < 0 (cf. Lemma 6.3 of Lecture 6). Let VS be the positive

linear span of those roots g and V:‘_ be the subcone of the X € V;

v
such that moreover A(B) > 0 for all those B. In particular )\(XS) >0






and since

H(x) - T, + X_ = s_l(H(wsx) - T))

we have

A(H(x) - Tl) < S)\(H(WSX) - Tl)
We have assumed that W X € GP(TO) and hence
S)\(H(WSX) - TO) <0

since s\ is a positive linear combination of negative roots. This yields

the following inequality:
A(H(x)) < )\(Tl) - s)\(Tl-TO)
By hypothesis we may write

H(x) = ) hw +H

a o P
o€ Alg
with H_. € 0_, h > a(T,) for all o€ AP and h > a(T) for all
P P a 0 0 o
a € AO - A.. Since A 1is a positive linear combination of positive

> 0, and we get

) . h M@ ) < (A=s)(T-T)






If T is sufficiently regular this is possible only if )\(%a) = 0 for all

*
o € Al(; - A(l) and.- all X € VZ+. This implies that V; C (IL(l)) so that

é € 01,3 whenever B > 0 and sB < 0. This is the case only if s € Ql
the Weyl group of M,. O






Lecture 4

ABSOLUTE CONVERGENCE OF THE COARSE 0-EXPANSION

J.-P. Labesse

4.1.

Where the alternating sum is used.

We fix once for all a pair of parabolics

We need the

P such that P, CP CPZ'

1

P,cP.,.

5 We consider

LEMMA 4.1.1. If oi(H(x)

§ e P

1 such that

(1) a(H(sx) - T) > 0 2

(i1) a(H(8x) - TO) >0 Vo eAg

First of all, for any ¢ € Pl we have

o(H(éx) - T) >0

if ol(H(sx) - T) =

§x € G};(TO, T) then
w(H(8x) - T)i 0

the Lemma 3.2.2 above yields the assertion (i).
a(H(8x) - TO) >0

but AL contains A+ and since T - T, € ot

0 contains 0 an since 0 0

COROLLARY 4.1.2. If P.c PCP

1 2
2.1 _ 2.1
olFP—ole 0

Y o €44~ b

Of(H(x) - T) #+ 0. Now choose 6§ € P1

- T)F;(x, T) # 0 then there exist

A € Ai
such that
Vwe /3(1) ;

We know moreover that

cheAIg

assertion (ii) follows. [



Now assume that P is e-invariant; Jet M be the unique Levi-

component of P containing M0 and N the unipotent radical. Let

vyeP, neN, xe G, we need the

LEMMA 4.1.3. Provided T is sufficiently regular, and

oi(H(x) - T)F%(x, T)cb(x—ln—lye(x)) £0

y € R the smallest e-invariant parabolic containing Pl'

Our assertion is invariant by the transformation x > &x for

S e P1 and hence we may assume that x satisfies the following

inequalities, if the above expression is not zero:

(1) a(H(x) - T) >0 Vo € A(Z) - Aé
(1) a(H(x) - Tg) >0 Vo e Ag.

* * 2
N -1 = i =
Now write x = n n,mak with n € NZ’ n, € NO NO 0 MZ'

m € Mcl), a € AO(R)O and k € K. Since we are free to modify n we
may assume n* = 1; since we may change <y to G_IYE(G) with

§ € P0 we may assume that n,m remains in a compact set. Now
since x verifies the inequalities (i) and (ii) we see that

a n,ma = a nga.m can be assumed to remain in a fixed compact set.

Since ¢ 1is compactly supported all we need to prove is the

LEMMA 4.1.4. Let U be a compact in M, assume that H(a) satisfies

the inequalities (i) and (ii) then provided T is sufficiently regular

a-lye(a) € U and y e M implies vy € Pl'



Consider the Bruhat decomposition of y in M:

=<
3

VW T
S

with yeNl(j:NOnM, meP

Let w be a dominant weight of M. For some integer d there is a

0

rational representation p of M, of highest weight dw and with

highest weight vector v. We have

”O(a_ch(a) v = Hp(avlvaws)vn A (a)

with

Aa) = ed <w,e.H(a)-s.H(a)>

But Hp(a-l\)aws)vu is bounded from below by a constant times
I|p(ws)v”; so if a_lye(a) remains in the compact U there exists a

real ¢ independent of T such that
Ma) < ef
Now if w = e.w we simply have
{w, H(a) - s.H(2)) <c .

We can write

nM and s e QM the Weyl group of M.



where HP € O'LP the intersection of the kernels of the o € Alg, and

where the Aa are subjected to the inequalities

v,

AOL > OL(TO) Ya €A

o @

x> oT) Yaé€an
o 0

Hence if T is sufficiently large this implies

<'w, T, T sura> =0

for any o € Alg - A(l) and any c¢-invariant w. Now assume

2-1
r . . Cs
W= Z € .V, since W - sw is a sum of positive roots we also have
r=0

<'m'0 » Ty T Swa> =0

P

for any @, € Z&P and hence T, T ST, = 0 for all o€ AO - A(l). This

0 0’
implies s € Ql the Weyl group of My, and hence Yy € Pl' o0

Recall that R 1is the minimal e-invariant parabolic containing Pl'
As usual let MR be the Levi-component containing MO and NR the

unipotent radical. Corollary 4.1.2 and Lemma 4.1.3 show that
2, \T _ 1 2 _
y(x) g = Folx, Thoy(H(x) Thw(x) (pd(X)

where Qad (x) 1is the sum over vy € MR n o of

€
a
Y (-l)Pf ) qb(x‘ln—lnys(x))dn

e(P)=P neN
P cPcCP @n eng

1 2



Notice that this expression is non-zero only if R C P,.
&~
The exponcntial mapping is an isomorphism of NR onto its Lie

algebra np- Let ¢ be a non-trivial additive character of Q\A.

Using the Poisson summation formula we get that

) ¢(X—1nrws(X)
neE NR

equals

I e Tn exp(0vet)u( (X, Y) )ax
*

Y (A)

€ nR nR
*
where np s the dual of np (as a Q-vector space).
By integration over @ the contributions of the Y that are
non-trivial on N{A) vanish, and we are left with a sum over n;’P,

*
the subspace of np orthogonal to np the Lie algebra of N.

To take care of the alternating sum over P we need the

LEMMA 4.1.5., Let Q and R  be two invariant parabolics then

a; 0 if Q #R
) (-1) =
R CPCQ} 1 if Q =R
{P c(P)=P

An e-invariant parabolic P between R and Q is defined by

Q
an e-invariant subset S of AR . The number of orbits of E in S
is a§ - a;. The lemma is an immediate consequence of the binomial

formula for (l-l)d. 0



Let r;
*

only one np o p for PlC RCPC:P2 and e(P) = P,

*
1.2 be the set of elements in ng that belong to one and

Using the

previous lemma we see that

@) = ] ) o(x, Y, )

YEM,nO Yen

R 1,2

where

o(x, Y, z) = J ¢(x_1eXp(X)zs(X))w( <X, Y> )dX
np (A)

Let Q be the maximal e-invariant parabolic contained in PZ' Let

p € Pl; since P1 C R normalizes N we have

R

B(p, Y. v) = 81, Ad (P)Y, p lye(p))én(p)

where SR(p) is the absolute value of the determinant of Ad(p) on
*

nR(A). Now let p € Py n Gl. We may write p = n n,ma with

X 2 1 o .

n € N,, n, € N, meM] and a € Al(R) . Since N, and E(NZ)
- *

are in N5  and Y e ﬁl , then ¢ is independent of n . Choose

a compact set w; C Ni such that Niwl = N?. There exists a

compact set ws C M% such that if m 1is such that Fé(ma, T) =1



then m € Ml-wz; moreover if ci(H(a) - T) =1 we have a(H(a)) >0
for all o € A%; this implies that a_lwlwza =a wiaw, remains in a fixed

compact set Wy C N]?M%

From this we conclude that the integral over Pl\Gl of

) IHi(x)Tl
reo

is bounded by

j (f 2 (ap)dl(a)—lda> dp

o ~1
PE w3K Al(R) aG
where

S(x) = Fo(x, T)oo(H(x) - T) | T8 (Y,

yeMR Ye nl’2

4.2. Final estimates.

Let f#. be the Lie algebra of Al(R)O and 1] be the set of

1
g-fixed vectors in 0L1. Let Itl be the orthogonal complement of D'Ii

in nl. Since ¢ is of finite order on 610 we may and shall assume

that the scalar product on 010 is e-invariant. Let 2 be the

orthogonal projection from 010 onto dll. We have the

LEMMA 4.2.1. Let H € 011; the projection on g4 of e(H) - H

is an injective map from Ifl into 0q-

Assume Trl(e(H) - H) = 0, since H € 011 we have wl(e(H)) = H;



but e preserves the scalar products and hence e(H) = H. O

At the end of the preceding section we introduced a function Z

on G. Assume EZ(ap) # 0 with p € w,K and aeAl(R)o. Since

3

we assume

S(ap, ¥, ¥) = #(p, Ad ()Y, a lye(a))g(a)

is not zero, this implies that a_lye(a) remains in a compact set w, € MR

*
independent of p € w,K and Y gn (but depending on the support of

3 R
¢). We moreover assume that F%(ap, T)oi(H(a) - T) # 0, and then

assumptions of Lemma 4.1.4 are fulfilled. This implies that for sufficiently

n M,.

regular T, v € P1 R

Now for such a y we have
a_lye(a) = yl.a—lna.a—le(a)

for some Y, € M1 and n € N1 N MR. Since a-lys(a) remains in a

compact set of M nPl, the projection on Al(R)o of a-le(a) must

R

also remain in a compact set. But if a = alb where a; = exp H1

with H. € 01.; and b = exp H, with H2 € ﬁ’l we have

1 2

a_le(a) = b—le(b) = exp(e(HZ) - HZ)
Using Lemma 4.2.1 we conclude that b has to remain in a compact set

. £
W - Moreover since 0‘(,1 C O‘ZR we have



a—lye(a) = yl.b_lnb.b_le(b) € w,

with b € W We conclude that the set of Yy and nq (and hence of v)
that may occur is finite, and in the definition of = the sum over Y € MR

*
may be restricted to a sum over a finite set E. For Y € nR(A) we define

pc—ws.w3.K YEE

Since (SR(a) = él(a) on AR all we need to prove is that, given a

compact set we € 0?,0, the integral

/ of(H—X) Y 6(Ad (exp H)Y)dH

£ £
2, \0'[1 YEnl,2

is convergent, with an upper bound independent of X € W (Here ;.E
is the e-fixed part of the Lie algebra of the split part of the center of G.)

The space 01 £

1= 01; can be further decomposed into a sum

£ _ Qe £
01,1-(01R) @ﬂQ

where Q 1is the maximal e-invariant parabolic contained in PZ' Let

H = Hl + H2 be the associated decomposition of H € DZ;; we have the

LEMMA 4.2.2. Assume that H € 01? and X € w, are such that

oi(H—X) = 1. Then there exist a constant c¢ independent of X

such that

) < ecx+ [



10

Any a € bp - Ag is the restriction of some a'€ by - Ai and hence

we have

a(HZ) = a(H-X) - a(Hl) + al(X) < —a(Hl) + a(X) < -a(Hl) + c

1
for some constant ¢y For any w € 52 we have
T(H,) = T(H) >T(X)
since atg is orthogonal to we AZC EQ' Now H and H2 are e-

r
invariants, and then the same inequalities hold if we replace w by e ®©

and X by e 'X. But any w, € AQ is of the form € @ for some
integer r and some T € 52 and hence
m (Hp) > ey

for any ™y € EQ and some constant e O

COROLLARY 4.2.3. If H =H, +H, as above, the set of H,& &

such that oi(HfHZ—X) =1 for some X € wg has a volume bounded by

a polynomial in HHlll O

Let V be the cone in }E\(ng)e defined by «a(H) > 0 for all

Q _ . €
a € Ap- If a, = exp I—]2 with H, € 0‘LQ then

*
Ad(az) Y=Y

- *
for Y € ny , CNpg o Then all that is left to prove is that



12

HEEENN

then if n(Y) is the number of X such that YA # 0 we have

™ s TT Ny,

) E N
&7
>\5’50
*
Let L be a lattice in np 0 ® R, then there is a constant Cl such

that if Y € L - {0}

RURERN N R

with n the cardinal of A. Then for Y € n nL and H eV we

1,2
have
* e, ||H|l
Jad"(exp B)Y|P > e & TT Y, 0
AE A
Y>\¢0
for some strictly positive constant c,. Since the function 6 is

obtained by integration over p in a compact set of the absolute value

%
of a Schwartz-Bruhat function on np 0 ® A depending smoothly on p,

the convergence is now an easy exercise left to the reader. O



11

*
fV 11" I s(Ad (H)Y)dH,

Y€ nl’2

is finite for any positive real number r. To prove this we must recall

the definition of n it is the subset of the Y € n that belong

*
R,Q
with R P CQ and P e-invariant;

1,2°

*
to one and only one nR.P

in other words

RCP&Q
e(P)=P

The space n can be decomposed into root subspaces under the

R,Q
action of (Jlg) €.

n = @ n
R.Q  en ?

The set A is in natural bijection with the orbits of E in the roots of

Q . * . . ~0Q .
ULR in np - Let I be a weight in AR and define
2-1
1
) ) € T
r=0

where o represents the orbit of o under E. The w. are a basis

¢ QA

of (JLQ)E An element Y = z Y in n*
RT AE A A R.Q

if for any o there exist A € A such that Y>\ # 0 and <>\, '&Ta> #0

is in ny o if and only

(and hence strictly positive).

*
Choose a norm on np 0 ® R such that



Lecture 5

0-EXPANSION AND WEIGHTED ORBITAL INTEGRALS

J.-P. Labesse

5.1. The second form of the 0O-expansion.

Let P be an e-invariant parabolic and & an e-semisimple-

1

conjugacy class. For ye ¢ nM let y' = ye and N(Y:s) the

centralizer in N of the semisimple part Y'S of «v'. We introduce
| - —1 _1
N(¢’ X, Y) = f U)(X)¢)(X n YE(X))dn
N(yy)
and
ip o (¥) = 1 ) N(¢, nx, ")

YEMAO ne N(y)\N
Using Lemma 3.1.1 we see that the series are in fact finite sums since

¢ 1is compactly supported. We now define a truncated term by

€
a
g0 =] I D PR - T, o (6%)
e(P)=P s§€P\G

Here also the series are finite sums; this is a consequence of Lemma 2.1.

The aim of this section is to prove the

THEOREM 5.1.1. (i) For a sufficiently regular T




is finite.

(ii) For any & € 0

f jT(X)dX = f kg‘(x)dx
©° ©
The proof of statement (i) is, with minor modifications, the same as the

proof of Theorem 3.1.2 and will not be repeated (see Lectures 3 and 4).

To prove the statement (ii) we need the

LEMMA 5.1.2.

KP,U(X’ x) = f jP’U(nx)dn
Recall that
KP O'(X’ x) = z w(x) f(b(x_lnye(x))dx
YyEMnO N

The continuous analogue of Lemma 3.1.1 shows that

JuGe(x T lvex))dn = f  N(4, nx, yDdn
N NGHO\N

The lemma is now an immediate consequence of the definition of jP o O

COROLLARY 5.1.3. Given P1 C P we have

j jP,o,(nx)dn = f KP,O'(nX’ nx)dn

© ©

We need only to remark that P D N1 ON. O



In Lecture 3 we introduced a function H%(X)UT such that

[ kix)dx = [ 20 Tax
1 (o 1 1'"e
© PcP, PI\G
If we substitute ]P, U(X) for KP, O'(X’ x) in the definition of
Hi(x)g we obtain a function Ji(x);. Then Corollary 5.1.3 tells us

that

_[ Hi(nx);rdnz f J%(nx);dn

© ©

and the assertion (ii) in the above theorem follows from the fact that
integration over Pl\ Gl can be seen as an integration over @

followed by an integration over PlNl\ Gl. O

Another variant of the 0-expansion will be of interest. Let P
be an e-invariant parabolic subgroup, the group E of connected

components of G' acts on A and to each orbit o we may attach
P P Yy

an averaged weight Tt

where o is any element in a. We define T as the characteristic
£

function of the X € 0(,0 such that m‘a(X) > 0 for any a e AP. If

. - A . s T T .
we substitute <Tp for Tp In the definition of kO' and o We obtain
T T

new functions which we shall denote by eko‘ and €]d: their definition

makes sense since the analogue of I.emma 2.1 is available. We may



reproduce the proofs in Lectures 2, 3, 4 with minor changes; we simply

have to replace from time to time weights by averaged weights and

2 2

oy by 1 the characteristic functions of the H such that a(H) > 0
if o€ AZ, a(H) <0 if aenr, - A2 and w-(H) >0 if o € A where
1 — 1 1 a Q

Q is the maximal e-invariant parabolic subgroup contained in P2 if
Q> Pl’ and Eo% = 0 if there is no e-invariant P between P1 and
PZ' More details will be given in Lecture 9.

5.2. Conjugacy classes and parabolic subgroups.

Let P be a (not necessarily standard) parabolic subgroup and let
p' = NG'(P) be its normalizer in G'. We shall say that P' is a parabolic
subgroup in G' if its projection on E, the group of connected components

of G', 1is surjective.

LEMMA 5.2.1. Assume P' is a parabolic subgroup in G' whose neutral

connected component P is standard, then e¢€ P'.

By assumption there is an element € € P' which projects on €4
the given generator of E. We have PO c P, let Pl = z—:l(PO); this is
a minimal parabolic subgroup and hence there exist 61 € P such that

-1
lelcSl = PO' Then 6151 leaves PO invariant; so does ¢ and hence
§ = 61519— normalizes PO and is an element of G so that ¢ € P0

_ -1 1
and € =6 éleleP. O

Such parabolic subgroups in G' will be called standard; P' is
standard if and only if P 1is standard and e-invariant; moreover

p! DP'O. Let M be the Levi component of P containing M then M

0’



and e generate a subgroup M' in P' which will be called "the" Levi
component of P'. Let A be the split component of the center of M,
then A% is the split component of the center of M'. The weights of A®
in G are the orbits under E of the weights of A; since E preserves
positivity of weights, the centralizers of A and A® in G (which are
connected) are equal to M. The centralizer of A% in G' is M'.

Consider yle G such that Y'l = Y€ is semisimple and P'1 a
standard parabolic subgroup of G' such that y'l € M'1 "its Levi component
and such that moreover no strictly smaller standard parabolic subgroup

contains an M'l-conjugate of y'l in its Levi component.

Let Als be the split component of the center of M'l.

LEMMA 5.2.2. The torus Ai is a maximal split torus in G'(Y'l) the

centralizer of y'l in G'.

Let B be a maximal split torus in G'(Y'l). Since Y'l is semi-
simple G'(y'l) is reductive and up to conjugacy in G'(y'l) we may

assume AiCB. Let M, (resp. M}) be the centralizer of B in G

2 2

(resp. G'), we have M'2 C M'l. Up to conjugacy inside M1 we may

assume that M2 is the Levi component of a standard parabolic subgroup

PZC P1 of G. Since Y'l commutes with B we have Y'léM'Z and

Y'l normalizes N2 the unipotent radical of P2 (y'l fixes the weights of B)
and hence Y'l € P'Z. This implies that P'2 projects surjectively on E.

The minimality property of P'1 implies P‘1 = P'z; moreover

EE,M'1=M'2 so that B:BEZAi. O
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COROLLARY 5.2.3. Up to conjugacy M) is well defined by c(Y'l)

the G-conjugacy class of y'l.

Given y'1€ M'1 C P'1 and y'z € M'2 C P'2 minimal as above we know

that Ai and A; are maximal split tori in G'(Y'l) and G'(y‘z). If

€

y'l and Y'Z are conjugate then AEI: and AZ

are also conjugate and

the same is true for the Mi. O

COROLLARY 5.2.4. Given P' a standard parabolic subgroup of G' with

Levi component M' and Yy'e M' n C(Y'l) there exists a standard parabolic

P'2 of G' associated with P'1 such that P'ZCP‘ and my'm_le M'2 for

some meg M. [

Given P'1 and P'2 as above, let oL, be the Lie algebra of

Ai(R)O. Let us denote as usual by Q(al.l, 012) the set of restrictions

to 011 of elements s € 9, the Weyl group of G, such that

s(O’Ll) = 0, Given o€ Q(a‘Ll, 01,2) there exist a unique element s € Q
such that s induces ¢ and such that moreover s_lon > 0 for all

2
a & A

0 it is the element with minimal length in the class o¢. This

provides us with an injective map from Q(JLl, €7 2) into Q. We shall
identify Q(oLl, aLZ) with its image.

Let us denote by (0L i, 01,;) the set of restrictions to ni of
€
5

of Ai‘a (in G) such an s defines an element in Q(A’Ll, JLZ) and

elements s € @ such that s(b’li) =0 Since Mi is the centralizer

hence Q(Ol,i, 01..;) may be regarded as a subset of Q(all, 01,2) and

be identified with a subset of Q.



i, O’L;) is the set of s g © such that

(1) s(nl) =0,

LEMMA 5.2.5. Q(0

G) s M) >0  Wa€ A

(iii) es = se.

The first two conditions define Q(O'Ll, JLZ); if an element satisfies
the three conditions it clearly defines an element in Q(0t i, o ;).
Conversely if s((ni) = 02,; and s_l(a) >0 for all a € AS the same is

true for sl=&:se since P2 is e-invariant. Moreover s1 and s

have equal restrictions to ni and hence equal restrictions to 011. This
implies s = s;. O

Given P' a standard parabolic subgroup of G', let us denote
by ﬁ(d{,i, P') the set of elements s € Q such that there exists a
parabolic subgroup P‘2 C P' standard in G' with s(ai) = Q;. The
Weyl group of M, denoted by QM, acts on the left on fz((ni, P') and
each class 0 € QM\ ﬁ(oz,i, P!') contains a unique element s such that
s_lot >0 for any o € AIS. As usual s is the element of minimal length
in o. Thanks to Lemma 5.2.5 we see that such an s commutes with
e. We shall identify QM\SNZ(OLE, P'Y with the set Q(dti, P') of those
s in Q.

We can now describe rather explicitly the set M' N c(y‘l). Given

vy' € M'n c(y'l) there exists s € Q(U‘Li, P') and m € M such that

= m 1w ‘w—lm
s1%Vs



where wsé G represents s. But s is not always uniquely defined

by v'; it defines only a double coset in @:

M € .
Q .s.Q(OLl, yl)

where Q(O‘Li, Y'l) is the subgroup of the o € Q(ni, ni) such that

W Y'w_l =my'm—l
ol o 1'11

for some m, € Ml' The element m € M is defined by y' and

-1 -1 . . .
! i ! M.
wsylwS up to an element in M(WsYlws ) its centralizer in

5.3. Tame semisimple conjugacy classes.

The aim of this section is to give a simple expression for j;(x)
when & contains only semisimple elements. Such classes will be called
tame semisimple. Given such a class & and vy € 0, then y' = ye
is semisimple and for any parabolic subgroup P' of G' containing Y’
we have N(y') = N(Y'l) = {1}.

An element +v' defines a tame semisimple class if and only if its
centralizer G(vy'), in G, contains no unipotent element. In
particular, regular semisimple elements give rise to tame semisimple
classes.

Let Y'l, P'l, M'1 be as in Lemma 5.2.2 with y' conjugate to Y'l
(in G) and assume that G(Y'l) contains no unipotent elements. Recall
that Ai is a maximal split torus in G(Y'l), since G(Y'l) contains no

unipotent element the neutral component G(Y'l)o lies in the centralizer



of Ai that is M'l. Hence Ml(y'l) is of finite index say d(y'l) in

!
G(v})-
More generally given P' standard in G' with Levi component M'
such that y'€& M' let us denote by d(M, y') the index of M(y') in
G(y".

Let s € ﬁ(ﬁli, P') be such that y' = m 1wsy'lw;lm where W

represents s and m € M.

LEMMA 5.3.1. The cardinality of the set

M, M e,
27\0 .S.Q(lﬂ.l, Yl)
is d(M, v).

Consider first the case where y' = Y'l, s =1 and P'= P'l, then
all we have to prove is that the order of Q(O‘Li, Y'l) is d(y'l) and this

follows from the

LEMMA 5.3.2. There is a natural map from G(Y'l) onto Q(ozi, y'l) with

1
kernel Ml(Yl) .

An element g € G(Y'l) normalizes AS the center of G(y'l)o and

1
hence it normalizes Ml' Then g defines an element sg of
Q(oli, dli) and since g commutes with y’l it lies in Q(Oli, Y'l). By

the very definition of Q(#t i, Y'l) this map is surjective and its kernel is

M; 0 G(y)) = Ml(Y'l)- O
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We can now return to the general case. We need only to prove it
when y' = Y'l, W, = 1, P'1 C P', in which case it amounts to saying that
. M
the index of Ml(Y'l) in M(Y'l) is the cardinality of Q  n Q(ni, Y‘l)

which is clear. O

Given & a tame semisimple class we have

ip,p () = ) ) w6 (x T tye(nx))
YEMnor neN
since N(Y'S) = N(y") = {1}. Now since in such a case ¢ is the twisted
conjugacy class of some Yq with y'l = Y€ semisimple in M'l, minimal
as above, we may use the description of c(y‘l) N M obtained at the

end of 5.2 to see that (x) 1is the sum over

JP’or

€ _ M € € '
s € a(a{, P, y'l) = o\, P /oot |, Yl)

and over EEM(Wsy'lw;I)\P, where W represents s of

w(x)d)(x_lf;_lWSYlE(W;lEX))
We may replace the sum over Q(n%, P, y'l) by a sum over
Q(ui, P') but we must divide each term by the integer d(M, wsy'lw;l)
as follows from the Lemma 5.3.1. We may also replace the sum over
M(wsy'w_l) \P by a sum over wle(y'l)w;l\P but we must divide each

1 s

term by the index of Wle(Yi)w;l in M(wsy‘lw;l) which equals

-1
d(Y'l) /d(M, WSY'le )
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We finally obtain (x) as the sum over s € Q(Oz,i, P'Y of the

p, o
~1
t
sum over &€ Wle(Yl)Ws \P of

-1 -1 -1 -1
1
dv)) Tw(x)e(x & “w ye(w_ "Ex))
This yields immediately the following expression for jg(x):

T - ~1.-1
6 = y d(vy) Lix)exts v e(6x))e (6%, T)
s€ M (Y)\G '
where
€
ap |
el(x, T) = ) ) (-1) TP(H(WSX) - T)
e(P)=P  se(a P
depends only on the parabolic subgroup P'l. We may get rid of the factor

d(Yll)—l if we replace Ml(y'l) by G(y'l); we obtain the

LEMMA 5.3.3. Given ¢ a tame semisimple class we have

T -1.-
]O'(X) = z w(x)o(x 16 1Yle((ﬁx))el(éx, T)
5€G(D\G
Replacing {P by E{P we define ei the analogue of €y and

we have the

LEMMA 5.3.4. Given ¢ a tame semisimple class we have

€j£ (x) = ) m(x)cb(x_lé_lyle(éx))ei(éx, T)
§€G(yP\G
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The reason for introducing the ei

integrals have a usable form, that is, can be treated along the lines

is so that the weighted orbital

suggested by Y. Flicker in "Base change for GL(3)" and used again in his
preprints on GL(3) and SU(3).

Given s € Q(“i’ azg) we define Ag to be the set of a e Ay
such that s—1a > 0. The Lemma 5.2.5 tells us that this is the set of
simple roots attached to a standard parabolic subgroup P's of G
containing P'Z. Given s as above we introduce a function on 0

€
a

B3G) =] -1 *
pPLcp'cP!
2 s

ETP( sX)

€
a

This is the product of (-1) Fs and of the characteristic functions of the

X € 01,0 such that m‘a(sX) > (0 for any o EAO - A(S) and m'a(sX) <0

2

for any o € A - AO.

s
0

Given s € 2 we introduce
H (x, T) = s NT - H(w _x))
s 7 s
With these notations we have

ej(x, T) = ) (BI(-H_(x, T))
se o)

where Q(B‘(,i) is the (disjoint) union over the P'2 of Q(dli, ﬂlg).

Let ci(x, T) be the set of H € 61, whose projection on }E\Oli

lies in the convex hull of the projections on }E\ ai of the set of
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H (x, T) with se Q(dz,i).

LEMMA 5.3.5. Assume T is sufficiently regular then

H —> y _BI(H-H_(x, T))
S€ Q(D‘Li)

is the characteristic function of ci(x, T).

This lemma is essentially Lemma 3.2 in Arthur's paper [Inventiones

Math. 32, 1976]. More details will be given in Lecture 9 below. O

We shall denote by vi(x, T) the volume of the projection on

’38\01; of Ci(X, T). We obtain the

PROPOSITION 5.3.6. Given ¢ a tame semisimple class we have

J ej§ (x)dx = [ V(Y'l)w(x)¢(x_1yle(x))vi(x, t)dx
' G(Y'l)G(Y'l)O\G

where v(y'l) is the wvolume of AT(R)OG(Y'l)O\G(Y'l)O.




Lecture 6

PROPERTIES OF THE TRUNCATION OPERATOR

R. Langlands

The most important property of AT is that it converts smooth
slowly increasing functions into rapidly decreasing functions but we begin
by studying its formal properties.

Recall that AT is defined for T suitably regular in azg and

that it is defined first of all for continuous or, better, bounded measurable ¢ by

a
My(g) = ] (- 7] | gasg)ip(H(sg) - T)
P §€P\G N\ N

where
ap = dim ozP/ ozG

By Lemma 2.1 the sums appearing on the right are finite.

PROPOSITION 6.1. The operator AT is an idempotent, so that

2l Ty = atg
This proposition is of course an immediate consequence of the

following lemma.

LEMMA 6.2. If @ is bounded measurable then

/ !\T(,a(nlg)dn1 =0
NNy



unless wW(H(g) - T) <0 for every wE /Sl'

We first consider

(1) I ) Ji ¢(nén g)Tp(H(éng) - T)dn dn,
N\N; §€P\G N\N

Let Q(az,o, P) be the set of s in Q((no, m,O) such that s—la >0

for all o g Ag. The Bruhat decomposition assures us that P\G is

a disjoint union

U PWSNO ,
W being a representative of s.

Thus the expression (1) is equal to the sum over Q(ozo, P) of

(2 [ ) J ¢(nw vn )i (H(w vn g) - T)dn dn,
NNNy “IN w an. AN, VAN ShEe
VEWS BV Ny 0

The outer integral and the sum can be fused to obtain an integral over

-1
W NOwanO\ NONl s

which we then decompose as an iterated integral, so that (2) becomes a

triple integral

J / /

-1 -1 -1 -
W Nowsn NONI\ NONl W Nowsn NO\WS Nowsn NOlNI1 N\N



The domain of integration in the outer integral depends on the

choice of N1 and on s but not on P. Since it is the alternation

over P that will force the vanishing we ignore the final integration
and concentrate on the inner double integral. A little reflection con-

vinces one that

-1 - _ _1 -
w_'Ngw_n No\wslNOwanONl = w_ NOanNl\wS]NOWSan

Since s € Q(O'LO, P) the intersection WSNow;l nM is NO n M.

Thus Wsle;l N M is a parabolic subgroup of M with unipotent radical

WSN w;l n M. If we pass the variable in w_lN A Nl through W

1
we obtain a variable in NO N wlew;l (N nw N w )(M nw Nl 1).

Thus the second integration in the double integral can be taken over

the product

-1

(anNw \anNW )X(\/Ianw \anNw

1 1 1

The volume of the first factor is 1 and since the first integration is
taken over N\N the integral does not depend on the first variable in
the product.

Thus the double integral becomes finally

-1 -1
M nWSN lwS \ M anN 1wS N\N

However

(anNW_).N
S S

1



is the unipotent radical of a parabolic subgroup PS of G. So the
double integral becomes a single integral over NS\NS, which we now

write out explicitly.

3 - -
(3) f (p(nwsnlg)rp(H(wsnlg) T)dn ,
N \N
s s
the ny being the wvariable for the outer integration, which does not

concern us at the moment.
The group Ps is contained in P. The group N1 is fixed but
s varies over Q(m,o, P) and we are to sum over P and Q(“'O’ P).

What we do is fix s and a Po 3 PO and sum over all P with

s € Q(a'(,o, P) and PS = p°.

The set {a € Aols_la > 0} is the disjoint union of two subsets,
the first S1 consisting of those a in it for which s—la is orthogonal

to 01.1 and the second S1 of those for which it is not. It is clear that
P

S P
AO c AO and that
P
s _ P 1
AO = AO nsS s
for o € S1 if and only if suloc is a root in Nl' Thus the freedom
of P is that the intersection of AP with S can be chosen at will.

0 1
The dependence of (3) on P is through the function

%P(H(wsnlg) - T). The sum

aPA
Y (-1) TP(H(wsnlg) - T)



,//'\NM Sy e ;s\.\'-« -.X\\_ OM\\,—X) w N &\0 LJ\ LN A\K\‘\v -
Y

over the allowed P 1is therefore 0 wunless
m'a(H(anlg) -T) >0

for a ¢ A
'ﬁYa(H(wsnlg) -T) <0

for o € Sl'
To complete the proof of the lemma we have to show that these

inequalities imply that
WH(g) - T) <0

for wWe 1&1. We have

s-l(H(anlg) - T) =H(g) - T+ s_lH(wSV) + T - S—lT

with v € NO(A).

We write, identifying 01,0 and its dual,

H(wsnlg) - T = Z taa
o €A
0
pO
with t >0 for o ¢A uS., and t <0 for o &€S,. Then
o 0 1 o - 1
(s M(H(w n.g) - T)) = Tt (s ‘)
s 1 L7
=) 1 ta‘m'(s-la)



for s—loz is orthogonal to @, if aeSl. If océSluS1 then

ta >0 and ‘m‘(s_la) <0 and if o €S then ta < 0 and

1
U(s_lon) > 0. Thus this expression is less than or equal to zero.

To complete the proof of the lemma we need only show that for

sufficiently regular T
-1 -1
=(s H(wsv)) +w(T -s T) >0

There is certainly no harm in replacing G by a Levi factor of the
smallest standard parabolic containing s, which to simplify the notation
we suppose is G itself. Then given any constant C we can take T

sufficiently regular and suppose that
-1
=(T-s T) > C

It therefore remains to show that there exists a constant C such

that
(4) m‘(s-lH(va)) >-C

for all v e NO(A). This is a statement which is easily seen to be

independent of the choice of K. Indeed it is enough to prove it over

a field which splits G. So we can suppose G 1is split and semi-simple.
Then one has the usual optimal choice of K and for this one

proves by induction on the length of s the following lemma.

LEMMA 6.3. If v lies in NO then



with ¢ > 0.
o

This gives the relation (4) with C = 0. To prove the lemma one

begins with SL(2), taking w_ € K. So, for the non-trivial s,

Moreover H(stw;l) is the sum of its local contributions and these are

(i) v real

(e [ D
(ii) v complex
-SLn(l+|xV’2)((1) -(l))
(iii) v non-archimedean
-9n max{|1l], lxvl}(é —(l))

Thus for SL(2) and hence in general the lemma is proved for an s
of length one.
For a Chevalley group and an optimal choice of K we may take

W e K. If s = 5155 with s, 2 reflection associated to the root B



and 1 + length s, = length s then

s—lH(w v) = s_ls—lH(w w V) = s~ls—1H(w v') + s-ls—l(s H(w v))
s 271 sl 52 2 71 1 2 71 1 s,

The induction assumption allows us to write this as

-1
s, d B+z c a
2 8B >0 o

sza<0

with dB >0, ¢

> 0. Since
a =

(a > 0fsa < 01 = {u > 0]sj0 < 0} u {s;' 8]

the lemma follows.

PROPOSITION 6.4. Suppose that o, and p, are continuous functions

on G\ G and that on

N
| ¢1(8) | < clgl

for some N and that on any Siegel domain in G1 we have an inequality

L@, | < eylgl™

for all N. Then

J AT@I(g)cpz(g)dg = ql(g)AT¢2(g)dg
G\ G’ G\ G’

This clearly reduces to showing that



J { y ¢1(ndg)dnt (H(8g) - T)} ¢,(g)dg
o 1 N\ N
\G~ L§eP\G

is equal to

S (Pl(g){ z / (Pz(nég)dan(H(Gg) - T)} dg
G\G' 5€P N\N
\G

It follows readily from Lemma 7.8 of the next lecture that the
second integral is absolutely convergent when ®, and (PZ are
replaced by their absolute values. Thus a formal proof of the equality
assures us of both the equality and the convergence of the first integral.

The formal proof is of course easy, the second expression reducing

to

f (g)To(H(g) - T){ (ng)dn}dg
P\ G Frere jN\Nq’Z

which equals

A(H()—T){ ( >d}{ ( )d}d ,
J]‘NIP\G e IN\N(Plng ? fN\N LA

an expression symmetric in ¢ and ¢y

COROLLARY 6.5, AT extends to an orthogonal projection on the

Hilbert space L.

We will not need any of these assertions in the next two lectures.
What we will need is the fact that AT transforms smooth slowly

increasing functions into rapidly decreasing functions. For now we
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content ourselves with a relatively simple statement.
To any element Y of the universal enveloping algebra of the Lie

algebra of G we can associate a left-invariant differential operator

R(Y) on G.

LEMMA 6.6. Suppose T is sufficiently regular. Let ¢ be a Siegel

domain on Gl. For any pair of positive numbers N and N' and

any open compact subgroup KO of G(Af) we can find a finite subset

{Y

1 e Yr} in the universal enveloping algebra such that

1T g™ <1 sup [ROYD@ B[
! heGlg

for g e ¢ provided ¢ is invariant on the right under KO and

sufficiently smooth that all the operators R(Yi) can be applied to it.

This is proved by an argument similar to that used for the proof
of the 0°-expansion. Its structure is more transparent, many of the
incidental difficulties met with the ¢ -expansion no longer arising.
However the alternating sum is used in a slightly different way and it
is best to dispose of the necessary technical lemma immediately.

For this purpose we fix PlC PZ and consider a continuous

function ¢ on Nl\Nl' If PlC'-Pc.‘.P2 then

Ww :n '——->j ¢(nn,)dn
P 1 N\ N 1 1

is also a function on Nl\INI1 because N is a normal subgroup of N

We want to consider
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ep
Y= z (—1) P‘P
P

Let AO - AO = {al, SR us} and let 21 be the set of positive

roots o of the form

(5) a =y b8

Beh,
with bB #0 for B = a, or BE AO—A(Z). There is a parabolic p!
between P1 and P2 such that the Lie algebra of Ni is spanned by
the root vectors attached to the roots o« in 2 . For any P Dbetween
P1 and P2 there is a unique subset ZP of 1{onl, cees ar} such that
Ag is the disjoint union of ZP and Ag. Moreover

It follows easily, all the groups N being normal in Nl’ that

© m-m (M -
i=1 P i

2

where for simplicity of notation we have set Wpi = ﬂ_
Let ZO be the set of positive roots which When1 written as in (5)

have ba' # 10. Let an integer r > 0 be given. For the purposes of

the next 1lernma we define a left-invariant differential operator of type r

to be a product
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the order being immaterial and Xi. being a root vector of type o with

O
ae .
1

LEMMA 6.7. For any integer r > 0 and any open compact subgroup

U of Nfl = Nl(Af) there is a constant ¢ = c(r, U) and a finite

collection Yl’ cees Ym of differential operators of type r, the

collection depending on r alone and not on U, such that

ITToll, < <@ IRCY)l,

for any function ¢y on Nl\Nl/U which has continuous derivations up

to order rs.

The norms in the inequality are of course L _-norms. A little
reflection shows that we can make a number of simplifications. First of

all replacing y by TTP ¥ we can work in the group M2 rather than

2
in G. In other words we may suppose that G = PZ' Then the
formula (6) reduces to the case that P. is a maximal proper parabolic

1
of G over Q.

We choose a composition series of groups over Q

N, =V, 2V, ,2... 2V, ={1}

with Vi+1/Vi isomorphic to the additive group. Since

e-1
(1 - 7T )Ii)(n.l) =) | w(vnl)dv - tp(vnl)dv
P v

1 =0 Vi\vi i1 MVir1
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it is enough to prove the following lemma.

LEMMA 6.8. Let r >0 be an integer and let U be an open subgroup

of A. There is a constant ¢ = c(r, U) such that for any function ¥

on Q\A/U which is continuously differentiable of order r

3y
sup |u(x) - [ w(Mdy| <<l =l
K Q\A X

To be a function on Q\A/U 1is to be a function on a quotient

L\R where L = L(U) is a lattice in R. The inequality thus follows

) v > \1/2 _L_>l/2
zn#O | nl - <Zn=#0 | nl > <Zn¢0 an ,

at least for r > 0, but the case r = 0 is quite trivial.

readily from

We shall apply Lemma 6.7 to a function
n —> y(na)

where ¢ is a function on G\G and a € AO(A). If we want to regard
the Yi as left-invariant differential operators on G we must write

the inequality of Lemma 6.7 as

(7 sup |T|—U,)(nla)] <c) sup lR(ada_l(Yi))w(nla)i
n, 11

This will be to our advantage.

We now take up the proof of Lemma 6.8. The first step is to
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replace
tp(H(x) - T) ¢p(ng)dn
N\N
by
1 2
) FP(x, T)cl(H(x) -T)f ¢@(ng)dn ,
P.cPcP P,\P N\N
1 2 1
the sum being over the pairs Pl’ PZ' There is then a sum over P\G

and an alternating sum over P. The final result is a sum over pairs

P1C P2 of

a
(-1) T Fi(sg, T)o(H(sg) - T)  u(nég)dn
P,\G {P\P CPCP} N\N

However Corollary 4.1.2 allows us to replace Fé by Fé The

upshot is that we are forced to estimate

a
) Fé(&g, T)ol (H(sg) - T I] (-1 P I gmsg) ]
P.\G P N\N

Lemma 2.1 shows that

] Flsg, Dot - T) <clgM
Pl\G

for some M, T being held constant. Thus the problem is to estimate

a

I DT [ gnsg) |
P N\N
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It is now best to be more precise about Siegel domains. In contrast
to the previous definition the elements g of GP(TO) will now be
required to have all of the following properties:

(i) If g = pk and a = a(g) is the projection of p on A  then

0
g € a where Q 1is a fixed compact set. «— o\ b G LD Y
.. P ‘
(ii) o(H(g) TO) >0 for all o e AO' grh, ..,\,,.\,-«3 %
(ilii) There are constants ¢y and ¢y SO that Comn b A\ u\ \\l?
‘

inal| < eI < cy(1|amla ]

The final condition is easily seen to force the component of a in
AO(Af) to lie in a compact set. This modification entails a modification

in GEl)(TO, T) but the set
p LT, T)
1770

and thus the function FEl, is not changed; provided of course S

and @, which affect the size of GP(TO), are all chosen large enough.
This definition has the advantage that for a given GG(TO), for

example that of Lemma 6.6, there are positive constants c, and ¢

1
such that

-1 —e
lsg|™" <clgl ©

for all 6§ € G and all g € C;G(TO). (I know no reference for this fact.

It can be deduced from Prop. II.1.5 of A. Borel, Ensembles fondamentaux
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pour les groupes arithmétiques et formes automorphes, Cours a I'IHP

(1964).)
Thus all we need do is show that if g e Gé(TO, T) and

ci(H(g) - T) # 0 then, for a suitable choice of g modulo P.,

M+N'! & -
® g™ DT gme| <] suwp [ROYD@Mm ][]
P N\ N i hGGlg
The suitable choice of g will be an element in Gl(TO, T).
Then conditions (i) and (iii) yield

M+N! M'||H||
] < ce

g

with H = H(g) = H(a). Thus denoting the right side of (8) by A we

need only show that

) a
(9) M HIH 1} (-1 P J Ppng)| <A
P N\ N

Since we can readily deal with right translations by elements from
a compact set in (:':1 we may suppose that g = a(g) = a. As in
Lemma 4.2 we may write H = Hl + H2 with H1 € ozi and H2 e 012
and deduce from the fact that oi(H—T) # 0 that

I, < el

the constant ¢ depending of course on T, but that is of no consequence.

Thus it will be enough to prove (9) with H replaced by H1 but with a larger
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M'. This is an easy consequence of (7), for the inequality (ii) applied
with P2 replacing P assures us that the coefficients of ada‘l(Y)

with respect to a filxed basis of the universal enveloping algebra are
MM IH “
1

bounded by ce , where M" — « with r.
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Appendix

Truncation has been seen to have two essential properties. It
is an idempotent and it converts slowly increasing smooth functions to
rapidly decre;sing functions. It may be worthwhile to see how this
comes to pass in a simple case.

A function f on the upper half-plane which is invariant under
SL(2, Z) may also be considered as a function on SL(2, Z)\ SL(Z2, R)

if we set

_ ai+b _ ab
¢(g)_f(ci+d) ’ & = (cd)
1 x a 0 >
¢ (< < _1> ) = f(a’it+x)
0 1 0 a

The function f 1is determined by its values on a a fundamental

In particular

domain

7

Truncation is achieved by leaving f{ untouched below a certain line

Y =Yy in the fundamental domain and by removing the constant term
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of its Fourier expansion above the line. So it is clearly idempotent.

The inequality

anlanIZr/E 1

0 n¥0 an

N CY I /2
0 n#

n#

shows that for r >1 and y > Yo

1

2 a" 2
(1) |Af(utiy) | <c f | =— f(x+iy) |“dx
-3 dx’

However if X 1is the element
(0 1
0 o)
in the Lie algebra then

qF _ 4 1 *<> <a 0 >
—— f(x+iy) = —=¢( < _ )
ax’ ax’ 0o 1/\o a’t

with vy = al2 and right side of this equality is

op . [l x\[a 0
a TR(X) e( 1 )
0 1 0 a

Thus bounds on R(X)r¢ of the form

. 1 x a 0 o
IR(X) ¢(< > 1)) selma ,
0 1 0 a

where s is a constant independent of r - and this is the kind of

bound that will be available to us - vyield
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ar s-r
|———r f(x+iy) ] <clr)y
dx

The inequality (1) then implies that

|Af(utiy) | < cc(r)ys—r

for any r.



Lecture 7

PREPARATION FOR THE COARSE y-EXPANSION

I: STATEMENT OF LEMMAS

R. Langlands

Recall that the right side of the basic identity is

-

) ) oC(H(sg)) -0 F Yk (5g, sg)
1 P

P,cP, P\G P,cPCP,

m

o € €
p = dim ULP/A‘LG

Since the Yx-expansion can not be introduced without recalling facts
from the theory of Eisenstein series, we begin by proving the absolute

convergence of

7 o*(H(sg) - T)<Z SV EF 6g)> de
G\ G' Pl\G PlCPCP

This will not be a simple matter and will provide us with techniques and
lemmas necessary for the proof of the absolute convergence of the x-

expansion.

We prove in fact the stronger assertion that

J e - D] 0P TEy(g g)ldg < e

P,\G P,CPCP,

‘\\o\\'\_‘, — C/\ewx,\ - tad Qe A 5\"‘\-\‘.\; G-W~\'\\ \.Q\«.w\ Lo V*\M

V’“‘“\ VO VSRV



Recall that
1 %
G ={geG||x(g)| =1V x eX (G)}
We begin the proof with a sequence of preliminary reductions. Since

gl = ®, n ch.x ,

<<
the integral can be replaced by an integral over Pl\ (]Pl N Gl) , the

measure on Pl N Gl being the left-invariant Haar measure. Let

Pl=(peP |lp)|=1Vyxe X' (P}

and let Acl}(}R)O = exp m'(l} be the connected component of Acl}(R). Then

1 .G o
PlnG -Pl-Al(R)

and the left-invariant Haar measure on Pl N G:1 is given by

d(pa) = pl;z(a)dpda ,
1

with

Lo

ol;z(a) = |ad(a) |

1 ?1

?l being the Lie algebra of Pl' To simplify the notation in this lecture

I shall abbreviate A(l}(]R)O to A?.

Let @ be a compact subset of G satisfying KQK = @ and set

o(g) = sup |} (-1) A KP(gk, gk")| .

1
k,k'e a Plc.PC}?’2



It is clearly enough to show that for any real number r

2 -
o\ ples o2(H(p)+H (2)-T) (+[[H(p) [[+[H(a) [) T (pa) (557 (a) dpda < =
1 171 1
Pl 1
Let © = 6 (TO, w) N Pl be a Siegel domain in Pi.

certainly enough to show that for any arbitrary & the integral

It is

ExA

2 -
(1) [ g otHE*H)-T) (HHp)]+ )] o(pa) o (a)dpda
1 1

is finite. We may suppose that on G
e lp]l - ¢y < JH® <) lanlpl +

The proof has two aspects. One first shows that the integrand is
zero on a large subset of the domain of integration, and then uses the
estimates of the previous lecture on the set on which it does not vanish.

We begin by finding a convenient expression for

at T,P
P 1
(2) ) (-1 © & Kp(h, g)
P.cPCP
1 2
Recall that
Kp(h, g) = w(g)] J #h hme(g))dn
Z \M N
0
T,P1
It follows immediately from the definition of A that
T,Pl T,P1



if

wg) = J ¢(n;g)dny
Nl\Nl

Thus when studying the expression (3) we may replace KP(h, g) by

f K. (n,h, g)
Pl
Nj\ Ny
and this equals
wig)) f | d)(h—lnnlye(g))dndn1 ,

ZN\P N, /N, ‘N

because N 1is a normal subgroup of Nl' This expression is in turn

equal to

w(g)) ) J ¢(h‘1n16~{€(g))dnl = w(g)) Kp (h, ye(g))
YEP \P seZN \P, N YEP\P "1

where KP now denotes the kernel for the case that ¢ is the trivial
1

automorphism.
~

The expression ('b'/) becomes

€

ap T,P‘1
(-1) A KP (h, ve(g))
veP \P,\ P cPcP 1

vye P

2

If there is no e-invariant parabolic subgroup between P1 and PZ
the sum is empty, equals 0, and the convergence of (1) is trivial.

Otherwise let Q be the largest such subgroup. For a given 7y let PY



be the smallest such subgroup containing y. Then

a.E aE
(-1 T =7 -1 F

P.cPCP P\{CPCQ

1 2
YyEéP

and this is clearly 0 wunless PY = Q, when it is 1.

Let FE(PI’ P be the set of all vy € Q (taken modulo Pl) for

1

2)
which PY = Q. Then (&) is equal to

€
aQ T,Pl
(3) (-1) ~wl(g)) A Kp (h, ve(g))
vyeF e(Pl’PZ) 1

To prove the convergence we need a number of lemmas. These we
next state, explaining how the convergence follows from them, postponing
the proof of the lemmas until the next lecture. It will be convenient to introduce
a notational convention. We denote by C a compact set and by ¢ a
constant both depending only on 2 and the support of ¢, and by c(¢)
a semi-norm on C:(G). All three are allowed to vary from line to line.

The first lemmas are concerned with the support of the integrand in (2).

LEMMA 7.1. There is a compact set C in 0LQ such that

T,P1
A Kp (gk. ve(gk')) # 0
1

for some v €& Q = Q(Q) and some k, k'€ @ implies that

QL nc 4.

H(g) e ot g o

Until now & has needed only to contain K. Now we suppose



that in addition it contains exp C-K, with the C of the lemma. Then,
at the cost of taking a slightly different T, we can replace the integral
in (/;) by an integral over G x A?Aé. Indeed T is fixed. Thus

there is a C € n? + dlg such that

c‘%(H(p) + H(a) - T) = of(H(a) - T) # 0

implies that H(a) = H + X with X € C and o-(H) # 0. This allows

us, again at the cost of enlarging @, to take T = 0.

LEMMA 7.2. If p, p'€ PY, k, k'€ @, y€ Q, a, a' € A}, b & Af then

T,P T,P !

ko)
A 1KP (pabk, ye(p'abk')) = A lKP (pak, Ye(p'ak‘))pé (%)
1 1 1
Q 3 . Q Q € £
EMM = € ,
L A7.3. If H H1 + HQ with Hl 14 1 HQ € OIQ and

ci(H) # 0 then oa(Hclz) >0 for all o € A'(l3 and

HEN < e(x + a5

€
al

These two lemmas and the previous reductions allow us to majorize

(2) by
Q I r -2
(4) c [ Tl(H(a))(1+HH(p)H+‘|H(a)Il) ¥(pa)oy (a)dpda ,
Gxa® 1
1
it being however understood that the integration over Af or to be

Q’

more precise over



b e Ag| IH(B)] < cQ+H()])

has forced us to increase the exponent r. The function 1‘? is the

characteristic function of
{H & ﬂ?[a(H) > 0Va e Aclg} .

To estimate ¢(pa) in the integral (8) we observe that it is

dominated by

|A K, (pak, ye(pak")) |
Y€ Fs(Pl’Pl) 1
for some k, k'€ Q. At this point there are three more steps left for
the proof. The first is to show that if this expression does not vanish
then |H(a)|| is controlled by |IH(p)|l and that is the purpose of the
next lemma. Then we have to show that the truncation provides us with
functions rapidly decreasing at infinity in @, and finally that the
summation over vy, although it tempers the rate of the decrease, does

not destroy it.

. . Q
LEMMA 7.4. Suppose Yy lies in Fe(Pl’ PZ), nm e &, a € Al’ and

that T%(H(a)) # 0. Suppose in addition that for some k, k' € @

and some m'E€ M% = M1 N Pi we have

T,Pl
A KP (m'ak', ye(nmak)) # 0
1

Then for some other m'




KP (m'ak', ye(nmak)) # 0
1

and

IH@@)]| < c(1+{Hm)])

Q Nl!]H(a)H .
On A we have |a| < ce . It therefore follows from this

1
and the following lemma together with Lemma 6.6 of the previous lecture
that for certain M1 and N but for an arbitrary M and thus for an

arbitrary M'

T,P _ M M1 M]_
0 Ky (pak, ve(pak) | = clp MaNlvete) | < et p T [ve(e) |
1

provided T?(H(a)) # 0.
If Y is an element of the universal enveloping algebra
of the Lie algebra of G then we can associate to Y a left-invariant

differential operator R(Y) in G and a right-invariant differential

operator L(Y).

LEMMA 7.5. Let Y lie in the universal enveloping algebra of I\/I1 and

let R(Y)KP (h, g) be the result of applying R(Y) to Kj regarded
1 1
as a function of the first variable, the second argument being held fixed.

Then there are constants ¢ = c(¢) and N such that for k, k'€ Q

R(DK, (nk, gk | < e(n}lghY
1

Proceeding with the proof of convergence of (5) we estimate

: M1
(5) z lye(pa) | ,
Y€ Fe(Pl’PZ)



where p € & and the prime indicates that we sum only over those

Y € Fs(Pl’ PZ) for which

T’Pl
A Kp (pak, ye(pak')
1

is non-zero for some k, k' in @ and the given pa.

The next lemma limits the vy which appear in the sum (6).

LEMMA 7.6. There exists a point TO in ot depending only on the

support of ¢ and on the compact set £ such that

Tl(H(g) - H(h) - TO) =1
whenever

KP (mhk, gk') # 0
1

for some meM% and some k, k'e 2. Here h and g lie in G.

The following lemma and Lemma 7.6 taken together allow us to

estimate the sum (6).

LEMMA 7.7. Suppose that T € &, and M1 > 0. Then we can find

constants ¢ and M} and a set [Pl\G] of representatives for

Pl\G such that for any ‘h, g e G

“
y 1 4l
| 5g | 1%P (H(sg) - H(h) - T)) <clh] Hgl
GG[Pl\G] 1

The upshot of these considerations is that the domain of integration
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in (5) can be taken to be
{(m, a)lme G, a € A?, lH@)]| < c(1+]H(m)|)

and that the integrand is dominated on this domain by a constant times

1 1
M M1

Minp ta b,

(1+|H(m) ) o p%(a) |m |
1

where M'l is some perhaps large but well determined number and M' is

arbitrary. Thus this expression is dominated by a constant times

{EHm DT ™,

where M" can be taken arbitrarily large. We can integrate over the
variable a. Since the integration is over a ball of radius c(1+{|H(m)||

we are left with
ch +HE@]T 0™ dm

and this integral is finite.



Lecture 8

PREPARATION FOR THE COARSE x-EXPANSION

II: PROOF OF THE LEMMAS

R. Langlands

We begin with an easy one, Lemma 7.2. Since the truncation
operator applied to Kp (pabk, ye(p'abk')) 1is applied to it as a function
1

of p it is enough to show that

K. (pabk, ye(p'abk')) = p-z(b)K (pak, vye(p'ak'))
Pl Pl Pl

We recall that

K, (pabk, ye(p'abk')) = ) J ¢(k—1b"1a-1p-1n

(Sya(pa)e(b)e(k))dnl
1 seN \P, N,

1
and notice that e(b) = b. Since P1 cQ,

-1-1-1_ -1-1-1
a 'p =a’'p b ™mn ,

b 2

with n, € Nl’ and a change of variables allows us to absorb n, in ny.

Since Q is e-invariant, e(pa) still lies in Q(A) and
ve(pa)b =n3bye(pa) ,

with n,€ N_.. Since N_. cN we can also absorb n in n and

3 Q Q 1 3 1’

the desired equality follows from the observation that

’



1

d(b nlb)

’ dn ’=ppl

We next turn to Lemma 7.7. Recall that we established during the

proof of Lemma 2.1 that if

%Pl(H(ag) - H(h) - Tj) # 0

then we could find a representative §' for ¢ such that

|H(h)+T
|6'g| < c(]gle

I N
™
Thus Lemma 7.7 follows from Lemma 2.1 provided we note that

[H®) < c(@ +fen [h])

Working our way backwards we next prove Lemma 7.6. Since

KoK = @ we may suppose that g and h lie in Pl' Then

Kp (mhk, gk') # 0

1
implies that for some n € Nl and some m' = ym € M]l'
g-lnm'h € Q(supp ¢)-1§2_1 =C
Py
Thus if we choose p and v, as in the second lecture, ao € AO - AO
we have

lo(g ™ tamm) v | < c



On the other hand we have chosen g and h toliein P, and nm'

1
lies in Pi. Thus
- ‘ d = (H(h)-H(g))
||p(g 1nrn'h)v H =e *° v i
a a
The conclusion is that
= (H(h) - H(g)) < c
for all @, € &P . This clearly implies the statement of the lemma.
1
To prove Lemma 7.5 we observe that R(Y)KP is obtained by
1

replacing ¢ by ¢ = L(Y)¢ and then building the kernel attached to
Thus it is enough to prove the lemma for Y = 1.

We have, for vy € P1

[ s n yekn =pi(g) [ e ' vgn K)dn,
N N
1 1
= oi(h) S qs(k'lnlh'l«{gk)dn1
N
1

Moreover, since KQK = Q we may suppose that h and g lie in Pl’

and indeed in Ml because, for example,
N
m| < clg]

if g =mn, ne€ Nl’ m € Ml' Then the integral can be taken over a
fixed compact set in JNI1 which does not depend on h and g. So

we need only estimate

.



) x(h_lvg)

My

where x is the characteristic function of a compact set C in Ml'

This is the number of v € Ml for which vy € th“l and is easily

estimated by Lemma 2.1.

P
Lemma 7.3 is geometrical. Since A? c Alz we have

a(HY = a(H) > 0
for o € A?. Moreover
e ~
m'(HQ) >0, e Ap
2
Since &Q is the E-orbit of AP , E being {1, e, ..., eﬁ—l}, and since
2
Hé is e-invariant we obtain the same inequality for € AQ. On the
other hand
. OL(HQE) < -a(H%)
A“/D\

for a € A/P . Thus
2

«(HY) <l

e
N
for a € A\Q, and the lemma follows.
o 4

This \f&xs us with Lemmas 7.1 and 7.4. The first is the easier,

and we begin with it.

1

The assumption of the lemma implies that for some p in Pl



-1 -1
ok g pye(gk")) #0
Thus

g—lp‘{e(g) e C ,

C being a compact set depending only on @ and the support of ¢.

we evaluate |p (g_leE(g) )Von“

=N

Taking o € AO - A,

-d w (H(g)-<H(g))

. v

and ]lp(e(g—l)y—lp-lg)vall as

dama(H(g)-eH(g) )I
e IVOL”

*
Both expressions are bounded above. If x & X (G) we can also bound

Ix(g tete)) | = |x(g pvele)) |

above and below, concluding that |[H(g) - ¢H(g)|| is bounded. The
lemma follows.

We deal finally with Lemma 7.4. It is clear that the assumption
implies that

(L) KP (m'ak, ye(nmak)) # 0
1

for some m'é€ M}. For brevity we write H = H(a).
We write v = n'un with n' g Pl’ n € NO’ and with w in the

normalizer of AO. It represents an element s in the Weyl group of



AO or &,. We are free to modify w on the left by an element of Ml’
incorporating the modification in n'. So we can suppose that s_la > 0
if o€ Aé. Since H lies in A?‘ and a(H) > 0OV € A(l3 we have
P
H € OL;E OL‘%. Thus e¢H is also in 01,&-0 and if - o € Aol then
-1
a(H - seH) = -s "a(eH) < 0
Pl
We shall now show in addition that, for o € By - LY
(2) m‘a(H - seH) < c(1 + [[H(m)|)

This will allow us to infer from (iv) of Lecture 2 that

(3) H—seHGX—+0LO

where [IX|| < c(1 + [[Hm)|).

To prove (2) we notice that (1) implies that for some m' € M%

and some nle INI1

)n_lw—ln m'ae C ,

- lm-ln-l
1

e(a

" having been absorbed in n.,m'. Thus

n 1

Hp(e(a—lm_ln_l)n-lm-ln m'a)vaH <c

1

We choose o € AO - A(l). Then

lotamiarv |l = lgy - @] [lv



If w= w_lva then w is a weight vector corresponding to the weight

s "a: H— a(sH). Moreover
p(E(n—l)n—l)w = w+u

where u is an adelic linear combination of weight vectors for weights

of the form

with Cg > 0, ZCB # 0. Consequently

Hw||

Hp(E(a—lmul)E(n-l)n- ) w CIlp(e(a—lm_l))WII

| v

-d w (seH+seH(m))
a d !
ce wi|

We deduce that

d 7w (H-seH-seH(m))
aa
c >e

Taking logarithms we obtain (2).

We write the left side of (3) as
H-seH = H-eH+eH-seH

. + . . . -+ +
Since H € 0!,0, its transform eH also lies in ULQO and eH-seH e &

We conclude that

@
0



with Y € +0L0.

Applying s—:k, 0 <k < 2 to this relation and summing over k

we obtain

2-1
0=X' -7 &5
k=0

with ||X']| < c(1+|H(m)||). Since every sk(Y) lies in +01..0 we infer

that
¥l < cQ+|H@m) D
This implies first that
[H-eH[| < c(1+[Hm)[)
and thus that there is an e-invariant HO with
J-H gl < cCefE(m )
We are reduced to showing that

[Holl < c(HED

knowing that



Xl < c(1+|H(m)||, a relation which we deduce from (3). Since we may
take
-1
H, = % Y K,
k=0

we may suppose that H_ € o& . Then

and we conclude that
Iy sl < eC1#H(m])

At this point we introduce the assumption that vy & FC(Pl, PZ) .

We know that for any H € ®

O’
H-sH = ) ¢ (H, s)a
OLEAO &
where H —> cd(H, s) 1is a linear form on & non-negative on az;.
1 Iy = = + T, =T,
In particular ca(wB’ s) > 0. If ca(mB, s) 0 for all a then ST, = g

Thus

sup CQ(H, s) > cB(H)
o

provided s'uTB # Ty

Applying this to H0 we conclude that

(4) IB(HO)I < c(1+Hm) )
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unless sm‘e, = YFB,

is constant on such orbits.

for every B8' in the E-orbit of B8, because B(HO)

To prove the lemma we need to establish (4) for all g € Ag. If
P
the E-orbit of B8 does not meet Aol then it cannot happen that

sm's, = '(I)"B, for all B' in this e-orbit for then y & Q' if

AR AR

k
0 0-{5 B}

and Q' DP and is e-invariant. On the other hand if for some B'

1
P
in the E-orbit of B8 we have §8' € Aol then
! =
B(H,) = B(Hy)
and
gH(H) =0
Thus

18(H | = [8'(H-H) | < c(1+[[H(m)|}



Lecture 9

THE MODIFIED BASIC IDENTITY
AND WEIGHTED ORBITAL INTEGRALS

J.-P. Labesse

9.1. The modified basic identity.

As was pointed out in Lecture 5, it seems to be more convenient
when dealing with & -expansion to use a completely e-invariant
truncation. Let P be an e-invariant parabolic subgroup of G; we
define e%

P to be the characteristic function of the set of X & 01.0

such that

T(X) >0 Yo €A —AP
o 0 0
where by definition
-1
m =1 ] &'m
a2 & ¥y
.L':O

and o is the orbit of o under E.

We need the analogue of Lemma 2.1, namely the

LEMMA 9.1.1. There are constants ¢ and N such that the number

of &§€ P\G for which

w.O.L(H(Sx) - T) >0

t N !
for all o € AO - AIS is at most cix[l\eNHTh,



We need only to show that we can find a set of representatives

for these § each of which satisfies

N, TN
5] <ctlx| te o *

According to reduction theory we may choose § such that dx € GP(TO)
and more precisely we may assume that &6x = nam with n e wy a compact
setin N, m € wy, 2 compact set in G and a € AO(R)O; moreover

H(8x) = H(a) and

(1) a(H(5%)) > alT ) Vae Ag

Taking over the numbering of Lecture 2, we have

(3) TB'OL(H(CSX)) <cq (1l + log |x |) Vae s,

Our assumption is not (4) as in Lecture 2 but only
(4" wL(H(8x)) > wo(T) Vaed, - A

But (3) and (4') imply

) 2~1
(4") w‘a(H(Sx)) > Ua(T) i cl(l + log |x |)
P
for any ocer- AO.

The inequalities (1), (3), and (4) yield the inequality

(2) ] IH(sx) | < CZ(l + loglx| + {|ITID



Since &x = nam with n and m in compact sets and H(éx) = H(a)

we conclude that
log [8x| < cg(1 + log x| + {|IT]) . a

Given P1 CpPC P2 three parabolic subgroups with P e-invariant

we define p oi to be the characteristic function of the set of H € 0!0

such that
. 2
(i) o(H) >0 Vae by
(ii) a(H) <0 Vo eAl - A%
P
(iii) m-&'(H) >0 Va eAO - AO
We obviously have
2 N
¥ oo = ‘I:P T
& P°1 P,eP
P_OP .

>
Given P1 and PZ we define 60'1' to be zero if there is no c-invariant

2 .
1 2 ch if Q, the

maximal e-invariant parabolic subgroup in PZ’ contains P

parabolic subgroup between P and P and to be
1

LEMMA 9.1.2. I_f Plc PC P2 with P e-invariant then

Clearly ng < Eci; now consider H in the support of 805, we

Q

need to prove that for any o € (AO - Ag) N A,

we have U&(H) > 0.



We know (cf. Lecture 2, page 7) that

AR Y * 5%
BE&A,AQ
with >\0L,B > 0 and mzx € &8 c &? The same equation holds for averaged
weights, and by assumption m"E(H) > 0. All we need to prove is that
m&(H) > 0, but Acl2 c A% and hence +vy(H) > 0 for any vy € A?; using

assertion (c) of Lecture 2, page 6, which tells us that
Q+ .+, Q
(o)) < o
we see that ‘m‘&(H) >0 for any W € &g O
We may now state the modified basic identity

PROPOSITION 9.1.3. Given P, an e-invariant parabolic subgroup

we have

[l

L Kplsx, ax)gép (H(sx) - T)
s§€ P\G

’I‘,P1

) I _oS(H(ex) - T)A
P,CPCP, £€P\G

KP(Ex, £x)

Using Lemma 2.4 (in Lecture 2) one needs only to remark that, thanks

to Lemma 9.1.2 we have



A

In Lectures 3 and 4 we may now substitute e‘?P for p and

*Oi for oi, and no change in the proofs is needed except Lemma 4.2.2
[

which has to be replaced by

LEMMA 9.1.4. Assume that H € %e\n; and X € w (some compact set

in azo) are such that Eci(H—X) = 1; then there exist a constant c¢

independent of X such that

) < c1+ )

Recall that H = Hl + I—I2 is the decomposition associated with the

direct sum

3\ = @) ® 3 \as

By assumption o(H-X) <0 for any o€ &y - A% and then

on(HZ) < —oc(Hl) + cq

_ R
for any o € Ap - Ap, and some constant c,.
For any o€ 4, - A(g we have assumed that m'a.(H—X) > 0 and
hence
- - (Y
T (H,) = To(H) > T(X) > ¢, - 0

The modified truncation was already used in Lecture 5. No modification

has to be made in Lecture 6, in particular the T in that lecture should

P



not be modified. In Lectures 7 and 8 one has to substitute eo% for ci
and the only slight change is in the proof of Lemma 7.3 (essentially the

same as Lemma 4.2.2).

9.2. The convex hull of some "orthogonél sets."

The aim of this section is to prove Lemma 5.3.5. Given s € Q

we introduced
H (@, T) = s [(T-H(w_x))

LEMMA 9.2.1. Given s and t in Q and T sufficiently regular

Hs(x, T) - Ht(x, T)

is a positive linear combination of the roots vy such that sy >0 and

ty < 0,
Let y = W X and o = ts-l, we have

H (x, T) - H(x, T) = s HT - H(y) - H (y, T))

=siT- ol 4+ H(w n))

if y = ank with aéMO,neNO

the comments preceding it we see that this equals

-1 - v - v
s ( L hg e) ) hy, ¥
8>0

sv>0
agB <0 ty<0

and k € K. Using Lemma 6.3 and

with hB = hSY >0 if T 1is sufficiently regular. a



Let Pl be an e-invariant parabolic subgroup of G; the real
vector space (01.(1})8 isomorphic to }E\ azi will be denoted by Vl'
Any root B of Al in N1 defines a hyperplane V-B— which depends
only on the orbit 8 of B under E. The chambers are the connected

components of V'l the complement in V of the union of the VE-. The

positive chamber Ci is defined by the following inequalities:

- 1
a(H) >0 Vo €b, - 4,

Given s € Q(Mi) there is a standard e-invariant parabolic sub-

n

group P2 such that s(mi) =0Z§, we define C;(s) to be __I(CS)
where C; is the positive chamber of VZ' The chamber Ci(s) is

the set of H € Vl such that

y(H) >0 VY € 4,(s, €)

where Al(s, €) 1is the set of restrictions to Vl of the elements in

-1 2
s (AO - AO)-

£ . o s £
LEMMA 9.2.2. The map s —> Cl(s) is a bijection between Q(O‘Ll)

and the set of chambers in Vl'

. e . . . X .
Given a chamber C~ in V1 there is a unique chamber C in

(f which contains C%, and there is at least one s g # such that

4
F = sC is a "facette" of CO the positive Weyl chamber in ozg‘. Since
Q acts simply transitively on the set of Weyl chambers the "facette" F

M
depends only on C®. Since @ acts trivially on azcl} we may choose



s so that sa >0 for any a € Al Under those conditions s is

0
uniquely determined by C®. Since P1 is e-invariant we see that s
and ese—l have the same properties and hence s = ese-l. This
implies s g Q(m,i) and we conclude that C°% = Ci(s) for a unique

se Q(ui). O

Two chambers Ci(s) and Ci(t) are said to be adjacent if there
exist a linear form A on V1 unique up to scalars such that X is
positive on Ci(s) and negative on Ci(t); in particular the roots vy
such that sy > 0 and ty < 0 have restrictions to V1 equal to cyk
with <y > 0; the projection \?1 on V1 ~of Y equals C'Y; with c'Y > 0.

Given s € Q(n;:) we define Hg to be the projection on Vl of

H (x, T). ~ S

LEMMA 9.2.3. If s and 1t define adjacent chambers then

with ¢ > 0 (provided T is sufficiently regular).

According to Lemma 9.2.1 we have

n m
+
1]
o~
oy
<<

—
|
-1
><

sy>0
tvy<0

with h and ¢! ositive.
sy y P O



Given s € Q(Dti’) we have introduced Al(s, e); let ﬁl(s, £)
be the set of m‘Y the dual basis of the basis defined by the ¥ with

Y € Al(s, e).

LEMMA 9.2.4. If s and t define adjacent chambers there is a

bijection 8 : Al(s, g) —> Al(t, e) such that 6() = -8 if B defines

the wall between the two chambers and m‘e(Y) = m‘Y if v # 8.

Let R be the element in Al(s, e) which defines the wall between
Ci(s) and Ci(t), then —BeAl(t, e) and we define 6 on B by

8(B) = -B. Let VB be the hyperplane defined by 38 and Yy € Al(s, £)

with v # 8; there exist Y, € As(t, e) such that vy and Yy have the

same projection on VB and we define 6(y) to be Yq Then clearly
Tav) T Ty if y#s8. 0O
Let A € V'1 s the complement of the walls in Vl’ and s e Q(t‘lzi);

we define (Pjs\ to be the characteristic function of the set of H € Vl

such that

TJ‘Y(H) <0 if y(A) >0

VY € Al(s, e)
TITY(H) >0 if v(A) <0

Let a(s, A) be the number of vy & A,(s, &) such that vy(A) < 0. In
Lecture 5 we have introduced functions eB? on 01,0, which depend
only on the projection on Vl' If A€ Ci the positive chamber in Vl

we have
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A
B3 = 0>y m)
We now introduce
v, wy = 7 AN o hged
569(01,;)

Lemma 5.3.5 is an immediate consequence of the

PROPOSITION 9.2.5. The function H — ¢(A, H) 1is independent of

A E V'l and is the characteristic function of the convex hull of the H;

(provided T is sufficiently regular).

We need some more lemmas.

LEMMA 9.2.6. Assume m'Y(H—H:’) <0 for each Y€ Al(s, ¢) and each

s € (e i), then for any A € V) one has p{A, H) = 1.

Given A, there is one and only one s e Q(8t i) such that
A€ Ci(s) and by definition of goé\ we see that ¢ [t\(H—Hi) = 0 wunless

t = 5 and hence
R _ O
y{(A, H) = cPS(H Hs) =1 .

LEMMA 9.2.7. Assume (A, H) # 0 and A € Ci(s) then provided T

is sufficiently regular we have

€
my(H_Hs) <0 forall ye€ Al(s, £)

Since A — Y(A, H) 1is constant on Ci(s) it suffices to prove

that (A, H-H_) < 0.
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If y(A, H) # 0, then for at least one t € Q(UL?) we have

jt\(H-Hi) = 1 and hence

- & _ € .
vz -9 = (1, H-HT) <0

but
{». H-uE ) = (n, H-HEY + (0, HE - HY)
and Lemma 9.2.1 implies

<A,Ht€—Hg><0. a

LEMMA 9.2.8. The set C of H € V, such that m‘y(H-H:) <0 for

1
all vy e Al(s, g) and all s € Q(D‘li) is the convex hull of the set of

Hz with s € Q(ni), provided T is sufficiently regular.

The set C is an intersection of closed convex sets and hence is
a closed convex set. Thanks to Lemma 9.2.1 we see that H: eC if T
is sufficiently regular. Now consider H €& V1 outside the convex hull

of the HZ, then there exist A eV such that

() - (n)

for all s e Q(o‘l.i) and in particular if s is such that A lies in

the closure of Ci(s) . This implies H ¢ C. O

The function A — y(A, H) is clearly locally constant on V'l.
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To finish the proof of Proposition 9.2.5 we need only to prove that

- € £
w(Ag, H) = w(AT, H) when [\G € Cl(o) and ATE Cl(T) are elements
in two adjacent chambers. Let A be a linear form defining the wall Vk

between the two chambers.
A A
. € o _ T .
Given s € Q(ﬂl.l) then ()‘p s (H) = cfs (H) if y(AO)y(AT) >0

for all vy € Al(s, e). If it is not so there is one and only one root
B e Al(s, €) proportional to A such that B(Ag)B(AT) < 0, and there
exist t € Q(ot i) such that Ci(s) and Ci(t) are adjacent and

separated by V>\. Since y(Ag)-y(AT) >0 if vy # B8 we see that

A i\
_ O/ g€ T/rr 1€
g (H) = @ S(H-HD) + ¢ _"(H-H))

is the characteristic function of the set ¢f H such that

mY(H—HS) >0 if Y(Ao) <0

e .
m (H-HD) < i y() >0

for all vy e Al(s, ) and Yy # 8. Let 9o be the bijection of Lemma 9.2.4;

using Lemma 9.2.3 we see that given vy € Al(s, €),

UY(H—HS) = )(H—Ht)

—
u\)e(Y

whenever vy # B and hence

g (H) = £ (H)
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since y(AO)-e(Y)(AG) >0 if y # 8. This implies that

a(s,AG) I\c a(t,AO) AG
(-1) @ _°(H-H) + (-1) ¢, ° (H-H))
a(s,AT) AT a(t,AT) AT
= (-1 P, (H-H) + (-1) P, (H-H)

and hence \P(AO‘, H) = IP(AT, H). 0O

Let A be in any chamber, then

vi(x, T) = [ (A, H)dH = lim | HCNE) o myan
v

t>0 V
1 £>0 1

= lim ) IS (RHY (Lqyalst) ¢ MH-H_)dH
Y sea(a V1 7

An elementary computation yields
€
. et <A’Hs >
Vl(X, T) = lim Z c

t+0 Seﬂ(%i) . 1 'ﬂ_
YeAl(s,e)

v ()

1
where cg = !det(yi, yj) 1%, Y, € Al(s, e). Using Lemma 9.2.4 one shows

that c, = ¢y is independent of s and depends only on Pl' Finally

we get
ay
€ S <A’HS(X’T)>
Vl(x’ T) - ( 8) T—[- ( )
a;)! L < veh
1 sea’l(ﬂll) Yeﬂl(s,e)

In particular it is a polynomial of T of degree ai.
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Lecture 12

THE INNER PRODUCT FORMULA

J.-P. Labesse

12.1. The constant term of Eisenstein Series.

We consider a standard parabolic subgroup P = MN and a smooth
function ¢ on G such that
(1) w(nx) = ¥(x) neN, xe G.
(ii) m —> yY(mx) is for all x € G a square integrable
automorphic form on M\M1 which is a matrix
coefficient of some unitary representation m of M
with central character W trivial on AP(R)O.
(iii) k +— y(xk) is K-finite.
We shall say that y 1is cuspidal on P if m b ¢(mx) is cuspidal (for
all x).

Given x € G we have defined H(x) € A it may be convenient

to introduce its exponential in AO(R)O:

a(x) = exp H(x)

*

so that for A € JLO

® C we may write

a(x))\ - e.X(H(x))

Let p or p, denote the half sum of positive roots of A in N; we

-



have (with notations introduced earlier)
- 2p
(SP(x) = a(x)
*
Given A € ozP ® C and ¢ as above, we define
A
P(x, A) = p(x)a(x)

and if Q is a parabolic subgroup of G containing P we introduce

Ey(xs ¥, 2) = Y wlyx, Mp)
vyeEP\Q

Q
P

hand side is known to have a meromorphic analytic continuation to the

a convergent series where Re(X, a) > (a, p) for all o €A The left-

*
whole space 0ty ® C. We need the formula giving the constant term of

EQ along a parabolic subgroup R € Q:

Eg<x, b, N = Ejnx, v, Nn

We assume that Re(a, 1) > (a, p) for all a € Ag and then this equals

the sum over w € P\Q/R of

] ) P(wgnx, Mp)dn

EER(P,W)

R(P, w) = R nw“lpw\R

where



\
2 s [>o

N SN K‘{/ K% o Ty ©
NS c ALoN A~ _\L S P
g R 7o 2 €& &"
W G
3 ,\ - l‘v G [Bl
= "’;B:;s ‘SLS‘D

Y

N ‘*’v\r\ws‘“‘“;“'“\ = W VW ¢ “R.

We shall assume now that ¢ is cuspidal on P and hence the

contribution of a double coset w € P\ Q/R 1is zero except perhaps if

WNRW 1 n M is trivial., In such a case we may assume that the repre-

sentative w of the double coset w is so chosen that w = w;l where

Q

w_ represents s € Q (the Weyl group of MQ) satisfying the following

NN Qo ‘\) a—’w\vé\\&) \-d\‘u{h“-a-, ,\ “Q_,

+
. -1 -1 R
properties: w Mw_~ ¢ MR and s o0 >0 for all a & AO . Then there ?
s s v \&\Nb,
exist a standard parabolic subgroup of R which we shall denote by s-P _
with Levi subgroup sM = \VSMw;l. The set of all such s will be denoted
. Q . v -~ g\mg Q.—.\& v\o\l °*?_
by @~ (&y, R). Lok AL sV e >
eV
Let us introduce a coset
S -1 N - N
- NN . LN A M
N NR N WSNWS \ NR S R R
= sN n w_Nw_l\sN SN
= sN nwNw_"\s \1$\\\°r\\’\¢>w, ¢ Ny
and define N Wowl PN ANg
J
—s)\—ps -1 {
(M(s, MY (x) = a(x) J w(w 'nx, Mp)dn %
S !
N g S
—
where Pg = Peps the integral is absolutely convergent if 3(\'
R P
Re(A, a) > (p, a) for all a € Ag. In the contribution of w = w;l the v f)\:
integral over may be replaced by an integral over @ and /g\ ﬁ
#
since R(P, w; )/NS = sP\ R we have obtained the (::- J !
i Id
W _fl:
LEMMA 12.1.1. Assume that Re(x, a) > (p, a) for all a g Ag and ¢ j jz
is cuspidal on P then * I{ d
4 ~
4 oac
R ) \ =
* Compedn WoVPwial - LY comvem (MWL 3% W [
\ Z oy
Cmr e, N -\, e - N
Mg Btee W) WoaNg Yoy e NG Voo \'“’5\)“3\’\\“\R ‘ J Ci



Eg(x, v, A) = ) I (M(s, M) (Ex, sivp)
seszQ(ozP,R) £e sP\ R

We need a formula for

T,P a,-a
1 R 71
A Ep (x, v, N = ] (-1
1
RC:Pl
P
I gl (H(sx)-T)ER (6%, ¥, V)
1
§ € R\ P1
Py
We shall assume as above that Re(\, o) > (p, a) for all « €& AP
T,P
and ¢ is cuspidal on P. We see that A 1EP (x, ¢, A) is the sum
P 1
over R C P1 of the sum over s € Q l(a-LP, R) of
= ap~a, P
I D T aUH(8%) -T) (M(s, M)¥)(8x, sk+p)
sesP\ Pl
As in Lectures 5 and 9 it is convenient to introduce the Weyl sets
P P
Q 1(0‘(, ) which are the union of the Q l(n , ft_ ) for all P
P P P P2 2
standard in Pl' Given se l(nP) we define a function on
npl ‘V\wﬂ NIES 5‘5';1‘?‘\“\?)\( \7‘
P
P < 2 SAG\VQ - < lsu
R, v
BS (X) = z (-1 RT 1(SX) S YO = & {>°
P[P, R )
SPCRCP nP_ rs t<ye Ay
P Q Vs

S I> ° 9— /50

where PS is the standard parabolic subgroup such that o € AO
if and only if snla > 0. We obtain the

P

LEMMA 12.1.2. Assume Re(x, a) > (p, o) for all o & Apl and ¢



T,P

cuspidal on P then A lEP (x, ¥, X) equals
1
41 S -1
(-1) p L I Bpjp (s (H(sx)-T))(M(s, 1)y)(8x, sito )
SEQN l(ltP) § € sP\ P1 1

12.2. Computation of an inner product.

Let Q be an ¢-invariant parabolic subgroup and let P <& P1 cQ.
We consider functions ¢y and 6 cuspidal on P attached to unitary
representations 7 and yx with central characters 0 and u)X trivial
on A_(R)°.

P

We are looking for a rather explicit formula for the function

(x, A, 4, ¥, 8) defined to be the integral over Pl\Pi of

WE
Pl
T,P1

prH— A Epl(px, v, K)EQ(e(pX), 8, 1)

We shall assume that Re(X) is sufficiently regular and in particular

P
Lemma 12.1.2 applies. We obtain a sum over s € { 1(5‘(,P) of an integral

over Pl\Pi of a sum over sP\ P1 and we may combine the sum and
the integral if the resulting expression is absolutely convergent.
This amounts to proving that the integral over sP \P]i of the

absolute value of

S

A
PIPI(S(H(pX)_T)M(S’ M v(px, S>\+os)EQ(e(pX), 8, w)

p— B

is finite. Since the Eisenstein series E is known to be slowly in-

Q

creasing, that is, that



2 NEGxs 8 W]

is bounded for some N, we need only to show that given N/, lv(u,,\)q
S . _).,,,L
X 5L b_,).&»
N'\_s -1 Siteg “ ~ s
|am| IBP|Pl (s “(H(a)-Tha  “fv(mx, si+p [ L~ A
. < ’
k v
P1 o 1 -
is bounded for a € ASP(R) and m in a Siegel domain of M",

uniformly for x in a compact set provided that Re()) is sufficiently

regular. We have assumed that ¢ is cuspidal on P and hence
Nl
| Vg, sieo,|

is bounded when m is in a Siegel set of Ml and x in a compact set.

The boundedness of

vilhe ot

SA+p
s—l(H(a)-T))a sl W oe s L_'}"S

SOA)

=M B3 p ¢

SR =
is an immediate consequence of the following

LEMMA 12.2.1. The support of BISD‘P is contained in the cone
P 1
MX) < 0 for all eﬁpl' e W M b
Nel

The proof of this property has already been given in the proof of

Lemma 9.2.7. We repeat the argument. Up to a sign B;ip is the
P L
characteristic function of the set of X &€ & 1 such thatQ\m’a(sX) >0

P P.n ?P

1 1 ?/PS . -1

if o€ ASP - ASP , i.e., if s "a <0 anckiﬂ\ﬁfa(sX) <0 if
P.naP
_ S

a € A ]; 5, i.e., if s la > 0; and hence NG

) ? v ,

\ CO ne L°—~ SUTURNGI VI | 3 \ “ N, )
oD s Syp \bsx 'LR Us Ky . o A A ,.Ewo\
\ U s\ Cany "f v~ -AV\N-..X\' —~ - )

.
Mo Comns oo By VA o WA 5. / ™~
Ve Q* Vian Vg \



(X, = I, @ (sX).s Tald) <0

aeASP

P1 %
for any regular A € ﬂﬁp .0

Then provided that Re(}) is sufficiently regular we see that
P
mli (x, A u, y, 68) 1is the sum over s € Q 1( U(,P) of the integral over
1

P
sN sP\ Pi = sM\ le x ASI]; X (KnPl) of the product of

2] s -1 ~2eg
(-1 BP]P (s "(H(px)-T))M(s, My(px, s>\+ps)a(p)
1

times

ESSP(Q (pX) y B U)

It may be convenient to transform the last term. Let es(x) = 8(e(x))

and ue(H) = u(e(H)), then this term equals

sP
Eq (px, 8_, 1)
. . Q, -1
which in turn equals the sum over te€ Q (e “P’ snzP) of

M(t, ue)ee(px, tu€+os)

Summing up we get the

LEMMA 12.2.2. Assume that ¢y and 8 are cuspidal on P then the

following equality of meromorphic function holds for x in Al(R)OK:




e s}\+‘c_u—E
wP (X’ PR TP e) = P 2 z a(X)
1 SEN l(azP) tEQQ(e_la‘zP,snP)
o b+
/Douﬂ“\/ “’PY‘/
a
14s -1 -1,- X X
(-1) Bplp (s "T,\x+s tu))(M(s, MY, M(t, w)80)
1 sM
where wx(p) = y(px), the scalar product ( , ) 1 is the scalar
sM
product in LZ(SM\le) and
\(H) WX )
. -~ S _ s Cs v ¢
: B (x, M) = B (H-X)e dH . o - N
/'D.J\o*—""&y P|P1 j Pl P‘Pl PR (‘T)
PENES
] 279 The two members are well defined and equal when Re(X) and
3
A%

Re(p) are sufficiently regular; they have meromorphic analytic continuation

in (A, nu) to the whole space and hence are equal everywhere. O

12.3. Some application.

According to Lectures 10 and 11, the "right-hand side" of the trace

formula is the sum over pairs of parabolic subgroups P1 c P2 such that

there exists one and only one c-invariant parabolic subgroup Q between
P
P1 and P2 of terms JPZ which are equal to the sum over
1
1

w E.Pl\ Q/E(Pl) of the integral over Pl ne W_l(Pl) \G'€ of

eoi(H(x)-T)Kpl(x, we (x))

Using the spectral decomposition it was shown that KP (x, y) 1is equal
1

to the sum over P €@ P, and over GWZ(MP) of

1



L
\m\”\\ V'/"(Bg w7
n°\v) ” }I"
/ 'I\
V' S ‘b
1 Pl
) j P, 5 (2, v, A, A)dA

i(ot Pl)

P
where Ewl(x, ¥y, X, v) is given by

5
I, D EPl(x, Imlw)w, Ay
ifl, -\ veB
1 m

%1(}” \P, = ->\1)d>\1

P1 %

) ® C and A € 01, .
P Pl
We assume ¢ to be K-finite and the sum over ¢ € BTr may be assumed

P
to reduce to a finite sum. We have not included A in the notation Co

In this expression A and v belong to (0

since it is in fact independent of A. To see this one should remark that
Ay > Ix+>\1(¢)1p is of Paley-Wiener type since ¢ is compactly supported
and hence we are free to shift the integration domain. As a function of
(A, v) it is meromorphic and we have tacitly assumed that (A, v) 1is not

a singular wvalue.

The main result of Lecture 11 may be stated in the following way:

P«
the sum over 7 and w and the integral over i(ozPl) and
P
P1 nc lw-l(Pl)\ Gi of Eﬂ_l(x, we(x), A, A) is absolutely convergent,

so that we are free to interchange the order of those sums and integrals.

Before using this we need some preparation.

LEMMA 12.3.1. The series

y F1
) E (x, we(Ex), X, V)

wePl\Q/s-:(Pl) £ G.Pln e_lw_l(Pl)\ Pl
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is absolutely convergent and defines a meromorphic function of (X, V)
P
which we shall denote by Zﬂl(x, A, V).

We first remark that the series may be written

P

I =l ze), A )
£eP,\Q
Now consider a, € Al(]R)O and vy € NlMiK then

-A
— = 1 =
EP]_(aly’ ¥, "V">\1) = al Epl(Y, P, -v)

Recall that

T,P1
1 1
*
is of Paley-Wiener type on im.l ® C; this implies that
Pl
a; —> E_ (x, ajy, A V)

is compactly supported in some compact set w C.Al(}R)o independent
of y. From this we deduce that the series reduces to a finite sum

uniformly when =x, A, v are in compact set in the holomorphy domain

for (A , v). O

LEMMA 12.3.2. Assume that Re(-v) + A is sufficiently regular in
P

* 1
nQ then Z1T (x, A, v) equals

1 Ty
[, 8 TEp G0 Ly (00, MADEYGE(, 4 SR dy
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This is an immediate consequence of the fact that when Re(—v-—Kl)

is sufficiently regular, then

EQ(Y’ d)’ _\)—Al) = z Epl(gy,v w’ _\)_>\1) . D
g€ Pl\Q
1
LEMMA 12.3.3. The function p —> ZTT (px, A, v) is integrable over
P

Pl\ Pi and its integral defines a meromorphic function Swl(x, A, V).

Lemma 6.6 shows that

T1P1
p — A EP(px,I
1

e, (95 XY

is a "rapidly decreasing" function in a Siegel domain G in Pi, uniformly

in Al since kl is trivial on P%, and hence all we need to prove is that

p —> ) Ep (Ee(px), ¥, -V)
£€P\ Q 1

al(i e(px))e w

is slowly increasing in G . To see this we consider w € Pl\Q/P0 and
N\ON a subgroup of N0 isomorphic to N0 n w_]'le \NO; using the

slow increase property of Eisenstein series, that is, that

IE(y, », -9 | <cly|V

for some N and some constant c, all we need to remark is that given a

compact set w'C Al(R)O
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w
0
al(wna)e w!

neN

is "slowly increasing" for a € AO(R)O. All those evaluations are uniform

for x, A, v in compact sets outside the singular set. O

The main result of Lecture 11 may be restated using the functions

P P
S 1: the J 2 are equal to the sum over P € P, and over m € TT-(My)
T P, 1 2P
of
1 2 P1
a (A J J LO(H(x)-T)S “(x, A, A)didx
6 P P1 * 1 '
1 it 57) PI\G.

P
Using Lemma 12.2.2 a more concrete formula for Sﬂl(x, As V)

can be given for some m and some values of X and v; this is the

aim of the next

LEMMA 12.3.4. Assume that Re()) and Re(—\)+_/\.) are suitably regular,

then if x g Al(R)OK and n© is cuspidal on M:

Py
S T(x, nov) = g f . dry
1 igr -A
sen (czP) P,
t eQ?(nP,MP) < ﬂQ C 3y AN 12
No—t(vt.) ) aFTARY D s ¢ = O
2 LA s Tl een ) ¥
Fexl 7
/ . JRPN \en )(\,\
\ . VYA A b‘\ \‘

Y (M(s, AM)I )

IbeB”

x+x1(¢)"’x’ Mste, -v1))

Com verontng MR %) = T NN
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Under the regularity assumptions all integrals and series are
absolutely convergent and we may appeal to Lemma 12.2.2 since 7 is

cuspidal. [J



Lecture 13

SOME FORMAL PROPERTIES OF THE TERMS IN
THE TRACE FORMULA

J.-P. Labesse

13.1. Some combinatorics.

Given two parabolic subgroups P and Q such that PcQ we

have defined p (resp. %8) to be the characteristic function of the
set of H € 0‘8 such that a(H) > 0 for all o e Ag (resp. w(H) >0

for all we 38) . By abuse of notation we also consider them as functions
on 0‘(.0 depending only on the projection on 018.
When P and Q are ce-invariant we define ETS (resp. efg)

to be the restriction to (ot the subset of e¢-invariant vectors. They

Q. e
P)

will also be considered as functions on 01.8 and even on 010. We
introduce a new functions on ((ng)e x (0118)8:

af-af
R Q

Q _ _ R o O
Jp(H, X) = ) (-1) Tp (H) _tx (H-X)

PCRCQ
e(R)=R

The key observation for all that follows is the

LEMMA 13.1.1.

(i) Assume that X remains in a compact subset ww then

0
H—— eI‘P(H, X)

is supported in a compact subset of (ng)e independent of X € w.




(ii) If X is regular then

Q
H— eFP(H’ X)

is the characteristic function of the set of H e ({mg)E such that

a(H) >0 for all « eAg
w(H) iw(X) for all @ &&8

(iii) eI’g(H, 0) = 68 (the Kronecker symbol).

Given H we define S = SH to be the e-invariant parabolic subgroup

S between P and @ such that

5 = (o e 2la@) > 0

We have
ae—ae
Q _ R D Q.
JTp(H, X) =] (-1) L TR(H-X)
PCcRCS
e(R)=R

This is non zero only if ®(H-X) > 0 for all @ Egg and W(H-X) <0

for all e /38 - A(SQ. Choose Xle (a‘l.g)E such that

a(Xl) < Inf a(X)
Xew U0}

for all « GAS. Since o(H) > 0 ioc(Xl) for o € Alsj and w(H) > w((X) i'E(Xl)
for we A(SQ we have w(H) >"uT(X1) for all © e Z\g In the same way,



replacing Inf by max and changing the sense of inequalities we define

Q

P we have

X then for all We A

2;
W(X) < BH) <T(X,)

whenever EI‘g(H, X) # 0 and X e w. Assertion (i) follows.

Consider now a fixed X such that o(X) > 0 for all o e Ag, then

we may take X1 = 0 and X, = X; this implies SH =Q if al“g(H, X+ 0

and assertion (ii) follows.
If X =0 we may take X1 = X2 = 0 and this implies SH = Q and

Sy =P if Erg(H, 0) # 0. This yields assertion (iii). 0O

Remark: Assertion (iii) above has already been proved, with other notations,

in Lecture 2; see 13.1.2. below.

. . . € .
We now introduce matrices of function on 8z 0 whose entries are

indexed by pairs of e-invariant parabolic subgroups: let LT (eTP Q)

be such that

cTpo= 0 if P¢Q
aE :

_ /P Q .
eTP,Q (-1) TP if PcQ

. . € . » :
considered as functions on oL o- In the same way we define cT A ssertion

(iii) in the above lemma yields the

COROLLARY 13.1.2. Erg% =1. O



We introduce a matrix EI‘ = (EFP Q) - whose entries are such that
eFP,Q =0 if P¢gQ
oo
- (_ Q .Q .
erP,Q = (-1 erP if PCcQ

Using the definition of I‘Q we see that

e P

r(H, X) = t(H) t(H-X)
€ € €
LEMMA 13.1.3.

€ €
Qe vy — AR’ R Q
p(H-X) =) (-1) p(H) TR(H, X)

PcRCQ
e{R)=R

Using Corollary 13.1.2 we see that

1

8%(H—X) = ET(H)' I(H, X) = e%(H)EP(H, x) . O

Since H — EI‘S(H, X) is compactly supported on (Olg)e

the integral

Q _ Q A(H)
Japh, X) = f Tp(H, Xe dH

Q€
()

*
is convergent for all X € oL ® C and defines an analytic function.

Q

We

want to compute Eyg. We define EAP to be the set of restrictions to



(011?)6 of e-orbits of elements in Ag Given a € Ag the coroot &
€

lies in (01.8)8. We define

Q

ECP

Q

_ v o ov.3
- |det(a! B)I O, Be EAP

and

o0y = (et T QM&)

aeeAP

Now assume that Re()\(c:)) < 0 for all a e EAg, then

;o 2@ ™an = eJ0 !

Q. e
(o)

. . . Q0 AQ Q.
Replacing roots by weights we define EAP’ Lp and EGP is the Laplace
Q Q

transform of Tpe This yields the following expression for pt

LEMMA 13.1.4.

9y

€
R 20 " XR) R, -10, -1
B0 82 (0)

€
oo x = 1 R Re

PcR cQ
e(R)=R

where EX% is the projection of X on (ﬂg)e.

The left-hand side is analytic, the right-hand side is meromorphic
and hence they are equal everywhere and the singularities of the right-

hand side cancel. O



Letting Eyg(X) = 8\(1(3(0, X) we have the

LEMMA 13.1.5. The function

X —> y5(X)

is a homogeneous polynomial of degree k = a; - aé given by

£ €
a,-a
k 4 -1 -1
L1 R R g o
PCRCQ
e(R)=R
. . . . -1 -1
well defined if A is not a singular value of 6(}) or 6(x) ~, and

independent of X.

It is clear that X —> ng(X) is analytic and homogeneous of

€
- a

Q

degree k = a and it is easy to compute the limit

€
P

Q . Q
y5(0, X) =1lim y5(tx, X)
eP 50 e'P
teR

1 1

when X is not a singular wvalue for Ee(x)" or eé()\)_ . O

13.2. The trace formula as a polynomial.

The left-hand side of the trace formula for the group G and the
function ¢ is a sum over & € 0 of terms 8J(j_’T(qo) which are the

integral over G\G'€ of JG’T(¢>, x) which in turn are the sums over

€E0
e-invariant parabolic subgroups P € G (standard) of
.

P Q z

(-1) E%P(H(sx)—T)K;'%xsx, §x)

s eP\G



where

’

f,’q;(x, vy = ) / 4(x Tyne(y))dn
YEMPna' NP

K

It was proved in Lecture 4 that the integral over G\G&': is convergent
provided T is suitably regular uniformly if ¢ varies in some compact
set of functions.

G,T+X

We want to compute J in terms of JQ’T where Q runs

over e-invariant parabolic subgroups. Using 13.1.3 we see that

€ €

an—a

e, 0= 1 n© P
PeQ
e(P)=P
e(Q)=Q

) I oS, XiRHEE) D)
EEQ\G S€P\Q

Kg”f’,(agx, 5Ex)

But if x = nmk with neNQ,meMQ and ke K we have (if P C Q)

where

q%(m) = GQ(m)%f o(k lmne(k))dn

No

Using the fact that the left-hand side of the trace formula is convergent



for (Q, ¢>15) uniformly for k € K provided T is suitably regular

we get when T and X are suitably regular

Q,T

G,T+X, .\ _ G
Jo (4) = 1 oK) I 5 oleg)
e(Q)=Q
where
_ k
K

The right-hand side is a polynomial in X and this allows one to define

G,T L1 s € €

J (¢) for all T as a polynomial in T of degree aj - a where R
e R G
is any e-invariant parabolic subgroup whose rank is minimal for the
property K;’% # 0.

A cuspidal datum x is a conjugacy class of pairs (m, MP) where 7

is a cuspidal automorphic representation for MP the Levi subgroup of a
standard parabolic subgroup. If one considers the partial spectral decom-
position indexed by cuspidal data one is led to introduce partial kernels

Kp X(x, y) and one can show, using a refinement of the results in

Lectures 7 and 8, that provided T is sufficiently regular

ae_ae
G, x)= 3 (T & 3%
e(P)=P s e P\ G

JG,T
£ X

. €
ETP(H(Sg)—T)KP’X (6%, 6x)

is integrable over G\Gi; we shall denote by J

G, T its integral. As
€ X

above we get

i



, _ G Q,T
J () = ) ) I 0g)
e(Q)=Q
provided T and X are suitably regular. The right-hand side is a
polynomial in X of degree af - a% where R is any e-invariant

R G
parabolic subgroup whose rank is minimal for the property KR X # 0.

13.3. Changing the minimal parabolic.

Let QG’E be the subgroup of e-invariant elements in the Weyl
group; let w € G be an element which represents s € QG’E. Simple
changes of variable yield

.
T P
e = ! D )
G\G! e(P)=P scw L(P)\ G
. €
ETP(H(WCSX)—T)K 1 (8%, 8x)
w (P)
where w_l(P) = w—le and where K 1 is defined in an obvious way.
w “(P)
It is natural to define T such that
e -1
w (P)
) = & (w i)
w (P)

If y = nmak is a Langlands-Iwasawa decomposition corresponding to

Q = w—l(PO) we define HQ such that HQ(y) = H(a) and hence

w H(wy) = Hy(y) + w lH (w)
and

EfP(H(wy)—T) = ETW_l (H (y)—TQ)

@ =
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where TQ = w_l(T—H(w)). With these notations we get

I = J ) )
G\G' e(R)=R 8 €eR\G
€ RrRoQ

EfR(HQ(Gx)—TQ)Kg(Gx, §x)
which can be written
T
T _ Q
EJ (¢) - EJQ (¢)

where J is the trace formula computed using the minimal e-invariant

eQ
parabolic subgroup Q in place of PO'

13.4., Action of conjugacy.

We now want to compare JT(d)) with JT(¢y) where

Y (x) = s(yxe(x) D

We have
15Ny = ) )
G\G! %I;);l; seP\ G
E%P(H(axy)—T)Kli(ax, 6x)
but

H(sxy) = H(sx) + H(k(éx)y)
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where k(6x) is the K-component of an Iwasawa decomposition of (6x).

Using 13.1.3 we are led to introduce
Q _ Q _
SpC ¥ = J T H(k(x)y))dH
a\fp
and

¢Q’Y(m) = 6Q(m)% [ J ¢(k_1mn€(k))€ug(k, y)dkdn

KNQ

with these notations we obtain as in 13.2

G, T, vy, _ Q,T
JU6N = ) T g )
e(Q)=Q

13.5. On some regularity property.

In 13.1 we introduced

o, X) = f El’g(H, x) et (M) gp

Q. e
(523
We shall now study this function when A is imaginary. Consider
*
D a differential operator with constant coefficients on i(ag)e then if
Q, e*
p)

A E i(o we have

D R0, )| < fQ |P(H) T3(H, X) |aH
(kp3)°

where PD is the polynomial associated to D. Using that

r(tH, tX) = I'(H, X)
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for t e R: and Lemma 13.1.1(i) it is not difficult to see that
LEMMA 13.5.1.

D S0, X) | < e+ XY

for some N independent of X when A is imaginary. O

In other words, X — y(x, X) is a "slowly increasing" function.
* A
Now consider ¢ a Schwartz-Bruhat function on i(ag) e’ let ¢

be its Fourier transform so that

o) = | g Pan
TSN
We define
20, @)= [ ¢ p0, Xax

Q.¢
(o)

A
This makes sense also when ¢p is a "rapidly decreasing" distribution.

Lemma 13.5.1 above shows that on i(0t the function

Q, e*
P)
A 0, @)

is smooth and by 13.1.4 we obtain the following expression

[ €
a. —a
Lo, )= 1 DR 20
Jpth P "R
PCRcCQ
e(R)=R
R -1 Q -1
ENCORRNC OV
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which is valid at least when A is imaginary and not a singular value of

1 -1 0
or 66()\) and where s)\R

eé(k)— is the projection of X on
Q,e*
(ep)” ©C.
The left-hand side is smooth and hence the singularities of the right-

hand side cancel when ¢ is any Schwartz-Bruhat function. This implies

that more generally we have the

LEMMA 13.5.2. Given any smooth function ¢

€ €
da, ~a _ _
I R Reud B o™
PCRCQ
e(R)=R

' . ) Q, e*
extends to a smooth function of X € 1(01P) . O




Lecture 15

(provisional text)

THE FINE yx-EXPANSION

R. Langlands

1. The operators M

P'IP(S’ A). As usual M, is fixed and we consider

only Levi factors M € L(MO) and parabolic subgroups P € 4(MO) .

For such an M the Lie algebra 2y is well-defined and so is

oty myg)-

Let s € Q(nM, uM,), P € P(M), P'e€ P(M'). We define the

operator MP'IP(S’ A) taking ¢ to be the function M (s, M¢:

P'|P

(k) (Hy (w 'ng)-(s)+0p,) (Hp, (g))

dn

g — ¢(w nge

-1
No awNpw \Np,

Some explanation is in order.

Fix a class X in X, thus a pair (pX, MX) given up to association.

is referred to as a cuspidal datum. Two cuspidal data (pX, M\() and

(o, M_,) will be said to be equivalent if after conjugation M _, = M
X X v, e X X
and pX, = a® pX, o« being a character of @G trivial on &'. To X

is associated a closed subspace L;(M\M) of Lj(M\M), w being a
certain central character of M determined by pX. If @ is an
irreducible unitary representation of M let le’m(P) be the space of
measurable functions ¢ on G satisfying:

(a)  ¢(ng)
(b)  ¢(vg)

¢(g), ne NP;

oY) Y eP;

It



(c) m — ¢(mg) 1is a function in Li(M\M) for all g € G transforming
according to the representation 0;
(d)
2 2
lell® = J | $(mk) |"dndk < =
ZMM\M
The intertwining operator is defined by analytic continuation on

K-finite functions and is unitary for Re A = 0. Notice that

(¢, V) = [ ¢ (mk) P(mk) dmdk
Z, M\ MK

defines an inner product on OZX,G(P) .

The forms Pp and Ppr have the usual meaning and w is a
representative of s. Since the Iwasawa decomposition G = PK is valid
we can define HP(g) .

The operator MP'|P(S’ A) 1is certainly an intertwining operator

from OZX O(P) to @t )(P), the representation on the first space

X, s(o
being Psen and that on the second being 05(0)850\). Since ¥ is
fixed in the present lectures we may drop it from the notation.

We shall make use of a number of relations which are either elementary

or a part of the theory of Eisenstein series.

(a) If s e oy, 0z ,), s' € R0y, oL ) then
MP" Ip (s's, A) = MP” B (s', s)\)MP,[P (sA)

Of course P" €& P(M").



(b) Suppose L is a Levi subgroup containing both M and M'
and s fixes the points of oL, . Associated to every pair R, Q,
R e PL(M), Q € P(L) is a unique parabolic subgroup Q(R) € P(M)
satisfying Q(R) € Q, Q(R) nL = R. Moreover if ¢ € JLO(Q(R)) then

for each k the function (bk : m —> ¢(mk) lies in OLO(R) and

May myy(r) (8 M)y = Mpyjg (55 Moy

Notice that M A) depends only on the projection of X on nII\:I

R'[R(S’
1

(c) Suppose M' = wMw ~, P! = WPW_l and w is a representation

of s in Q(ILM, JLM,). Then by the definition

-1
_ (M+pg)Ho(w “g) -(shpy,) (Hy (g))
MP'IP(S’ >\)¢ g — CP(W g)e L P P

Now if g = p'h then W—lg = w—lp'w w ik = pw-lk. Thus

HP(W—lg) = W—IHP,(g) + HP(W-l)

Since Pp1 = sPp We conclude that

-1
(Ao ) (T -8 T,
MP'IP (s, A)p =350+ e P 0 0 ,

for as Arthur shows in Lemma 1.1 of the Annals paper there exists a T0

such that HP(W—l) =T -s—lT for all w. We define s¢ by

0 0
s¢ : g —> qb(w-lg).

(d) Combining (a) and (c) we obtain



-1
(si+p ) (T -t "T )
‘e P 0 0 M

A = (ts, A)

pi|p (s Mien|p
-1
(Mop) (T s T )

(s,A) = M 1, tA)tee

Mpiip pil(p) (st

2. (G, M) families. For the moment fix M. A (G, M)-family is a set
*
M,

in P(M). These functions are to satisfy a compatibility condition. Recall

of smooth functions cP(A), he im indexed by the parabolic subgroups

that each P in P(M) is associated to a Weyl chamber Wp In dey,.

This chamber is defined as the set of H such that a{(H) > 0 for all roots
. _ . .

a in P. Thus s(WP) = Ww(P) if w represents s. If P an(tl P

are adjacent, that is, if WP and WP' have a wall in common, then the

condition is that cPO\) = cP,(K) on the hyperplane containing this wall.

A family of points {XPIP € P(M)} is said to be A, orthogonal if
XP - XP' is perpendicular to the wall separating WP from WP' whenever
P and P' are adjacent. Then the collection of functions
MXP)
{e } is a (G, M)-family.
The set AM—orthogonal of all families is a closed subset of -]TP(M)’ a

and if w is any rapidly decreasing measure on (Ul then

MXS)
(1) cp A — [ e P dw
is a (G, M)-family. It is likely that all compactly supported (G, M)
families are of this form. Since these initial lectures on the second
American Journal paper have as their sole purpose to discover a modification
of the method of Arthur which may work in the twisted case, the rigorous

treatment to be given later, I shall assume that the compactly supported



families that arise are associated to a measure. Otherwise the combinatorics
become unmanageable. (This turned out fortunately to be unwarranted pessimism.)
I now recall some constructions and some facts from the Inventiones

and the Annals papers, many of which have already appeared in Lectures 9

* *
and 13. First of all if Q > P then iﬂ.Q c inP and we can project
* *
A€ iot onto 101.Q obtaining XQ' If cp is defined we set
c ()\) =c ()\Q)
Then we define cb by
=1 (D2 R Roy e a7
RO2Q
Recall that
S _ 1
M) = S WMAS < *)
R R
~R _
eQ()\) N AR Trm'EKR<)\ ‘m’>
‘Q Q
S . . S ~R
Here cp is the volume of the parallelepiped spanned by Ap and cq the
volume of that spanned by 1&%
The functions Q’ Q oP, P € P(M), depend on cp alone and
MXL)
not on the entire (G, M) family. If cP(X) = e P then cb is
the Fourier transform of the function Pb(-, XQ), where XQ is the

projection of XP .onto an- Thus ’



| = [ MH) o
chM = fe T (H, X ) dH

Recall that F'Q(-, XQ) is a function with support in a ball of radius
elIXQH. More generally, if the family is attached to a measure w then

. - AH) py
M) = fa jaQ e THH, X dHdw

Observe that XQ is independent of the choice of P € Q wused to define it
because the collection {XPIP € P(M)} is an AM-orthogonal family.

Arthur also introduces a function cM(K) . It is at first defined by

-1
(A) = co(A)6,(A) ,
M XPeP(M) PP

but he then shows that

) =7 cL(A)
M PeP(M)
Thus if
T, (H, {X,}) =7 T(H, XJ)
M P pcP) b P
then
- A(H
oM = joz fu R )PM(H, {Xph) dHdw

Since the prime in Fi:(H' XP) serves no useful purpose I drop it. The
measure ® being rapidly decreasing and the function FM(', {XP )9

being supported in a ball of radius ¢ supHXPII the function cM()\)
P



is smooth. Recall that cM(O) is usually denoted c,,. Of course if L
is any Levi factor containing M then the family of functions

{CQ(K)lQ € P(L)} is also defined,as is cL(X).

Recall that if each XP lies in the chamber associated to P then
the functions I‘P(-, XP) and FM(', {XP}) are characteristic functions.

A typical pair is given by the following diagrams:

r‘P(.’ XP)

I‘M(', {XP})

Suppose M is the Levi factor of an e-stable standard parabolic. Then
the e-roots divide ul\E/I into chambers. Moreover, as we know, every

root of G not lying in M has a non-zero restriction to an. Thus if



W is a chamber in “1\6/1 we can let PW be the group in P(M) defined
by the condition that a 1is a root of NP if and only if a is positive

W
on W. The collection of P will be denoted PS(M) . In a similar way,

w
using the faces of the chambers, we define the collection -7€(M) of
parabolics.
Suppose more generally that M contains M0 and that ¢t ¢ LAVE
We say that the pair (M, &) is e-special if it is conjugate to (M', ufd,),
M' being the Levi factor of an ¢-stable parabolic. Recall that if w

normalizes M0 and 01.16[, then WEW—1€

fixes each point of 01.;1, and
thus normalizes the standard parabolic with M' as Levi factor. Consequently
w represents an element Qe(no, 01.0) and maps the sets Pe(M') and
4€(M') onto themselves. So we can transport PE(M') and 4€(M') from M!'

to M, thereby obtaining Pe(M’ et) and -‘FE(M, ). Once we have

these sets we can introduce the notion of a (G, M, #) family. It consists
of a collection of functions cp on m, one for each P € Ps(M, o)

which satisfy the obvious compatibility condition.

LEMMA 1. If {cP|P e PIM)} is a (G, M) family then the collection

{EPIP € P_(M, &)} isa (G, M, ;) family, EP being the restriction

of ¢

of cp to m .

Suppose Q and Q' are in PS(M, ot ) and adjacent. The
chambers WS, Wé, in o0t associated to Q and Q' are then separated
by a wall defined by an ¢&-root «. Let Ops weey O be the roots whose

restriction to ¢t is o. These are the only roots (up to sign) separating

WQ from WQ" Thus, after renumbering, we can find a sequence



QO =Q, Ql’ vees Qr = Q' such that Qi is separated from Qi-l by a
single wall, that defined by a;. If Aed and (o, A) =0 then

(ai, A) =0 forall i and

cA(A) = = ,,. = = ¢,
o) CQO(M CQYO\) cqi(A)
Thus once & is specified we can introduce the function EM as
MXp)
- P -
. ' =
well as functions CQ, Q e '1€(M, nn). If cP()\) = e and XP

is the projection of XP on & then

3 MXG)  AMXR)

cP( A) = e P e P , A &R
Thus if {CP} is associated to the measure w then

- _ - AH) =
cM(X) = {)[ J;L e FM,:;(H’ {XP})dw

where FM “(-, {fp}) is the function on o associated to the e-roots

and the family {)TP}.

(G, M) - families defined by intertwining operators. Fix a standard P

and let M = MP' For brevity I shall denote the representation of G
on the space of functions g —> ¢(g)e>\(H(g)), b € ﬂX’O(P) by Pg, \"
Thus QG,)\(h)Cb = ¢' means ¢(gh)e>\(H(gh)) = ¢'(g)>\(H(g)). There are
several (G, M)-families to be introduced. The first is simple to define.
If Qe P(M) then Q = t_l(Pl), where t is an element of the
Weyl group and Pl is standard. Let YQ(T) be the projection onto

OLM of t_l(T-TO) + TO and set
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MY H(T))

cQ(A) = e , A e “M

To define the second we choose an s € Q(ms(P)’ nP) and, fixing

A and A, we define u by
A= seu-A

Suppose that se(o) and o are equivalent up to tensoring with a character
of Ml\M. Then we set, suppressing s and 0 from the notation and

assuming ¢ to be K-finite,

dQ(A) = tr(M (1; >\)-1MQ|€(P)(S’ E(U))EDO,)\(@)

QlP

LEMMA 2. For each A the collection {dQ} is a (G, M)-family.

Suppose Q' and Q are adjacent. By one of the functional equations

MQ'IP(l’K) ]MQ'IE(P)(S’E(U))=MQ|P(1,A) ]MQ"Q(].’)\) ]MQ|lQ(l,SE(U))MQIE(P)(S’g(U))

If the wall separating Q and Q' is defined by o and if (A, a) =0
then A and se(y) have the same projection on Ca. Thus by the

functional equations (b)

MQI[Q(I; SE(“)) = MQIlQ(l’ )\)

The lemma follows.

LEMMA 3. Let ot be the set of points in #ng, fixed by se. Then =«
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is the second term of a unique e-special pair (L, @) and L >M.

The uniqueness of L 1is clear for it must be the centralizer of #&.
So it certainly contains M. To prove its existence we argue by induction
on the semi-simple rank of G.

The lemma is clear if @& is central for the L = G. Otherwise let
X € & be a point fixed by se on which not all roots vanish. Then
{a|a(X) > 0} defines a proper parabolic subgroup of G which is fixed
by se. Conjugating M, &4 and sc we may suppose that it is standard.
Since two standard parabolics which are conjugate are equal, the parabolic
subgroup is invariant under both s and €. In particular s lies in the
Weyl group of its Levi factor, to which we then apply the induction assumption.

Since s is fixed we have not included the dependence of @& on it
in the notation. If A and A liein & then u liesin & and

U = MA. Therefore
Mg |p(L ) lMQig(P)(s,e(u)) = Mg p(LY ]MQ;p“’“A)Mmg(p)<s'€(“’\))

Recall that to each Q € P(L) and to each R € PL(M) there is
associated a unique group Q(R) € P(M) such that Q(R) € Q and

Q(R) n M = R.

LEMMA 4. If A and A liein @ then the operators

L

M® A D) = M (1, N M (1, M)

Q(R)|P Q(R)|P

are independent of R and for fixed A define an operator-valued (G, L)-

family.
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The product

(1, N M

(1, A1)

Moy P QR |P

is equal to

(1, » v 1, MMM (1, M)

Moy [P QY |e®) (M lMQ(R')|Q(R)( QR)|P

Since A and A+A lie in a,, the functional equation (b) yields

(1, N M

)(1, AMA) =1

Ma@ry|ar QRY QR

To prove that we have a (G, L)-family we imitate the proof of
Lemma 2. It is only necessary to observe that if Q and Q' in P(L)
are adjacent then we can find R and R' in PL(M) such that Q(R)

and QU'(R') are adjacent. Indeed if o e AQ defines the wall separating

Q and Q' and if a e AP restricts to o then we may so choose R

and R' that Q(R) and Q'(R') are separated by a wall lying in the
hyperplane defined by «a.

When X € 6 let {EMQ(P’ A, A)} be the (G, L, & )-family attached

to {MQ(P, A, A)}. Finally set

MY (T)) o

T _ - - Q
&:MQ(P’ A, A = CQ(A)EMQ(P’ A, A) = e eMQ<P’ A, D)

In the statement of the following lemma and in its proof P need not

be standard.
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LEMMA 5. Set €TO = l-€_lT0 and suppose r is so chosen that the

e-special pair (L, » ) associated to rse(r—l) is (MQ’ ng) where

Q is an e-invariant standard parabolic. If A ee¢ then

<)"Ts€>

MPIE(P)(S’ 8(>\)) = e eM(P; S) )

where eM(P’ s) is independent of A and

_ -1
Tsz-: = (r l)eTO

To prove the lemma we observe that

-1
Mr(P)|€(rP)(rS€(r ), e(ri))

is equal to

-1
Mr(P)|P(r’ SE}\)MP|€(P)(S, EX)ME(P)|€(1‘P)(€(I‘ ), e(ri))

Using the functional equations (c) we see that this in turn is equal to

(sehtop) (Tyr T ) L1 (e 0y ) (Tg=e(®) T ()
e rMP|€(P)(S eNe(r e

The dependence of the product of the two exponentials on A is

through
TS U |
Mg T e Te Ty e(};rss>

because scA = A,
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The upshot is that to prove the lemma we may replace L, e, P

and s by conjugate data. So we take L to be Mg and ot to be

ﬂE for we have seen that this is possible. But then every point in @&

is actually s-invariant and the equality is a consequence of the functional
equations (b).

As an aside I observe that if K is ¢-invariant, so that

H(e(g)) = eH(g), then

1

(2) € T =T, (mod mg)

and consequently

To verify this we recall (Lemma 1.1 of the Annals paper) that T,

is uniquely determined modulo &, by the condition

G

...1 _ _ -
HPO(W ) = TO S 1T0

for all seQ(uo, ao) and all w in G representing s. However

eT . - es'le‘l(eTO) = e(TO—s'lT

. = H(e(w )

0

Thus ETO is another candidate for TO and (2) follows.

The fine x-expansion. The term J’;‘:(cb) has been introduced in previous

lectures, where it has been shown that it is a polynomial. Our purpose
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in this (long) lecture is to prove a formula for it which we now describe.
If M€ L(MO) and X € oy ® C let ¥, be the character of M

defined by

() = AHED)

If ¢ and o' are two representations of M we write ¢ ~ ¢ if o' is

equivalent to o ® Xy for some X\ € d'l-M ® C. Each class has a distinguished

representative, that which is trivial on {exp H|H € uM}. We usually work
with it.
The formula expresses J;I(‘(d)) as a sum over quintuples

M, L, &, {o}, s) satisfying the following conditions:

(1) MyecMcL and ® ¢ .

(ii) {o} is a class of unitary automorphic representations of M, the
equivalence being that just defined, and 0 is the distinguished
representative.

(iii) s eQ(nE(M), a'LM) and se(g) ~ O.

(iv) (L, o) is e-special and o6t is the set of fixed points of se in &,.

(v) If P € P(M) the space @ (P) is not reduced to zero.

X» O

We now describe the term corresponding to a given quintuple. Let

QO = Q(ato, uo) and Ql\él = QM(uo, ato) . The linear transformation se-1

is invertible on azM/a.. Let A = A(s, €) be the absolute value of its

determinant. The term is

IQI\(')III <>\’Ts€>

[ (M (P, N)e M(P,s)ep_ ,(9))dA
|P(M) | A PEPM) (zﬂ)ap i@ €L £ G, A

12,

Ao ?
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(Notice that the group Z and the character w of the first lecture have
unnoticed become trivial. The general case will have to await the revised
lecture notes.) For P which are not standard the integrand is defined

by symmetry.

Loose strands. The purpose of this section is to recapitulate results from

earlier lectures, but with some minor changes and with a notation convenient
for our present purposes. We begin by discussing the coarse X-expansion
more fully than in Lecture 13.

Recall that this is an expression for JT(¢>) as a sum,

(3) %) =7 3%
X X

the index of summation running over equivalence classes of pairs of cuspidal

data. To obtain it one first expresses the kernel as a sum,

K(h, g) =) Kx(h, g)
X

For each standard P and each distinguished o let {@i} be an

orthonormal base of OZX U(P) and set

Ky p,ohr 8 = ZiE(h, 0o(8)2)E(E, &)

The collection of unitary automorphic representations of M is the union
of affine spaces of the form {OO ® X)\IOO distinguished, A€ iﬂ-M}. Let

dc be the measure which on each component is |dA|. Then
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1
K (t, g) =) —— K (h, g)do
X a X,P,0
P (2m) Vae) 19}
=] 2 [ ] E(h, p(9)8)E(g, E)do
P (ZTT) Pn(P) {0} 1
Moreover
1 -
(4) I I —5—J 1 [Et, 0,($)2)E(g, ¢ |do < =

x P (2m) Pn(P) g 1

The integer ap is equal to the dimension of the split component of P
and n(P) is the number of parabolic subgroups with the same Levi factor
as P. The absolute convergence of (4) was proven in Lecture 10.

We can also introduce
€
K (h, =K (h, ¢
X( g) X( (g))
and, when P is e-invariant,

€ _
Kp (1, 8) = Kp (b, =(g))

Of course

€ _ €

The basic identity, wviz. the equality of

E-a
€
Z (-1 z Kp

POCP §eP\G "’

(88, §g) Tp(H(8g)-T)
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and

5 (H(8g)-T) (] (-1)

P.cPcP
P,cP,CP, S€P \G 1 2

remains wvalid.

The expansion (3) is obtained from the Y-expansion of the left or
the right side of the basic identity by integration over G \Gi. It is
however necessary to verify absolute convergence in order to justify the
interchange of summation and integration. For this we use the right side.
The left side is used only for the purpose of showing that J§(¢) is a
polynomial in T, the argument imitating that in §2 of the Annals paper.

To prove the convergence of the coarse X-expansion we show that

for each pair of standard parabolic subgroups Pl c P2 the sum

I J oA (g)-T)| ] (-1)

X 1
Pl\G€ P1CPCP2

€
Kp (& g)ldg <

This is a stronger assertion than that treated in Lectures 7 and 8 but the
proof proceeds along similar lines. We indicate the necessary modifications
including those entailed by the replacement of Gi by Eoi. The critical
observation is Lemma 2.3 of the Compositio paper.

The first step is to find a substitute for the argument on pp. 3-5

in order to replace (we are taking w = 1)

P 1€
(5) ) (-1) © A Kp (B g)

sg)
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by

ag TP
(6) (-1) ~ ) A Kp_y (B ¥e(@)

Py
YeFe(Pl,Pz)

if there is an e-invariant parabolic Q between P and PZ and by

1

zero otherwise.
Lemma 2.3 allows one first to extend Lemma 7.6 in Lecture 7 to
KP . Then following §2 of the Compositio paper we deduce the equality

1’ X
of (5) with (6) or with 0 from the corresponding equality for the original

kernels.

Variants of Lemma 2.3 can be obtained from a simple observation,
which was drawn to my attention by Clozel. The kernel KP’X is the
kernel of an operator on LZ(NPP\G) and is equal to

1 2

where the superscript indicates whether we operate on the first or the
second variable and _H-X is the projection on the space attached to X.

The operator —lTX acts of course on a function f according to
1
f) = MO)f
(HX )g HX( )g

where WX(Ml) is an operator on functions on Ml and
f,(m) = f(mg), me M.

Since
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’I‘,P1 T,P1 2
A KPl.X(h’ g) = A WXKpl(h, g)
2 T,I—“‘1
= TTXA Kpl(h, g)
we conclude that when
T,P1

as a function of m € Ml then

T,P

A 1

Kpl(h, mg) 0 .

The modified Lemmas 7.2, 7.4, and 7.6 follow immediately and the changes
T,P 2

in the proof of Lemma 7.1 are minimal, for A 1 -I_I-XKD (h, g) # 0 implies

1

that KP (h, mg) # 0 for some m € Ml.
1

The proof of Lemma 7.3 for 605 is the same as its proof for Oi

and the modified Lemma 7.5 is implied by Lemma 4.4 of the first Duke Jour.
paper and was proved by Clozel.

The coarse YX-expansion is the expansion

Ty = 1 3%
X X

and J§(¢) is the sum over pairs Plc P2 of standard parabolic subgroups of

a T,Pl

€
/ leoi(ﬂ(gwr){z -1 T a tRp (g, g)de
PA\G_ P,cPCP,
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Following the arguments of Lectures 8, 10, and 11 one shows that

this may be written as

€ T,P

aQ z j 2 1
(7 (-1 o (H(g)-T) A K (g,ve(g))dg
1 el 121 ProX

YEP\F_(P,P,)/c [(P) Pync ¥ (131)\(;1€ 1

It was shown in Lectures 10 and 11 that each term is zero unless there is a
unique e-invariant parabolic Q between P1 and PZ’ However more can
be squeezed out of the arguments given there, namely that even when the
ge-invariant parabolic between P1 and P2 is unique the only contribution
which perhaps does not vanish is that attached to the class of v = 1.
Since this leads to an indispensable simplification, we give the necessary
supplementary argument.

The element Y may of course be taken to normalize MO' Let it
represent the element s in the Weyl group. We may assume that

se(a) > 0 for ae Aé, for we are free to modify s on the right by an

€ (M)
element of Q . Recall that there is a unique standard parabolic

subgroup Pse such that

P nNnM, = s'ls_l(Pl) n M

S€E 1 1

and that if H = H(g) the following conditions must be satisfied if the

term of (7) corresponding to 7Y is not to vanish:

1

(1) WH-T) <0, Tel_ .

(ii) €G§(H-T) £ 0.
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(iii) w(H-seH) < C, We [’S? (For this it is necessary to apply the original
arguments within Q.)

The conditions (i) and (ii) allow us to write the projection of H-T

on d‘LS as

—z . ot 2 9 cmm s
X W WEA
s€ 1

with all coefficients non-negative. Thus TISO(H-saH) is equal to

(8) Ty(T-seT) + y . c By(se(@)) + ) AQcmmo(w—saD)
OL€AS€ meAl
if ©, € &Q Notice that w™.(a) = 0 if o & Al
0 1 0 se’

The expression (8) must be bounded by a constant independent of T

S€E

and H. The space no is spanned by roots of Mse' Thus se(nze)

is orthogonal to ¢ . and if o € Aie is the image of a'é€ Aé then

1
'm‘o(se(oc)) = ‘GIO(SE(OL')) . Consequently mo(se(a)) > 0. We conclude that

‘GSO(T—seT) + Ecmmo('cﬁ—sem) <C
Let

X = Z cwm’o

moeAl

Multiplying by Cx and summing we conclude that
0

(X, T-seT) + (X, X) - (X, seX) < C|X]|
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Q+
Now X € 60 1 Thus if we assume (and we shall) that T is

e~-invariant then
(X, T-seT) = (X, T-sT) >0
Moreover there is a constant & > 0 such that

(X, X) - (X, sex) > 6||x]°

Q

on @t 1+. To see this we have only to verify that

min Q ((X, X) - (X, seX)) >0
+
xe e, [x]=1)
Q
The minimum is certainly not negative. If it is 0 then for some Y € O'Ll

Y = seY

Q
0

parabolic subgroup between Pl and Q which is properly smaller than Q.

The set of roots o in A such that (o, Y) > 0 define a standard

Since it is invariant under se& it is invariant under both € and s. This
contradicts the definition of Q.

We conclude that

1% < cYx|)

and thus that ||X|| is bounded. We obtain finally inequalities
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Ty(T-sT) < C" , W, €

>
— 0

These inequalities can be violated for T sufficiently regular unless

M
se § 1. This leads to the desired conclusion.

So we are to consider
T,P

1)
a
(-1 R A(H(g)-TIN 'K, (g, <(g))dg
-1 1° X
P1n€ (Pl)\Ge

It was shown in Lectures 10 and 11 that this could be expanded as

ag . ) T,P,
-n <) —— LO](H(E)-T) A Kp 4., o8 €(g))dodg
P 2m Pay®) P acl®)\G, L(P) 1
$(P) being the set of possible {o}. Recall that
Kp ,x,2, o8 £8)) = E]_ Ep (8 o(9)¢))Ep (e(e), %)

Thus we have an integral over the space parametrized by P, 0, j»
and g. Some care is necessary because there is an element of conditional
convergence, which we recall explicitly. The group iul acts on I
and we can clearly decompose I(P) as a product Zl(P) x iet,, the

connected components of I, being affine spaces over inl (The attempt

P

to distinguish between spaces and their duals becomes too much of a burden
on the notation and I abandon it).

1f o, € Zl’ Xle iey denote p01®x>\ by p01’>‘1. The integral is

1
obtained by iterating two other integrals, each of which is absolutely
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convergent although their iteration may not be. The first is

T,P

(99 —L 1 I8 YE) (gp , (0)0)E; (e(@), 8 |dA]
2p im, TR R A S| ]
(2m) "n,(P) 1
The second is over
{(P, 0)|P DP,, 0, € Z,(P)} x P ne e )\P1 x K x 0}
’ 2%y 91€ 4 1 1 1Le

where EDL% is the set of H € 0‘11 such that dyx(H) = 0 for every

e-invariant character ¥ of G defined over Q. The integrand for the
~2pp (H)

second is the product of (9) with E:oi(H-T)e 1 , g being p(exp H)k.
For this we do not need to assume that ¢ is K-finite. However for the
first part of the proof of the fine X-expansion we do, the assumption
and the theory of Eisenstein series assuring us that the set of (P, 0, i),
o distinguished, which yield a non-zero contribution for a given X Iis
finite, so that the sum over these parameters presents no analytical problems.
Thus until we explicitly return to the general case ¢ will be K-finite.

The integrand of (9) is clearly an entire function of Xl. It is
shown in Lectures 10 and 11 that the contour can be deformed to

Re A, = -A, A€

1 arbitrary, without changing the value of the integral,

1

which remains absolutely convergent, the parameter implicit in EP (e(g), <I>j)
1

being -7\-1. We choose A such that (A, a) >»> 0 for all oceAl.

Then, and this will be shown in Lectures 10 and 11, the double

integral
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T.P
(10 I

-1 1 -
Plne (Pl)\Pl"K Re Al- A

, JES (elpak),¥,) y &= )
Epl(pa.k p°1'*1(¢)¢1)EP1£ pak J Id)\z|dpd.k a=expH

is absolutely convergent. Given the properties of the truncation operator

this follows from an estimate \

(11) ) [Ep (cCypak), 9] <c)|mN
\(elee“l(Pl)\P1

Here p = nm, N is some fixed real number depending on A but not on
Al with Re )\1 = -A, and m lies in a Siegel domain of Ml.

The parameter in the Eisenstein series is }\l' All we need do is
estimate

(12) ) |Ep (ve, @) ]
YePl\G

on a Siegel domain of G, for taking g = €(pak) we majorize (10). That
(12) is bounded by Clg |N follows from the elements of the theory of
Eisenstein series (see the remarks following Lemma 4.1 of my notes on the
subject) .

Apart from a finite sum over P, distinguished o, and j and a

constant

1

(-1 ° =
(2m) nl(P)
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we have to consider

, 20 (H)
(13) fml ohE-me 1 f a(pak, 1) = AT (¢)
e Re A=-A plne‘l(P )\ P1xk
VP
where
N T.P,
, ) =
a(p ) = A Epl(pak, pg,}\(¢)¢>j(EPl(€(pak), <I>j) ,

= 1 . .
a = expH, and e %1 c f, is the intersection of the kernels of the e-invariant

rational characters of G.

In contrast to the integrals appearing in the ordinary trace formula,
(13) does not seem to admit a useful explicit expression even when <I>]. is
a cusp form. So we derive an approximate formula for it, anticipating the
needs of the arguments in the two Amer. Jour. papers. Recall that they

involve substituting ¢Y = ch for ¢ where Y = YH is the distribution

<
il
Dl

A
sel s 'H

and ¢Y is obtained from ¢ by applying the multiplier aésociated to Y.
Then AT(q)H) is a function of T and H, H € ?’ (Arthur works with
a subspace ?1 c ?, but with our formulations 9- is better).

In order to simplify the formulation at various places, we formalize

the inequality (5.1) of Amer. Jour. I into a definition. Fix an integer

dOzO. If KDT(H) is a function of T and H we write

vT(H) ~ 0

if there are positive constants € and C and for every invariant

differential operator D on } a constant cp such that
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d
0w | < epe I oy

whenever d(T) > C(1+||H||). Recall that

a(T) = min a(T)
{0,Qae An»Q2P )

Set p=-¢()) and define ¥, by
®j(€(g)) = Wj(g)

It is a function in (] 1 _ (e—l(P)). Thus if P'cC €_l(P1) n P1
-1 € (X),€ (O)
€ (Pl)

and sef (o 1 aLP,) we may build the associated Eisenstein

e “(P)

1

(s, WY¥.). Set

series E5 (g, M
P
(P) J

1 P'|e

(14) b(pak,\) = ZP.ZSA EP1<pak,oc,m)@j)ipl(pak,m (s DY)

P'le “(P)

The sum over P' is a sum over associate classes within E-l(Pl) n Pl' )

Thus we take only one representative from each class, several classes

appearing only because they become associate in e—l(P The variable

1)'

S runs over

s_l(Pl)rxPl( I\ a_l(Pl) )
Q 0ty 1o, Q (e _ » 0L,
P P e 1(P) P

Finally set
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—ZpP (H)
BT (9) = f Eci(H—T)e 1 f [ b(mak, A) .
Re A=0 Ml\MixK

We shall show that the iterated integral converges and that
T T
A (CbH) - B (¢H) 0
We begin by studying

J a(pak, A)

-1 1
Pln € (Pl)\ PlxK

when <I>j is a cusp form. This is best regarded as a triple integral, over
1 -1
(Ml\IMIl x K) x (M1 n e (Pl) \Ml) X Nl\ Nl .

and we begin with the integral over Nl\Nl'

Since

T,P
A

T,P

1 _
EPl(ng. DO,)\(¢)®].) = A

1
Epl(g, og,x(cb)@j)

we are led to consider

f E, (e(ng), ¢.)dn = [ E (ng, ¥.)dn
NAN 1 ] J

I claim that it is equal to

(15) YV E 1 lea M (s, W¥.) ,
P' s Pine (P P'le (P) ]
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the range of summation being the same as in (14).

It is enough to verify this equality in the domain of absolute convergence
of the Eisenstein series. The proof will be' easier to follow if for a few brief
moments we change the notation, letting E_l(Ml) be G, Pl n E-l(Ml) be Q,

and e—l(P) be P. Our integral is then

(16) [ Eg(ng, ¥;)dn
NQ\ NQ
Let
(uto,) (Hp (g)
Flg, ¥)) = ¥(gle RS

so that (16) is equal to

(17) ) i ) F(yéng, ¥)dn
YEPNG/Q N, \N, 5€QnY PY\Q

Each Y may be chosen to lie in the normalizer of R, and thus to

represent an element s_1 of the Weyl group Q(uo, no). We have sufficient

1
freedom to suppose that so > 0 for a € Aeo (P). The group

-1 -1 S|
v8QS§ Ty n Mp = YQy T aMp

is then a standard parabolic subgroup of MP with unipotent radical

YNQY—I n MP' Since ‘Pj is a cusp form the term of (17) associated to Y

-1 _ -1
QY n MP = 1 and thus unless YMQY ] MP'
-1

We now assume this and in addition that s ¢ > 0 for o e Ag

is 0 wunless ¥N
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which implies that sa > 0 for o€ A}g, The group
P = Ny Y aM) = No(v NpvaMy v My
Q Q = Noly NpvaMg-y My

is a parabolic subgroup associate to P and s € Q(nP, a-zP,)°

The term associated to Y 1is equal to

) J F(yéng, ¥;)dn
§eQ ny_lPY\Q/N N né-ly_lP\(cS\]N
Q Q Q

or

) J F(yndg, ¥.)dn
- - j
SeQny lPY\Q/NQ NQ ny ]PY\NQ

The domain of integration is NQ n Y—lNPY\ NQ and may be replaced by
-1 . _ -1

NQ ay NPY\NQ' Since NP' = NQ(Y NPY nMQ) and

Y—-lNPY nMQ c y-lNPY the domain of integration may in fact be taken to

be NP' n Y_lNPY \NP" Hence the integration yields
The range of summation is
-1 = o
(Mg nY PONNQ = PIAQ
So we obtain
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Summing over Y and reverting to our original notation we obtain (15).
The next step is to replace g by Yg in (15) and to sum over

Y e M1 n e‘l(Pl) \Ml' Interchanging the order of summation we obtain

(17) ZP'ZZ E o e Moy (s WYY

° yeMyac lep\M, T10¢ D P'le "(P)

To justify the interchange we must show that the inner sum converges

absolutely. If so, it yields

Ep (gs M )

(s, MY.)
1 P'|e “(P) ]

For absolute convergence we need

Re(a, spp) = (3, se (1)) > 0

Py Py Pl“E-l(Pl) L
for all ae A -1 or for o € AO - AO , which is of course
Plns (Pl)
P Ae“lwl) ) o
o " 4 , a subset of AO - AO . Here M = -e ()\1) where

A, 1is the projection of A on 0. Since se_l(A) = E—l(A),
(@, s 1)) = (e(@), D)

- Al. Hence (e(a), A) > 0 by assumption.

and e(a) € AO 0

We are left with the evaluation of

AT,Pl
1

. Epl(mak"po,kw)@j)EP (mak,M 4 (t,u)‘i’j)dmdk ,
1

P' t M\M 1 P'le “(P)



33

in which, for convenience later, the variable of summation s has been
replaced by t. These integrals are evaluated by the inner product
formula of the Compositio paper, which has (in effect) been proved in
Lecture 12. The integral corresponding to P' and t is equal to

ZOPI(H)

e times

1
(sl>\+sztu)(T +H)

(18) ¥ ¥ 2 (M (s, Mo ,($)d., M
1- , PP ] g, A
P" 5,8, 0 pn (s Ats, th) | ]

P"|e “(P)

P P
1 1
O _C__ P" E Pl, Sl [ Q (uP9 uPn)9 52 6 Q (aPl’ aPu)‘ The

Here P
projection of T on 0&3 is denoted Tl.

In general the terms of (18) are not individually defined on the
domain of integration, Re A = Re Xl = -], because of the zeros of the

denominator, which we now examine more closely. Apart from a constant

Oé,,(sl)ﬁsztu) is equal to

Tl- oc(sl>\+sztu) = TT a(sl)\—szts_l(k))

oaeAl oceA1

P Hi P i)
Moreover

Re o(sh-s te i) = oc(szts—l(A)) =80

2

with B = e(t_ls_z-l(cx)), and B either is identically 0 on 01.1 or

. + . . : .
vanishes nowhere on 0t 1° If it vanishes identically and s, sg are the

reflections corresponding to a and 8 then
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-1 -1, -1
saszta —szts (sB)e

If we sum (18) over P' and t we obtain sums over P', P", and

S5 whose ranges of summation are to be specified, of

sl>\+sztu(Tl+H)
(199 ] = (M 1p(s e ()0, M (s,t, M%)
1 " , A -1 2
spt 0L (s syt TP VTS Tontlip ]
P, e’l(Pl)
s, running over (., a,,) and t over Q (L , e ).
1 P P enl(P) P

The remarks above allow us to apply the usual arguments and to conclude
that the zeros of the denominators do not contribute to the singularities of
(19). The sum is over P" which we associate to P in Pl’ and for

each P" over a set of representatives P' for the associate classes in

P. n e_l(P

1 1)

and P' are fixed,

which lie in the associate class of P" in Pl' Once P"

P e'l(Pl) AP

s, €9 1(ar.P,, np.,)/n

l(nP,, n P,)

We are taking (A, a) > 0, v € A Thus the numerators of (19)

1

are well-behaved functions and we can consider

(s h+s,t0) (T L4+H)
(20) f 72 Mpy (s Mo (9)0,M 1 (s,t,)¥))[dA, |
Re A=-1 st SIl,,,(slMsZtu) PRI o, AT g le Ly @ } 1

I claim that this is zero for T sufficiently regular and E:Oi(H—T) ¥ 0

-1
£ (Pl)nP1

unless €0 . The reader will note that sufficiently regular

S2



35

means d(T) > C(1 + ||H0”) when ¢ = ¢, .
0

Recall that Q is the smallest e-invariant parabolic containing Pl'

Let H=T +X+Y with Y € & and with X € OLQ Then T =T +T1

1 Q 1° 1

and o(X) >0 for all a € A?. We deform the contour to Re >\1 = -A-tX.
Then

s Ms.tu(T +H)

1 2

e

is multiplied by
-1 -1
—t(X—szts (X),T)-t(X—sZts (X),X)

Now, as we saw above,

(x-szte'l(x),x) > 8]1x||?
and
te_l(X),T) = (X-es

(X-s te}(x),T) >0

2 2

Since we can estimate

(MP" |P(Sl’ >\)po,’>\(¢H )(bj’ M -1

(s,t, WY.)
0 pr|e ey 2 ]

when Re A = -A-tX by

clIxfllH,l
e f(ImA) ,

with f integrable, we see that the integral vanishes unless x| < CHHOH

For [|X]| <c ”HOH we take o € Acl2 and deform the contour to
AL -1 -1
Re )\1 = -A tw, . If est e (moc) # B, then
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(T -es,t (@), T) > c|T|

s_l(P )

If S5 ¢ Q we can choose o such that es t—le-l(‘wa) # ™, and

2
then we obtain vanishing for |[|T| > c(1+||HOH) . Note that the value of the

constant ¢ changes from line to line.
1Py n Py
If s, € Q then it may be taken to be 1. Then the

integral (20) has a very useful property. Neither M A) nor

pi|p{Sy’
M (t, 1) depends on XA, but only on the projection of X onto
)1 1
P"|e “(P)
1

O‘tP. Thus they have no singularities to obstruct the deformation of the

contour, which may therefore be taken to be defined by any A with

Q

(a0, A) <0 for all € A or even Al . We may not however allow the

l’

(e, A) to become zero, for the zeros of the denominators could then cause
trouble.

To obviate this we choose & such that none of the functions

M _ (s,t, WY,
P"IE l(P) 2 ]

which appear in (19) have singularities in the region [|Re A| < &,
e lp PoP,
(ReA, a) <0, a el .

%, even if 52¢ Q Then we choose a A

with ||A]] < §. Having deformed the contour we take once again the

sum over all P', P" and s thereby introducing an error which must

2’
be estimated. This done the zeros of the denominator no longer cause

any trouble; so we can deform to A = 0. Putting back the factor

2Pp (H)

e 1 , then integrating over dté;, and finally multiplying by
—2pp (H)

1

EOi(H—T)e (as we have in effect already done) and integrating
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over emi we ohtain BT(cb).

The error is a sum of integrals

f eci(H—T)J’ C(\, H)|dX|aH ,
1

1 .
e ™ 10p

-1
£ (Pl)nP1
where C(A, H) is given by (20) with sz¢ Q but with

IA]l < §. The estimations, which establish incidentally that the integrals
defining BT(qb) converge, mimic the earlier proof of vanishing.

Let H = T1+X+Y as before then the same arguments establish that
for ||X|| > C”HO” we have

lcr, W <cpe

Notice that the e-form of Lemma 7.3 implies that [|Y| < c||X|| if
€CI?_(X+Y) # 0 (¢ 1is a highly variable constant). On the other hand if

d(T) > C(H|Hy) and [X]] <clHyl with C > c then

ch, H) < cze'C”T” :

Since

_ ~c[[H |
f S:oi(X+Y)e 0

{H=X+Y[ || X|>c|lH ]|}
the asserted estimates follow easily. (The reader will have observed that
the arguments are often sketchy. This is partly because they will
ultimately be included in the notes of the earlier lectures.)

To show that
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aT(s) - BT (o ~ 0

even when ®j is not a cusp form we have to use techniques from the
second Duke Journal paper. There will not be time to discuss this paper;
so we merely sketch the argument envisaged, referring for a careful
exposition to the revised lecture notes.

An Eisenstein series on the group P1 associated to P may be built
up with residues of Eisenstein series associated to cusp forms on groups Q
contained in P. Recall that taking a residue involves nothing more than a
contour integration over a small cycle surrounding the point at which the
residue is wanted. These cycles lie in ng ® C and the parameter which
is important for the transition from AT(¢) to BT(q)) was >\1 & 0’(1.

So they do not interfere with each other.

Hence we are able, in imitation of Lemma 3.1 of the Duke Journal paper,
to show that all operators commute with the formation of residues, thereby
deducing the general statements from those for cusp forms. For example,
this is certainly so of the integrations over Nl\ Nl and Ml\Mi x K
and of the summation over M1 2 E—l(Pl)\ M1 that appeared in the treatment
of AT(¢>). So we will obtain formulas like (18) but by no means so simple.
Nonetheless these terms whose apparent singularities prevent us from
deforming the contour back to Re )\l =-A, (A, @) >0, |[Al < 8 can still
be shown by the previous arguments to be zero. So we can deform the
contour and then restore these terms and estimate the error introduced as

before.
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More loose strands. To obtain the fine x-expansion for the twisted case

we imitate the arguments in the Amer. Jour. papers but, once again for
lack of time, we can only sketch the modifications.
We know that J';E((b) is a polynomial (presumably for d(T) > c(I+||H|)

if ¢ 1is replaced by ch) . It is given by

€

-2pp (X)
(2 ] —-17] n—z'ﬁrf 151(x Tye ' ¥7 (X1, 0) dAdX

P (2m) P o PCP1CP 1 Re A=0

plus an error term, ET(¢) . The error term satisfies
T ~
EN (¢ ~ 0

The sum over P, 0, which is effectively finite provided ¢ is K-finite
runs over P D P, and distinguished o for which OZX, G(P) # 0. The
sum over P1 < P2 runs over pairs of standard parabolics which are
separated by a unique e-invariant standard parabolic Q. The expression

‘¥’£(X, A, ¢) which implicitly depends on P, is equal to

T,P
1 J A lEP (mak,py 3(6))Ep (mak, M ) (s,i)¥;)dmdk
s j Ml\MlxK 1 Py P'|e (P ]

If we let PT(H) be the polynomial in T which equals J;I(‘((bH)

for d(T) > c(1+||H[]) and if we let IDT(H) be the value of (21) when

¢ = ch we still have

pl) - vT(H) ~ 0
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and

X-(H)
RIS I yL(H)e |

Thus Prop. 5.1 of the first Amer. Jour. paper allows us to write

X (H)
Py - J Phame |,
T
the P%‘(H) being polynomials in T, and various estimates obtaining.
At this point we can take over the argument of Amer. Jour. I almost

literally. It allows us first of all to consider not (21) itself, but (21)

U ’ O

where B is a Weyl group invariant function on the Schwartz space of

i]’. Then §7 of the paper allows us to replace ‘Yg(X, A, ¢) by a much
2pp (X)

. . 1 .
more convenient expression, namely e times

skt (Th4x)
tr(eM

(22) ] 1

._1 -
(e T ML, 1o (ss M 2 (9))
P! s,t Gé,(skﬂ:u) '[P g, A

Pl l(p)

Here P' runs over standard parabolic subgroups of P1 associate to P
P
and s € § 1( Rps (nP,). On the other hand t runs over all elements of

QQ(oz, ) which can be expressed as a product t.t, with
e_l(P),P' 172
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P1 £ (Pl)
t; €9 “(apy, ""P')’ t, € Q (ot , “P")'

e (P)
After making these two substitutions we obtain a function of T which

depends on B. All we need do is to find a polynomial PT(B) to which it
is approximately equal for d(T) > §||T|| > 0 and to see what happens to
PT(B) as B —> 1 in an appropriate sense. The primary purpose of

this lecture was to deal with the first step, mimicking the second Amer. Jour.

paper. We need only consider compactly supported B.

Symmetrization. In (21), with the substitutions indicated, we may sum
c
a

over all pairs PlC P2 provided we remove (-1) Q from before the

integral and insert

(-1 2

PeQcp,

after it, the sum on Q now being taken over all e-invariant parabolics
between P1 and PZ'

There are also a number of simple modifications of (22) to be made.

First of all

_1 - 3 _
sMPIIe_l(P)(t,e (M) IMP.IP(s,x) = M(piy p(e(®), ) wg(P,)IE(P)(g(S),g(mg ,

and by the functional equation the right side is equal to

Mo (L lew) o (et 1s), e
e(t (P))|P e(t “(P")) |e(P)

times
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-1 -1
_ +et “sA-p  _ ,T ~-e(t )T
Len) et 1pn) O o)

e €
So we change the notation, letting e(t-l(P')) become P', £(t) become t,
and E(t_ls) become s, thereby simplifying the product to

(ssx-x,To-t'lT())

Mp.p(1, x)‘IMP,l e(N))e

S(P) (s,

The new s lies in Q(aP,, “E(P)) and the sole condition on it is

that it be expressible as a product

e(P
e 0

1

with s, (ne(P)’ nt(P'))' Observe also that t is determined

by the condition that t applied to the new P' be standard.

With the new notation the denominator is replaced by

t He(P))

b

(seX-A)

Moreover we can combine the two exponential factors that appear in the

numerator to obtain

. <s€>\—>\,t_1€(X-T 1)> +<se>\—X,YP,(T)>

where

Yo, (T) = £ He(T) + Ty - ¢ T
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We are thus concerned with

€
1 0 2 1 T
(23) § D ) (-1) ™ 05(X-T) f Q- (X,))drdX
a 1 g1 n.(P) A O

P (2m) P cPl em'l Plc:Qc:P2 1 Re A=0

where QE(X, A) is the sum over the indicated P' and s of

(s, ¥, (T)+t le(x-T )
y tr(M
(ser-1)

1

e -
(24) E(P (1)>\) MP'IE(P)(S’ 8()\))390, )\(¢))BG(>\)

1
GP'

P'|P

Recall that nl(P) is the number of parabolic subgroups of }?l with
a given Levi factor in common with P. The next step is to replace nl(P)
by n(P), defined in the same way but with G replacing P,.

Suppose r e Q(o We replace in (23) and (24) the variable

P"’P)'
A by rX and o0 by ro. The expression (24) becomes the product of

{rlsetmrenr, You(T) - Ty + r Ty + r i lex-T))
(25) = 1 ,
r 't E(Pl) -1
er (r SE(r) E)\—)\)

with P"™ = r—l(P'), and

(26)  tr Mpy p(1, 0 My, | (py (50 Sx)en, . (4)B, ()
Since B is invariant under the Weyl group,

Brg(rk) = Bo( A)
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Moreover the functional equations allow us to rewrite

Mpip(L, r)\)-]'MP,IE(P)(s, e(rd))

as the product of

-1
Mp (£ DMp, (2, ) lM c(pn) (S5) €M oy 1 puy (£(x), ()

We also have

-1 -1
ME(P)!E(P")(E(r)’ e(N)) “e= QMPIP"(r,)\)

and

-1 _ -1
Mpipulrs A 70,5 2 (0) = 05y (OMppu(r, M)
Thus (26) is equal to

tr (Mp, pu (x, “_]Mpwe(pu)(se(r)' e(N)epg \(9)B (M)

Making use of the functional equations as before we see that this is equal

to the product of

! (1, M (r Tse(r), e(N)epy 4($))B ()

tr(M__ -1
r (PI)IPH r (P')]E(P")

and

(Mlse@e-n T el )

e

Notice that this exponential cancels part of the numerator of (25).
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Now we have to try to simplify the results. The sum in (23) is
over all standard parabolics P, Pl containing P. The invariance with
respect to r just established allows us, for a given Pl’ to replace
P by a fixed element in its associate class provided we replace nl(P)
by |QP1(01P, nP)[ . However we can then use the invariance once again
to sum over all P" and all r provided we replace nl(P) by n(P).
So we change the notation, denoting P" by P, P" by P', tr by t,

and r—lsa(r) by s.

We obtain
2
P's (3m Pn(py 0P, ¢®; P{CQCP, iap P

where wg,(X, A) 1is equal to

(s8N TR (D (XY (D)

tr (Mp, (1) Mpyy oy (5, £ €0y L (B (1)

Py
OP' (seX-))

There are further changes in the notation to explain. The group

formerly labelled r—lt—le(Pl)

P1 is that it contain P'., Moreover P2 is the former r-lt-ls(PZ).

is now labelled Pl’ and the condition on

The new t 1is determined by the condition that t(P'), and thus

t(P and t(P,) be standard. The function 02 is then defined by

el
transport of structure and Yl(T) is the projection of t-lT on #t

P
1
So are the groups Q, but they can clearly be defined intrinsically.

If (L, m#) is the e-special pair attached to s then the groups Q
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are the elements of 4€(L, o) which contain Pj.

We can unburden ourselves of P2 if we fecall from Lecture 9 that

a€
-— z (_l) Q TQ i

T
PICQ le Q

a€
(-1 Yo
{Q,PZIPICQ CPz}

[l A

The sum over P, s, and 0 can now be forgotten as can

1
a
(2m)

the transition from P to M being effected as in the second Amer. Jour.

. n(;) for they appear in the statement of the fine X-expansion,
P

paper.

Thus we are reduced to considering

0 0 2 T
(27 XP J 11 (-1) Tl(X-Yl(T))ETQ(X—Yl(T))_}'iu ZP' wp (X, A,
(S

1 %1 Q2P p

in which we have still to be precise about which P' and Pl occur.
Choose the unique standard P" and the unique t & Q(J‘LP,, o P")

such that t(P') = P". If we review the calculations that led to this point,

we see that

-1, _ -1
tse(t 7) = slszs:(s1 )
t(P ) t(P,)
with s, e Q (“P",t(P'))’ s, € Q (nP,,, “‘e(P”))’ where
P e 4(MO) . We see indeed that the necessary and sufficient condition
that P' and P1 occur is that tse(t_l) have this form. In particular

if one P' occurs then, as we should expect, all parabolics associate to

it in P1 occur. Thus for a given P1 either no P'<¢C P1 occur or
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M

P' runs over P 1(MP)'

Combinatorics. We take P1 with np € ap and consider
1
A€
T T
(28) [ ;1 -1 *%x-v,(T)) T (x-Y,(THS T T (%,
ai {oe (L, n)ngPl} 1 1 €Q 1 , P P

e iy pigp 1(MP)

without asking whether it actually occurs in (27). We shall see that if it
does not occur then it approaches 0 as T approaches «, and therefore
may be added to the sum (27), in whose behavior we are interested only
for large T.

Let (L, 6t) be the e-special pair determined by s. We introduce
new coordinates on iotP, replacing A by the pair (v, A), with v
the projection of A on i and A = sel-A. It is this change of
coordinates which introduces the factor % into the statement of the fine
X-expansion.

We may write YP,(T) + X-Yl(T) as X + Y;,(T), where

{Yll,,(T)]P' € Pl(MP)} is an AI&I -orthogonal family. Yé,(T) is given by

P

-1...1 -1
(r °T) +T0-r TO ,

where (r.l'l‘)1 is the projection of r_lT on aé, r being any element

of the Weyl group such that r(Pl) is standard.

The inner integral in (28) is equal to

(29) e <A,X> tr(MM(A)MPl E(P)(s,E(K))epo’x(d)))Bc()\) |dAd A |

with
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My, (LN M, o (1 Ay (T)
MM(K)=Z P'|P P'|P e< P >

, 1
P GP,(A)

and M = MP° We have used the identity

-1 _ -
Mp|p (10 Mpy 1 gy (8, 600) = Mpy p (L0 Mp, 5 (L se)Myp (s £(0)

1,
We denote the value of (28) by f(X), the function f{ being
defined on ul or on dll/n /H"Ll because A is orthogonal to a.
We remark that if D 1is any differential operator with constant

coefficients on iozl then

, d
(30)  [D(tr(y MMy (py(ss e eng 3 (6))B )] < ep(H#]|TID °

where do is independent of D. I omit the verification, which is easy
with the help of the expansion Z cl\s/ldl to be developed below. The
essential observation is that <A, Y;,(T)) =0 for AE iazl.

We deduce from (30) that if X = U+V,Veieaf, U orthogonal to ie
then for.any n we have

d
(31) €0 | < e,y Tl °

LEMMA 6. The expression (28) goes to 0 as T approaches

unless nl is invariant under se& and M1 is the centralizer of aie.

To prove this lemma it is useful to write
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€

%0 Q
(-1) ™ TAX-Y(T)) _T(X-Y (T))
.Qppl 1 1 £Q 1
Qe4€®,h)

once again as
€
1 aQ 2
) (-1) ~ o7(X-Y (T))

P,2Q2P,

the sum running over those P, such that there is exactly one element

1 and PZ'

It is clear that we may reduce ourselves to the case that Pl is

of 4'€(L, ) between P

standard. We shall show that if P1 is standard and (28) does not o
approach 0 as T approaches « then P1 is e-invariant and s € Q l.
A consequence will be that if (28) does not approach 0 then it actually
occurs in (27).

It will approach 0 if there is a positive constant ¢ such that
(32) 1all > <ffvil , l[ulf > <l

whenever Eci(X_Yl(T)) # 0 for some P2 such that there is a unique
e-invariant parabolic between P1 and PZ'
Recall that d(T) > c||T||. Consequently “T1“ > c|T|, T, =Y(T)

being the projection of T on 0!.1 (unless P, = G, the trivial case).

1
If (32)/ then ws can find a sequence {(X_, Tr‘)} such that

. v
LouAs~

U
n

ORIV _ I
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Taking the limit we find a non-zero pair (X, T) with X € ¢t nat

1
and with
oa(X-T,) >0 aeAZ a(X-T,) <0 aeA—AZ
17 -7 1’ 1" - 171”7
W(X-T,) >0, ae A- A
£ a r -"" €0 €0
e Q Q - 7R .
Let X—X1+XQ, XQE OLQ, Xlenl,Tl—Tl+TQ. Since
Xclz‘ € n? N & and since Q is the smallest e-invariant parabolic
containing P, we conclude that XQ = 0. Then Y K
1 1 v €

a-TH >0, aen

AR

1 then

If Py # Q, so that A? is not empty, and if o €

AT = «T) > aT) > c|T|

We deduce that T =0 if P1 # Q. On the other hand the proof of

Lemma 7.3 of Lecture 7 shows that
IxQ-T71 2 ellx Tyl ¢ >0

Thus X? =T = 0 implies that XQ =X = 0. We conclude that P1 = Q.
The upshort is that in (27) we are free to sum over all Pl with

< =
(npl ”lP or only over those Pl such MPl MQ for some
Qe 3 €(L’ ot). We take the former, larger set.

We set



//\2"\\““* &Y\L\ /t\\ N (\) '\ \9“'\'6»“6 \»IWKB

> b : [ « ,-.«\ S \/

: \
S —w A = s<X- X ) Qe W) oy N )/—/X\._y -

cu«—yw\f\% gy
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\H~ 2
X % % )4
1 (8,¥p(T)) AN
CP'(A) = e ) A € nP' ~ 1\& Al
‘S(“ @‘(d\
and we set ‘ /{\__”\ N
s N
_ -1 ' :
dpy (A h) = triMp, o (1,07 My, (LM py(s, e eng (9)IB (D . N
CANY

Moreover for convenience in the following discussion we denote the variable

X appearing in (29) by H Then by Lemma 6.3 of the Annals paper

1°
the expression (29) is equal to
AH P
je< Y y cohdg ', mydnay
se 3o

Recall that if S € 4(M) then we attach to S the point Yo(T),

obtained by projecting any Yé,(T) on 0 P'C S, and the collection

S
M

S’
y

= {Yl

y S(

51 R)(T)-Yé(T)}R cs, R eP}

S S

. - 1 S,. : -
MW'—ATPTV]CbLb o Y (T). If TM( , VM) is the characteristic

function of the convex hull of the points in VfA then

1 S
A YZ(T) A(H“)
e < oS >fuﬁe Ty Hy Yyp iy

P
The notation for the function dSl is not good. For example

dg is the function formerly denoted d'S. In any case for each fixed A\

we express dP,(X, A) as a Fourier transform
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dp, (0 M) = J dp, O, U)e<A’U>dU
i
M

Then, as was observed in Lecture 13,

1
dfoun = au f (dHS &5, U)e (ng) +(tuy) re(Hg, Ug)

th “’S

if P'C€ S. Since we are dealing with a (G, M) family this may also be

written
(nagy+{0,u))
s 1 1
ju dUg jul dH dg(M,Uge s)
s s
with
ds(A, Ug) = [ < dp, (A, UgtV)AV P'cS
Tum

3
Putting this all together we see that (29) is equal to

£ 11,1 1, .S s
3Q - (H,Y,(T)-U X (T)-U TS (H~ .Urrﬁ,,v (H,U.)dH
EE] 2 3 D QETQ(HIYI(T) 1)"121(‘*1 ¥ (T)-U T g(HG (D), U My, Vi) og (H, U
1 Sl QoP :S

where H = Hl + Hé + H?/I and the inner sum is over Q. The function

¢S(H, US) is given by
- AH) G
9g(H, Ug) = f d./\.d\)e< >ds(>\, Ug)

Recall that X = M4, V), where A = scA-)X and Vv is invariant under

SE.
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In (33) the space enl\l/l is the set of all X in LoV such that
dx(X) = 0 for all e-invariant rational characters of G (The notation
is not ambiguous, but almost so, for there is a danger of confounding
E:m'l\])l with O‘L;I). The point is that the domain of integration is

independent of P so that we can take the sum of (27) under the

l)
integral sign obtaining (33) again but with the summation extending not
only over Q and S but also over Pl.
So we can simplify it, because
Q _ _ 1..1.1 1, _ Q. _
L Tp (H =Y (T)-U T S(HG YS(T)_’ Ug) = 15(HgY(T))

P1 1

This formula is implicit in §2 of the Annals paper, and corresponds to

the following diagram:

Q4
R
Q=
A
w3
Q Q P'
I's Tpr X Ty
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Thus the sum over }?1 of the integrals (33) becomes the sum over

S of

€

a
Q2 Qv QTS (55 vS
1 LD ST (HG Y (T)-UL) TG (HG-Y S(T)Ty (Hy, Y Dog (H,Ug) dH

(34)
f“s jn QoS

¢ M

LEMMA 7. The integral (34) converges. It approaches 0 as T approaches

infinity unless g c 0y

For the purposes of this lemma it is best not to work with (34) but
to return to (33), removing the sum over S and replacing

€

0 - Q
ZQ(-l) QY (DU Gep ()Y, (T)-Uy)

2
2. Oy HY(T)-Uy)

<<)

The function d is a Schwartz function of A, v, U. Thus

s %

is a Schwartz function on dtM/ n x & For convergence we need to

S
show that if

Ho = X+V

with V € #t, X orthogonal to @ then there is a positive constant c
such that

Xl + llugll > < vl

s
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on the support of the integrand, T being for the moment fixed. If this
were not so then the usual argument shows the existence of a non-zero
V E M n ﬂl which takes in the closure of the support of eoi" This
contradicts the proof of Lemma 7.3 of Lecture 7.

We use a similar argument to show that the integral approaches 0
if ozs is not contained in by For this we write

H=HM=X+V ,

V € #1, X orthogonal to & and show that for some c > 0

IxlF+ ugl > elvll » 1]+ flugll 2 <l

S s

on the support of the integrand. Because of Lemma 6, or rather because
of its proof, we can simplify the situation somewhat. We can suppose that
Pl = Q is e¢-invariant and standard and that s acts trivially on uQ.

€

Thus L 2 sz, n 2 #ZQ We may also suppose that S is standard.

If we cannot find the constant ¢ then we can find a non-zero pair

(V, T) such that V-T is in the closure of the support of 60% and
such that

1.1 .1

I'S(VS TS)’ 0) # 0
(35)

S S TS

I‘M(VM, VM) #0 ,

where VSI is defined like VI\S/I but with TO = 0. Moreover V € @,
1

Thus Ve #, for P1=Q is invariant under s and €. However
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the first of the inequalities (35) implies that
(36) vl=rl

Since d(T) ic[]T” we have T, =0 only if T =0, If T =0 the

n

second inequality implies that V., = 0. However the proof of Lemma 7.3

)]

shows that Vl-Tl= 0. Thus T cannot be 0 without V being 0.

We conclude that Té # 0. The inequalities (35) actually imply that V

is in the convex hull of the collection
- {r’l(TM)lreQS(M)}

If o is a root of S which does not vanish on dzs then there is

a positive constant c¢ such that
ar NT)) > T
M _

for all r € QS(M) . We conclude that a(V) > c||T|| # 0. However if @

L

S
is not contained in uL we can find a root o« which vanishes on o
and thus on V but not on & g Changing its sign if necessary we
obtain a root in S and then a contradiction.
We continue to work with the modified (33) assuming that 0 g ca
. S5 S S ;.S S
We show that we may substitute I‘L(HL, VL) for I‘M(HM, VM).

For lack of time we simply quote two lemmas from the second Amer. Jour.

paer. The first states that



57

S,eS

Sy _ 1SS
TD(HT, YD) = IyfHyp Yy > 0

The second states that where the difference is not 0,

S ;S
Iyl > ellTl

¢ being as usual a positive constant. Since H;-HE is the projection of

X on nlh;[ the conclusion follows readily. See diagram at end of lecture.

Final combinatorics. We are reduced to considering

€
a
Q » Q1 R_vQ S S S
(37) juliu o ja ZQQSH) T (Ha =Y o (T)-Up) T (HG-Y S (T (HE V) og (H, Ug)
e M S=L S

We first treat
€
(38) ] J I (D QE

-AEQ
A= ao QIS

0 4R-v2 (1115 (1S yS
(Hy =Y o (T)-U)Tg (HG-Yg (T)HIy (HT,Y7) g (H,Ug)

We may interchange the order of summation and integration. We

SE

write U =U;€+V with U2® in @ 5% and Vv orthogonal to uQ

S Q Q

and integrate first with respect to V.
> - <A,H> o €
(39) [ ¢ (H,UZ+V)dV = [ dAdv e J d. (A, US+V)dV
nQ ¥ M0 nQ S5 H0
sg S se S

Q . se
where s&:“’S is the orthogonal complement of azQ in otg. If

P' e PS(M) the right side is equal to
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\,Q/
J)‘w
\}'r\
A S
AH '
fdAdve< >j 0 P,(A U€+V)dV A A
S€ M d KX
ot
QC 5%
However an
%
. £
f o0 P,(A U +V) J O v, an dV, dp, (A, UGV +V)
se™M se Q M
and
an P,(x UgHv)av,
M
is the Fourier transform of the restriction of dP' to an, and therefore

the same for all P'ec Q. Thus (39) is equal to

(A, U +V)dV R

fdAd\)e<A’H>f 0 d,

seQ

and, in particular, is independent of S.

Set
Vo(H,Uy) = [ dAdv e<A'H>aQ(>\,UQ>

The sum (38) is equal to

a .
Q Ny (T
(40) LoD = f  TgHG YT -Uv(H, U
Q

because
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Qv rS(mS vS) =
) o TSESYSTIILELY) =1
Se#*(L)

1

This identity, which I do not prove formally, is another form of

Lemma 6.3 of the Annals paper and corresponds to the following diagram:

M

The outer integral in (37) can be taken first over se ™M and then
s€ . M
= ot
over “M #t. To integrate (40) over set M Ve have to take
J M Vo(H, U
se M
Since sa“’ﬁ is the domain in which -iA wvaries this integration yields

4. 0,udr
i 000



ot \
60 O,V\-’)J\ 4 .
. \(‘[\u’
, (P
We next integrate this over fig/ taking o &
I qav L aQ(A,US€+V)dt>~

ot
se Q

and observing that

se _ = s€
S 0 Q(A,UQ+V)dV—dQ(>\,U ),

Q
SE Q
where we now regard Q as an element of 4'€(L, ¢t ) and where EQ
is defined by the (G, L, ¢t )-family attached to {dP,}.
Summing up the results so far, we see that (37) is equal to

€

a N
1y QQ 2 = SE SE
fa {ZQJ se(-1) ~ T(HAY (T)-U2 ){f I Ug )dA}dUQ }dH
e ia

(The notational difficulties and inconsistencies are growing more and more
severe.) Let L' run over the Levi factors of groups in ?e(L, a ).

Using the results of §2 of the Annals paper we expand

€
a
_ Q -~ _ _r1S€
(-1 = T HSYAT)-ULD)
as
€ €
307%R A
) (-1) TQ(HQ Q(T)) T (H g YT, UQ) ,

R2Q

it being understood that the sum is over R €& 4€(L, ot ).

We postpone consideration of
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s€E

Q

SE

G s€
f se fRHG YT, U 0

R 0
%q

cil AU du
)dq( )
observing for the moment only that it depends on R alone and not on Q

because

SE
+V)dv
q *Vd

=z A,
i dnr, U
does, the integration being taken over the orthogonal complement of
s€E s€
“’R on m,Q .
This observation allows us to sum
ae "'B.E
I ¢ ® R im v )
QcR

obtaining (cf. Lemma 5.3.5 of Lecture 5)

R,..R
eFL(HL’eVE)

Since this is a function with compact support we see that (37) is

equal to the integral over i6t of the sum over R of the product of

R
L’e

—. R h’*»v T
“R I (H
L

vﬁ) = E'E(T) Ve
and

]

€ SE
0 )dU dH

o~ G seg, =
G\j e 8I'R(HQ-YQ(T),UQ )dQ(>\,U o Gy

OlR nQ

which equals
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-G % L
X © \f"/

~
We obtain finally P\

[y &mE&Enan
in R R

a polynomial in T. Using Lemma 6.3 of the Annals paper to collapse the

sum and examining the definitions we see that this is equal to

jm te( M (PIMp ) py(s,e())en 3(9))B () [dA|

All that is left is to rid ourselves of the BO(X) and for this we

must consider the normalization of intertwining operators.

Normalization of intertwining operators. In the second Amer. Jour. paper

Arthur assumes a normalization of the local intertwining operators with
the properties to be stated below. I now want to point out, with minimal
explanation, that such a normalization can be easily deduced from results
already in the literature.

References 1. J. Arthur, On the invariant distributions attached to

weighted orbital integrals (preprint).

2. K. F. Lai, Tamagawa number of reductive algebraic

groups, Comp. Math.

3. A. Silberger (i) Introduction to harmonic analysis on

reductive p-adic groups P.U.P. (ii) Special represen-

tations of reductive p-adic groups are not integrable,

Annals. (iii) On Harish-Chandra u-functions for

p-adic groups, Transactions.
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I observe that we do not need the formula of Th. 1.6 of paper [3.ii],

<

which, ,a/é/ Shahidi has pointed ‘out to/‘m’e', is not correct. The source of
/ ) — - e e < -
error is perhaps the assertion preceding Lemma 1.2.
If G 1is a group over a local field with standard parabolic P0 then

for any P 2 MO and any unitary representation ¢ of M = MP we can
introduce as usual the induced representations Py a OB the space ﬂG(P) .

Here XA lies in the complex dual of & We also introduce the intertwining

M
operators MQIP(I,A), MQIP(O,)\) = MQIP (1,0, whichlsend o € aO(P)

to ¢'E€ N—O(Q) with

(AMpg) (Hy(ng))-(Mp~) (HA(g))
o'(g) = [ - ¢(ngle P’ VP Q Q dn

NQnNP\ NP

The global operators are tensor products of these local operators.

We need decompositions

(o,)) = MNL(o,A)

MQ'P nQ|P(O, Q!P

where nQIP(O,)\) is a scalar and both functions on the right are meromorphic

*
in A, A € &M ® C. The following conditions are to be satisfied.

(1) NRIP(O',X) = NR|Q(O',>\)NQ|P(O',>\)

.. * -
(ii) NQIP(G,A) = NQIP(O,-A)

(iii)

Ng@ny|s®)(O M = Npirdy
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(iv) If ¢ and G are unramified and ¢ 1is fixed by a hyperspecial K,

then
NQ IP(O’ >\) q)

is independent of A,

(v) If o is tempered then n (0,A) has neither zeros nor poles in

QP
the positive chamber attached to P.

(vi) If the local field is non-archimedean then N (og,\) is a rational

Q|P
function of {q-ao\)la € AP}.

In the paper [1l] Arthur has established the existence of such a
normalization for real groups. Much of his argument is also applicable to
p-adic groups and shows that it is enough to verify the existence of

and N when o is tempered, P is maximal, and Q =P

"olp Q|P

is opposite to P.

In this case, by [3]

— %
M_ (0,-0) M_ (0,})) = cu(o;A)
P|p P|P

where c¢ is a positive constant and u is the function appearing in
Harish-Chandra's Plancherel formula. Again by [3], this function is a

rational function of z = q"OLO\) (o

is now the unique simple root)

U(O—,X) = U(o,2)

All we need do is to decompose U(o,z) as
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1

U(o,z) = VP(o,z)'\_/'P(c,?_ )

where VP(O,z) is a rational function with neither zero pole in |[z]| < 1

and with VP(G,z) = 7__(0,-2-), for we then set
P

n_ (o, = /2 Vy(o,q *M)

Plp
and
M_ (o,N)
N_ (0,0 = 2E
PP ﬁlP(O,K)
Since
M_ (o,\) =M (g,-A)
P|p P|P
and
1—1_ (o,A) =n _(O',-_X-)
Plp P|P

the condition (ii) is fulfilled. Observe that o = -a, that is, replacing
by P entails replacing o by -o.

To verify (i) we need only check that

N (o,)N_ (o,) =1
P|P P|p

By (ii) the left side is

N_ (0,-D'N_ (5,

P|P PlP
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which equals

Cu(c9 >\) =1
\_IP(G,'z"l)VP(o, z)

That VP(G, z) can be so chosen that (iv) is satisfied follows from
the calculations in [2].

To prove the existence of VP(O, z) I use an argument of Shahidi.
It exploits the following two properties of U(0,z), both consequences
of the fact that U(c,z) is real and positive for |z| = 1:
(i) Ulo,2) = 00,7 1)
(ii)gAny zero of U(o,z) on |z| = 1 is of even multiplicity.

It follows from (i) that if o is a root of U(O,z) = 0 then 3t

is also. The same assertion is valid for poles. Thus we may write

TTE | (10,2 (15 2)

—1
Tl (1-8,2) (1-B; "2)

U(o,z) = a

where |o.| <1, |8,/ <1, 1<i<r, and

T o,
T 8,

>0

a

We let

-

e

il
)

—
|

[y
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and set
T]-?_ (1o, z)
Vp(0,2) = b =1 !
M=y (18;2)
Then
TR Ty o
VP(O,z ) i
il B1 Tﬁ;l (1—81 2)
and

1

U(o,z) = VP(o,z)vP(o,E" )

If we replace P by P then u(o,\) is not changed but z is

replaced by 21 and U(o,z) by U(O,z_l), which equals

-~ -1

- Tlle (1-0.2) (1o, "2)
- -1

Ty (1-B;2)(1-8, "2)

So we may take
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