Lecture 4

ABSOLUTE CONVERGENCE OF THE COARSE O-EXPANSION

J.-P. Labesse

4.1. Where the alternating sum is used.

We fix once for all a pair of parabolics $P_1 \subset P_2$. We consider $P_1 \subset P_2 \subset P_2$. We need the

LEMMA 4.1.1. If $\sigma_1^2(H(x) - T)F_P^1(x, T) \neq 0$ then there exist $\delta \in P_1$ such that

(i)
$$\alpha(H(\delta x) - T) > 0$$
 $\forall \alpha \in \Delta_0^2 - \Delta_0^1$

(ii)
$$\alpha(H(\delta x) - T_0) > 0 \qquad \forall \alpha \in \Delta_0^2$$
.

First of all, for any $\delta~\varepsilon~P_{\, \gamma}~$ we have

$$\alpha(H(\delta x) - T) > 0$$
 $\forall \alpha \in \Delta_1^2$

if $\sigma_1^2(H(\delta x) - T) = \sigma_1^2(H(x) - T) \neq 0$. Now choose $\delta \in P_1$ such that $\delta x \in \mathfrak{S}_p^1(T_0, T)$ then

the Lemma 3.2.2 above yields the assertion (i). We know moreover that

$$\alpha(H(\delta x) - T_0) > 0 \qquad \forall \alpha \in \Delta_0^P$$

but Δ_0^P contains Δ_0^1 and since T - T_0 ϵ α_0^+ assertion (ii) follows. \square

COROLLARY 4.1.2. If P1 C P C P2

$$\sigma_1^2 F_P^1 = \sigma_1^2 F_2^1 \quad . \quad \square$$

Now assume that P is ε -invariant; let M be the unique Levi-component of P containing M_0 and N the unipotent radical. Let $\gamma \in P$, $n \in \mathbb{N}$, $x \in G$, we need the

LEMMA 4.1.3. Provided T is sufficiently regular, and

$$\sigma_1^2(H(x) - T)F_2^1(x, T)\phi(x^{-1}n^{-1}\gamma\epsilon(x)) \neq 0$$

 $\gamma \in \mathbb{R}$ the smallest ε -invariant parabolic containing P_1 .

Our assertion is invariant by the transformation $x \mapsto \delta x$ for $\delta \in P_1$ and hence we may assume that x satisfies the following inequalities, if the above expression is not zero:

(i)
$$\alpha(H(x) - T) > 0$$
 $\forall \alpha \in \Delta_0^2 - \Delta_0^1$

(ii)
$$\alpha(H(x) - T_0) > 0$$
 $\forall \alpha \in \Delta_0^2$.

Now write $x = n n_* mak$ with $n \in \mathbb{N}_2$, $n_* \in \mathbb{N}_0^2 = \mathbb{N}_0 \cap \mathbb{M}_2$, $m \in \mathbb{M}_0^1$, $a \in A_0(\mathbb{R})^0$ and $k \in K$. Since we are free to modify n we may assume n = 1; since we may change γ to $\delta^{-1} \gamma \epsilon(\delta)$ with $\delta \in \mathbb{P}_0$ we may assume that $n_* m$ remains in a compact set. Now since x verifies the inequalities (i) and (ii) we see that $a^{-1} n_* ma = a^{-1} n_* a.m$ can be assumed to remain in a fixed compact set. Since ϕ is compactly supported all we need to prove is the

LEMMA 4.1.4. Let U be a compact in M, assume that H(a) satisfies the inequalities (i) and (ii) then provided T is sufficiently regular $a^{-1}\gamma\epsilon(a) \in U$ and $\gamma \in M$ implies $\gamma \in P_1$.

Consider the Bruhat decomposition of γ in M:

$$\gamma = v w_s \pi$$

with $\gamma \in N_0^P = N_0 \cap M$, $\pi \in P_0 \cap M$ and $s \in \Omega^M$ the Weyl group of M. Let ϖ be a dominant weight of M. For some integer d there is a rational representation ρ of M, of highest weight $d\varpi$ and with highest weight vector v. We have

$$\|\rho(a^{-1}\gamma\epsilon(a))v\| = \|\rho(a^{-1}vaw_s)v\|.\Lambda(a)$$

with

$$\Lambda(a) = e^{d \langle \overline{w}, \epsilon. H(a) - s. H(a) \rangle}.$$

But $\|\rho(a^{-1}vaw_s)v\|$ is bounded from below by a constant times $\|\rho(w_s)v\|$; so if $a^{-1}\gamma\epsilon(a)$ remains in the compact U there exists a real c independent of T such that

$$\Lambda(a) \leq e^{C}$$
.

Now if $\overline{w} = \varepsilon.\overline{w}$ we simply have

$$\langle w, H(a) - s.H(a) \rangle \le c$$
.

We can write

$$H(a) = \sum_{\varpi_{\alpha} \in \hat{\Delta}_{0}^{P}} \lambda_{\alpha} \varpi_{\alpha}^{\vee} + H_{P}$$

where $H_P \in \mathfrak{n}_P$ the intersection of the kernels of the $\alpha \in \Delta_0^P$, and where the λ_α are subjected to the inequalities

$$\lambda_{\alpha} > \alpha(T_0) \qquad \forall \alpha \in \Delta_0^P$$

$$\lambda_{\alpha} > \alpha(T) \qquad \forall \alpha \in \Delta_0^P - \Delta_0^1 .$$

Hence if T is sufficiently large this implies

$$\langle w, w_{\alpha} - sw_{\alpha} \rangle = 0$$

for any $\alpha \in \Delta_0^P - \Delta_0^1$ and any ε -invariant ω . Now assume $w = \sum_{r=0}^{\ell-1} \varepsilon^r \cdot \overline{w}_0$; since $\overline{w}_{\alpha} - s\overline{w}_{\alpha}$ is a sum of positive roots we also have

$$\langle w_0, w_\alpha - s \overline{w_\alpha} \rangle = 0$$

for any $w_0 \in \hat{\Delta}_0^P$, and hence $w_\alpha - sw_\alpha = 0$ for all $\alpha \in \Delta_0^P - \Delta_0^1$. This implies $s \in \Omega^1$ the Weyl group of M_1 , and hence $\gamma \in P_1$. $\square \square$

Recall that R is the minimal ϵ -invariant parabolic containing P_1 . As usual let M_R be the Levi-component containing M_0 and N_R the unipotent radical. Corollary 4.1.2 and Lemma 4.1.3 show that

$$H_1^2(\mathbf{x})_{\sigma}^T = F_2^1(\mathbf{x}, T)\sigma_1^2(H(\mathbf{x}) - T)\omega(\mathbf{x}) \varphi_{\sigma}(\mathbf{x})$$

where $\varphi_{\sigma}(x)$ is the sum over $\gamma \in M_{R} \cap \sigma$ of

$$\sum_{\substack{\epsilon(P)=P\\P_1 \subseteq P \subseteq P_2}} (-1)^{a_P^{\epsilon}} \int \sum_{\phi(x^{-1}n^{-1}\eta\gamma\epsilon(x))dn} .$$

Notice that this expression is non-zero only if R C P2.

The exponential mapping is an isomorphism of N_R onto its Lie algebra n_R . Let ψ be a non-trivial additive character of $\mathbf{Q} \backslash \mathbf{A}$. Using the Poisson summation formula we get that

$$\sum_{\mathbf{p} \in \mathbf{N}_{\mathbf{R}}} \phi(\mathbf{x}^{-1} \mathbf{n} \, \mathbf{p} \gamma \epsilon(\mathbf{x})$$

equals

$$\sum_{\substack{* \\ Y \in n_R^* \ n_R(A)}} \int_{\phi(x^{-1}n \ \exp(X) \gamma \epsilon(x)) \psi(\langle X, Y \rangle) dX}$$

where n_R^* is the dual of n_R (as a Q-vector space).

By integration over (N) the contributions of the Y that are non-trivial on N(A) vanish, and we are left with a sum over $n_{R,P}$, the subspace of n_R^* orthogonal to n_P the Lie algebra of N.

To take care of the alternating sum over P we need the

LEMMA 4.1.5. Let Q and R be two invariant parabolics then

$$\left\{ P \middle| \begin{matrix} R & \mathbf{C} P \mathbf{C} Q \\ \epsilon(P) = P \end{matrix} \right\}$$
 (-1) $\begin{matrix} a_P^{\varepsilon} \\ = \end{matrix}$ 0 if $Q \neq R$ 1 if $Q = R$

An ϵ -invariant parabolic P between R and Q is defined by Q an ϵ -invariant subset S of Δ_R . The number of orbits of E in S is $a_R^\epsilon - a_P^\epsilon$. The lemma is an immediate consequence of the binomial formula for $(1-1)^d$. \square

Let $\tilde{n}_{1,2}$ be the set of elements in n_R^* that belong to one and only one $n_{R,P}^*$ for $P_1 \subset R \subset P \subset P_2$ and $\epsilon(P) = P$. Using the previous lemma we see that

$$\varphi_{\sigma}(x) = \sum_{\gamma \in M_{R} n \sigma} \sum_{\Upsilon \in \tilde{n}_{1,2}} \hat{\phi}(x, \Upsilon, \gamma)$$

where

$$\hat{\phi}(\mathbf{x}, \mathbf{Y}, \mathbf{z}) = \int_{\mathbf{R}} \phi(\mathbf{x}^{-1} \exp(\mathbf{X}) z \epsilon(\mathbf{x})) \psi(\langle \mathbf{X}, \mathbf{Y} \rangle) d\mathbf{X} .$$

Let Q be the maximal ε -invariant parabolic contained in P_2 . Let $p \in P_1$; since $P_1 \subset R$ normalizes N_R we have

$$\hat{\phi}(p, Y, \gamma) = \hat{\phi}(1, Ad^*(p)Y, p^{-1}\gamma\epsilon(p))\delta_{R}(p)$$

where $\delta_R(p)$ is the absolute value of the determinant of Ad(p) on $n_R(A)$. Now let $p \in \mathbb{P}_1 \cap G^1$. We may write $p = n_{max}^*$ with $n \in \mathbb{N}_2$, $n_* \in \mathbb{N}_1^2$, $m \in \mathbb{M}_1^1$ and $a \in A_1(R)^0$. Since N_2 and $a \in \mathbb{N}_2^2$ are in $a \in \mathbb{N}_2^2$ and $a \in \mathbb{N}_2^2$ then $a \in \mathbb{N}_2^2$ is independent of $a \in \mathbb{N}_2^2$ are compact set $a \in \mathbb{N}_2^2$ such that $a \in \mathbb{N}_2^2$. There exists a compact set $a \in \mathbb{N}_2^2$ such that if $a \in \mathbb{N}_2^2$. There exists a compact set $a \in \mathbb{N}_2^2$ such that if $a \in \mathbb{N}_2^2$ is such that $a \in \mathbb{N}_2^2$.

then $m \in M_1 \cdot \omega_2$; moreover if $\sigma_1^2(H(a) - T) = 1$ we have $\alpha(H(a)) > 0$ for all $\alpha \in \Delta_1^2$; this implies that $a^{-1}\omega_1\omega_2 = a^{-1}\omega_1 a\omega_2$ remains in a fixed compact set $\omega_3 \subset \mathbb{N}_1^2 \mathbb{M}_1^1$.

From this we conclude that the integral over $P_1 \setminus G^1$ of

$$\sum_{\sigma \in \mathcal{O}} |H_1^2(\mathbf{x})^{\mathrm{T}}|$$

is bounded by

$$\int_{\mathbf{p} \in \omega_{3} K} \left(\int_{\mathbf{A}_{1}(\mathbb{R})^{\circ} \mathbf{n} \mathbf{G}^{1}} \Xi (\mathbf{a}\mathbf{p}) \delta_{1}(\mathbf{a})^{-1} d\mathbf{a} \right) d\mathbf{p}$$

where

$$\Xi(\mathbf{x}) = F_2^1(\mathbf{x}, T)\sigma_1^2(H(\mathbf{x}) - T) \sum_{\gamma \in M_R} |\hat{\phi}(\mathbf{x}, Y, \gamma)| .$$

4.2. Final estimates.

Let $\boldsymbol{\pi}_1$ be the Lie algebra of $A_1(\mathbf{R})^0$ and $\boldsymbol{\pi}_1^{\varepsilon}$ be the set of ε -fixed vectors in $\boldsymbol{\pi}_1$. Let $\boldsymbol{\pi}_1$ be the orthogonal complement of $\boldsymbol{\pi}_1^{\varepsilon}$ in $\boldsymbol{\pi}_1$. Since ε is of finite order on $\boldsymbol{\pi}_0$ we may and shall assume that the scalar product on $\boldsymbol{\pi}_0$ is ε -invariant. Let $\boldsymbol{\pi}_1$ be the orthogonal projection from $\boldsymbol{\pi}_0$ onto $\boldsymbol{\pi}_1$. We have the

LEMMA 4.2.1. Let $H \in \pi_1$; the projection on π_1 of $\epsilon(H)$ - H is an injective map from π_1 into π_1 .

Assume $\pi_1(\varepsilon(H) - H) = 0$, since $H \in \mathcal{M}_1$ we have $\pi_1(\varepsilon(H)) = H$;

but ϵ preserves the scalar products and hence $\epsilon(H)=H$. \square

At the end of the preceding section we introduced a function Ξ on G. Assume $\Xi(ap) \neq 0$ with $p \in \omega_3 K$ and $a \in A_1(R)^0$. Since we assume

$$\hat{\phi}(ap, Y, \gamma) = \hat{\phi}(p, Ad^*(a)Y, a^{-1}\gamma\epsilon(a))\delta_{R}(a)$$

is not zero, this implies that $a^{-1}\gamma\epsilon(a)$ remains in a compact set $\omega_4 \subset M_R$ independent of $p \in \omega_3 K$ and $Y \in n_R^*$ (but depending on the support of ϕ). We moreover assume that $F_2^1(ap, T)\sigma_1^2(H(a) - T) \neq 0$, and then assumptions of Lemma 4.1.4 are fulfilled. This implies that for sufficiently regular T, $\gamma \in P_1 \cap M_R$.

Now for such a \gamma we have

$$a^{-1}\gamma\varepsilon(a) = \gamma_1.a^{-1}\eta a.a^{-1}\varepsilon(a)$$

for some $\gamma_1 \in M_1$ and $\eta \in N_1 \cap M_R$. Since $a^{-1}\gamma \epsilon(a)$ remains in a compact set of $M_R \cap P_1$, the projection on $A_1(R)^0$ of $a^{-1}\epsilon(a)$ must also remain in a compact set. But if $a = a_1b$ where $a_1 = \exp H_1$ with $H_1 \in \pi_1^{\epsilon}$ and $b = \exp H_2$ with $H_2 \in \mathcal{F}_1$ we have

$$a^{-1}\varepsilon(a) = b^{-1}\varepsilon(b) = \exp(\varepsilon(H_2) - H_2)$$
.

Using Lemma 4.2.1 we conclude that b has to remain in a compact set ω_5 . Moreover since σ_1^ϵ c σ_R we have

$$a^{-1}\gamma \epsilon(a) = \gamma_1.b^{-1}\eta b.b^{-1}\epsilon(b) \epsilon \omega_4$$

with $b \in \omega_5$. We conclude that the set of γ_1 and η_1 (and hence of γ) that may occur is finite, and in the definition of Ξ the sum over $\gamma \in M_R$ may be restricted to a sum over a finite set E. For $Y \in n_R^*(A)$ we define

$$\theta(Y) = \int \left| \hat{\phi}(p, Y, \gamma) \right| dp .$$

$$p \in \omega_5 . \omega_3 . K \quad \gamma \in E$$

Since $\delta_R(a) = \delta_1(a)$ on A_R all we need to prove is that, given a compact set $\omega_6 \subset \pi_0$, the integral

$$\int_{\mathfrak{F}} \sigma_{1}^{2}(H-X) \sum_{\mathfrak{F} \tilde{n}_{1,2}} \theta(Ad^{*}(\exp H)Y)dH$$

is convergent, with an upper bound independent of $X \in \omega_6$. (Here \mathfrak{z}^{ϵ} is the ϵ -fixed part of the Lie algebra of the split part of the center of G.)

The space $\mathfrak{a}_1^{\epsilon} = \mathfrak{a}_R^{\epsilon}$ can be further decomposed into a sum

$$\boldsymbol{\alpha}_{1}^{\varepsilon} = (\boldsymbol{\alpha}_{R}^{Q})^{\varepsilon} \oplus \boldsymbol{\alpha}_{Q}^{\varepsilon}$$

where Q is the maximal ε -invariant parabolic contained in P_2 . Let $H = H_1 + H_2$ be the associated decomposition of $H \in \pi_R^{\varepsilon}$; we have the

LEMMA 4.2.2. Assume that $H \in \sigma_1^{\varepsilon}$ and $X \in \omega_6$ are such that $\sigma_1^2(H-X) = 1$. Then there exist a constant c independent of X such that

$$\|H_2\| \le c(1 + \|H_1\|)$$
.

Any $\alpha \in \Delta_R - \Delta_R^Q$ is the restriction of some $\alpha' \in \Delta_1 - \Delta_1^2$ and hence we have

$$\alpha(H_2) = \alpha(H-X) - \alpha(H_1) + \alpha(X) < -\alpha(H_1) + \alpha(X) < -\alpha(H_1) + c_1$$

for some constant c_1 . For any $\varpi \in \hat{\Delta}_2$ we have

$$\overline{\omega}(H_2) = \overline{\omega}(H) > \overline{\omega}(X)$$

since \mathbf{n}_{R}^{Q} is orthogonal to $\mathbf{w} \in \hat{\Delta}_{2} \subset \hat{\Delta}_{Q}$. Now H and H₂ are ϵ -invariants, and then the same inequalities hold if we replace \mathbf{w} by $\epsilon^{r}\mathbf{w}$ and X by $\epsilon^{-r}X$. But any $\mathbf{w}_{1} \in \hat{\Delta}_{Q}$ is of the form $\epsilon^{r}\mathbf{w}$ for some integer r and some $\mathbf{w} \in \hat{\Delta}_{2}$ and hence

$$\overline{w}_1(H_2) > c_2$$

for any $\varpi_1 \in \hat{\Delta}_O$ and some constant c_2 . \square

COROLLARY 4.2.3. If $H = H_1 + H_2$ as above, the set of $H_2 \in \pi_Q^{\epsilon}$ such that $\sigma_1^2(H_1 + H_2 - X) = 1$ for some $X \in \omega_6$ has a volume bounded by a polynomial in $\|H_1\|$. \square

Let V be the cone in $\mathfrak{z}^{\varepsilon} \setminus (\mathfrak{n}_R^Q)^{\varepsilon}$ defined by $\alpha(H) > 0$ for all $\alpha \in \Delta_R^Q$. If $a_2 = \exp H_2$ with $H_2 \in \mathfrak{n}_Q^{\varepsilon}$ then

$$Ad(a_2)^*Y = Y$$

for $Y \in \tilde{n}_{1,2} \subset n_{R,Q}^*$. Then all that is left to prove is that

$$\|Y\| \ge \sup_{\lambda \in \Lambda} \|Y_{\lambda}\|$$

then if n(Y) is the number of λ such that $Y_{\lambda} \neq 0$ we have

$$\|Y\|^{n(Y)} \geq \prod_{\substack{\lambda \in \Lambda \\ Y_{\lambda} \neq 0}} \|Y_{\lambda}\|.$$

Let L be a lattice in $n_{R,Q}^* \otimes \mathbb{R}$, then there is a constant c_1 such that if $Y \in L - \{0\}$

$$\|Y\|^n \ge c_1 \|Y\|^{n(Y)}$$

with n the cardinal of Λ . Then for $Y \in \tilde{n}_{1,2} \cap L$ and $H \in V$ we have

$$\|Ad^*(\exp H)Y\|^n \ge c_1 e^{c_2 \|H\|} \qquad \qquad \|Y_{\lambda}\|,$$

$$\lambda \in \Lambda \qquad \qquad \lambda \downarrow 1$$

$$Y_{\lambda} \neq 0$$

for some strictly positive constant c_2 . Since the function θ is obtained by integration over p in a compact set of the absolute value of a Schwartz-Bruhat function on $n_{R,Q}^* \otimes \mathbf{A}$ depending smoothly on p, the convergence is now an easy exercise left to the reader. \square

$$\int_{V} \|H_{1}\|^{r} \sum_{Y \in \tilde{n}_{1,2}} \theta(Ad^{*}(H_{1})Y) dH_{1}$$

is finite for any positive real number r. To prove this we must recall the definition of $\tilde{n}_{1,2}$: it is the subset of the Y ϵ $n_{R,Q}^*$ that belong to one and only one $n_{R,P}^*$ with R ϵ P ϵ Q and P ϵ -invariant; in other words

$$\tilde{n}_{1,2} = n_{R,Q}^* - \bigcup_{\substack{R \subset P \subseteq Q \\ \epsilon(P) = P}} n_{R,P}^*.$$

The space $n_{R,Q}^*$ can be decomposed into root subspaces under the action of $(\pi_R^Q)^{\epsilon}$:

$$n_{R,Q}^* = \bigoplus_{\lambda \in \Lambda} n_{\lambda}^*$$
.

The set Λ is in natural bijection with the orbits of E in the roots of $\mathbf{\pi}_{R}^{Q}$ in $\mathbf{n}_{R,Q}^{*}$. Let $\mathbf{\pi}_{\alpha}$ be a weight in $\hat{\Delta}_{R}^{Q}$ and define

$$\overline{w}_{\overline{\alpha}} = \frac{1}{\ell} \sum_{r=0}^{\ell-1} \varepsilon^r \overline{w}_{\alpha}$$

where $\overline{\alpha}$ represents the orbit of α under E. The $\overline{w}_{\overline{\alpha}}$ are a basis of $(\sigma t_R^Q)^{\varepsilon}$. An element $Y = \sum\limits_{\lambda \in \Lambda} Y_{\lambda}$ in $n_{R,Q}^*$ is in $\tilde{n}_{1,2}$ if and only if for any $\overline{\alpha}$ there exist $\lambda \in \Lambda$ such that $Y_{\lambda} \neq 0$ and $\langle \lambda, \overline{w}_{\overline{\alpha}} \rangle \neq 0$ (and hence strictly positive).

Choose a norm on $n_{R,Q}^* \otimes \mathbb{R}$ such that