Lecture 12

THE INNER PRODUCT FORMULA

J.-P. Labesse

12.1. The constant term of Eisenstein Series.

We consider a standard parabolic subgroup $\,P\,=\,MN\,\,$ and a smooth function $\,\psi\,\,$ on $\,G\,\,$ such that

- (i) $\psi(nx) = \psi(x)$ $n \in \mathbb{N}, x \in \mathbb{G}$.
- (ii) $m \longmapsto \psi(mx)$ is for all $x \in \mathbf{G}$ a square integrable automorphic form on $M \setminus M^1$ which is a matrix coefficient of some unitary representation π of M with central character ω_{π} trivial on $A_{\mathbf{p}}(\mathbf{R})^{\mathbf{0}}$.
- (iii) $k \mapsto \psi(xk)$ is K-finite.

We shall say that ψ is cuspidal on P if m $\mapsto \psi(mx)$ is cuspidal (for all x).

Given $x \in \mathbb{G}$ we have defined $H(x) \in \pi_0$; it may be convenient to introduce its exponential in $A_0(\mathbb{R})^0$:

$$a(x) = \exp H(x)$$

so that for $\lambda \in \pi_0^* \otimes \mathbf{C}$ we may write

$$a(x)^{\lambda} = e^{\lambda(H(x))}$$
.

Let ρ or ρ_{D} denote the half sum of positive roots of A in N; we

have (with notations introduced earlier)

$$\delta_{\mathbf{P}}(\mathbf{x}) = \mathbf{a}(\mathbf{x})^{2\rho}$$
.

Given $\lambda \in \pi_P^* \otimes C$ and ψ as above, we define

$$\psi(x, \lambda) = \psi(x)a(x)^{\lambda}$$

and if Q is a parabolic subgroup of G containing P we introduce

$$E_{Q}(x, \psi, \lambda) = \sum_{\gamma \in P \setminus Q} \psi(\gamma x, \lambda + \rho)$$

a convergent series where $\operatorname{Re}(\lambda,\,\alpha) > (\alpha,\,\rho)$ for all $\alpha \in \Delta_P^Q$. The left-hand side is known to have a meromorphic analytic continuation to the whole space $\alpha_P^* \otimes \mathbf{C}$. We need the formula giving the constant term of E_Q along a parabolic subgroup $\operatorname{R} \mathbf{C} \operatorname{Q}$:

$$E_{Q}^{R}(x, \psi, \lambda) = \int_{N_{R}} E_{Q}(nx, \psi, \lambda) dn .$$

We assume that $\text{Re}(\alpha, \lambda) > (\alpha, \rho)$ for all $\alpha \in \Delta_P^Q$ and then this equals the sum over $\overline{w} \in P \setminus Q/R$ of

$$\int_{\mathbb{R}} \sum_{\xi \in \mathbb{R}(P,w)} \psi(w\xi nx, \lambda+\rho) dn$$

where

$$R(P, w) = R \cap w^{-1}Pw \setminus R$$
.

3 = 22 (1/2) «Δ. 3 = 42 (1/2) «Δ. The Norm, Mai' = (1) = > W, Mw' C Mp

We shall assume now that ψ is cuspidal on P and hence the contribution of a double coset $\overline{w} \in P \setminus Q/R$ is zero except perhaps if $wN_Rw^{-1} \cap M$ is trivial. In such a case we may assume that the representative w of the double coset \overline{w} is so chosen that $w = w_s^{-1}$ where w_s represents $s \in \Omega^Q$ (the Weyl group of M_Q) satisfying the following properties: $w_sMw_s^{-1} \subset M_R$ and $s^{-1}\alpha > 0$ for all $\alpha \in \Delta_0^R$. Then there exist a standard parabolic subgroup of R which we shall denote by $s \cdot P$ with Levi subgroup $sM = w_sMw_s^{-1}$. The set of all such s will be denoted by $\Omega^Q(\alpha_P, R)$.

Let us introduce a coset

$$N^{s} = N_{R} \cap w_{s} N w_{s}^{-1} / N_{R}$$

$$= sN \cap w_{s} N w_{s}^{-1} / sN$$

$$v_{s}^{-1} (N_{o} \cap N_{e}) w_{s} \in N_{o}$$

NS MOWS > NO AMR

the 3 M to the between the stanton

and define

$$(M(s, \lambda)\psi)(x) = a(x)^{-s\lambda-\rho} s \int_{\mathbb{N}^{S}} \psi(w_{s}^{-1}nx, \lambda+\rho) dn$$

where $\rho_s = \rho_{sP}$; the integral is absolutely convergent if $\text{Re}(\lambda, \alpha) > (\rho, \alpha)$ for all $\alpha \in \Delta_P^Q$. In the contribution of $w = w_s^{-1}$ the integral over N_R may be replaced by an integral over N_S and since $R(P, w_s^{-1})/N^S = sP \setminus R$ we have obtained the

LEMMA 12.1.1. Assume that $Re(\lambda, \alpha) > (\rho, \alpha)$ for all $\alpha \in \Delta_P^Q$ and ψ is cuspidal on P then

* Consider ws Pwith My. It contains ws Hwis. It who contains Non Mx because wis (Non Mx) ws ENO. These ws Pwith Mx.

() a parabolic and property of Me.

$$\begin{split} \mathbb{E}_{\mathbb{Q}}^{\mathbb{R}}(\mathbf{x},\ \psi,\ \lambda) \ = \ & \sum \qquad \qquad \big[\ (\mathbf{M}(\mathbf{s},\ \lambda)\psi)(\xi\mathbf{x},\ \mathbf{s}\lambda + \boldsymbol{\rho}_{\mathbf{s}}) \ . \\ \mathbf{s}\,\boldsymbol{\epsilon}\,\boldsymbol{\Omega}^{\mathbb{Q}}(\boldsymbol{n}_{\mathbf{p}},\mathbb{R}) \quad \xi\,\boldsymbol{\epsilon}\,\mathbf{s}\mathbb{P} \,\backslash\,\mathbb{R} \end{split} \ .$$

We need a formula for

$$\Lambda^{T,P_1} E_{P_1}(\mathbf{x}, \psi, \lambda) = \sum_{\mathbf{R} \mathbf{C} P_1} (-1)^{\mathbf{a}_{\mathbf{R}}^{-\mathbf{a}_1}}$$

$$\sum_{\delta \in R \setminus P_1} \hat{\tau}_R^{P_1}(H(\delta x) - T) E_{P_1}^{R}(\delta x, \psi, \lambda) .$$

We shall assume as above that $\operatorname{Re}(\lambda,\,\alpha) > (\rho,\,\alpha)$ for all $\alpha \in \Delta_p^{P_1}$ and ψ is cuspidal on P. We see that $\Lambda = E_{P_1}(x,\,\psi,\,\lambda)$ is the sum over RCP_1 of the sum over $s \in \Omega^{-1}(\boldsymbol{\pi}_P,\,R)$ of

As in Lectures 5 and 9 it is convenient to introduce the Weyl sets $n^{P_1}(n_P)$ which are the union of the $n^{P_1}(n_P, n_P)$ for all n^{P_2} standard in n^{P_1} . Given n^{P_1} we define a function on n^{P_1}

where P_s is the standard parabolic subgroup such that $\alpha \in \Delta_0^{P_s}$ if and only if $s^{-1}\alpha > 0$. We obtain the

LEMMA 12.1.2. Assume Re(
$$\lambda$$
, α) > (ρ , α) for all $\alpha \in \Delta_{\mathbf{P}}^{\mathbf{P}_1}$ and ψ

<u>cuspidal on</u> P <u>then</u> $\Lambda^{T,P}_{1}E_{P_{1}}(x, \psi, \lambda)$ equals

$$(-1)^{a_1} \sum_{\mathbf{P}_1 \in \Omega} \sum_{\mathbf{P}_1 \in \mathbf{P}_1} B_{\mathbf{P}_1 \mathbf{P}_1}^{\mathbf{S}} (s^{-1}(\mathbf{H}(\delta \mathbf{x}) - \mathbf{T})) (\mathbf{M}(\mathbf{s}, \lambda) \psi) (\delta \mathbf{x}, s\lambda + \rho_s) .$$

12.2. Computation of an inner product.

Let Q be an ε -invariant parabolic subgroup and let $P \subset P_1 \subset Q$. We consider functions ψ and θ cuspidal on P attached to unitary representations π and χ with central characters ω_{π} and ω_{χ} trivial on $A_p(\mathbf{R})^O$.

We are looking for a rather explicit formula for the function $\omega_{P_1}^{\epsilon}(\mathbf{x}, \lambda, \mu, \psi, \theta)$ defined to be the integral over $P_1 \setminus P_1^1$ of

$$p \longmapsto \Lambda^{T,P_1} E_{P_1}(px, \psi, \lambda) E_{Q}(\varepsilon(px), \theta, \mu)$$
.

We shall assume that $\operatorname{Re}(\lambda)$ is sufficiently regular and in particular Lemma 12.1.2 applies. We obtain a sum over $\operatorname{s} \boldsymbol{\epsilon} \Omega^{-1}(\boldsymbol{\pi}_p)$ of an integral over $\operatorname{P}_1\backslash\operatorname{P}_1^1$ of a sum over $\operatorname{sP}\backslash\operatorname{P}_1$ and we may combine the sum and the integral if the resulting expression is absolutely convergent.

This amounts to proving that the integral over ${
m sP} \setminus {
m P}_1^{\, 1}$ of the absolute value of

$$p \longrightarrow B_{P|P_{1}}^{s} (s(H(px)-T)M(s, \lambda)\psi(px, s\lambda+\rho_{s})E_{Q}(\varepsilon(px), \theta, \mu)$$

is finite. Since the Eisenstein series $E_{\mathbb{Q}}$ is known to be slowly increasing, that is, that

$$|\mathbf{x}|^{-N} |\mathbf{E}_{\mathbf{Q}}(\mathbf{x}, \theta, \mu)|$$

is bounded for some N, we need only to show that given N',

For some N, we need only to show that given N',
$$|am|^{N'}|B_{P|P_{1}}^{S}(s^{-1}(H(a)-T))a \qquad |\psi(mx, s\lambda+\rho_{S})| \qquad |\psi(mx, s\lambda+\rho$$

is bounded for a $\in A_{SP}^{P_1}(\mathbb{R})^{O}$ and m in a Siegel domain of \mathbb{M}^1 , uniformly for x in a compact set provided that $Re(\lambda)$ is sufficiently regular. We have assumed that ψ is cuspidal on P and hence

$$|m|^{N'}|\psi(mx, s\lambda+\rho_s|$$

is bounded when m is in a Siegel set of M^1 and x in a compact set. The boundedness of

$$|a|^{N'}|B_{P|P_1}^{s}(s^{-1}(H(a)-T))a$$
 $|a|^{N'}|B_{P|P_1}^{s}(s^{-1}(H(a)-T))a$
 $|a|^{N'}|B_{P|P_1}^{s}(s^{-1}(H(a)-T))a$
 $|a|^{N'}|B_{P|P_1}^{s}(s^{-1}(H(a)-T))a$
 $|a|^{N'}|B_{P|P_1}^{s}(s^{-1}(H(a)-T))a$

is an immediate consequence of the following

LEMMA 12.2.1. The support of
$$B_{P|P_1}^{s}$$
 is contained in the cone $w(x) \leq 0$ for all $w \in \hat{P}_1$. Here the standard law $w(x) \leq 0$ for all $w(x) \leq 0$ for all

The proof of this property has already been given in the proof of Lemma 9.2.7. We repeat the argument. Up to a sign B_P^s is the characteristic function of the set of $X \in \pi_p^{P_1}$ such that $(\pi_\alpha(sX) > 0)$ if $\alpha \in \Delta_{sP}^{P_1} - \Delta_{sP}^{P_2}$, i.e., if $s^{-1}\alpha < 0$ and $(\pi_\alpha(sX) \le 0)$ if $\alpha \in \Delta_{sP}^{P_1}$, i.e., if $s^{-1}\alpha > 0$; and hence

(i) comes from support of set 2 R (5X)

(11) comes from attending

3,60: Comsfronting with no albending

$$(X, \Lambda) = \sum_{\substack{P_1 \\ \alpha \in \Lambda_{sP}}} \overline{\alpha}_{\alpha}(sX).s^{-1}\alpha(\Lambda) \leq 0$$

for any regular $\Lambda \in n_{P}^{P_1}$.

Then provided that $\operatorname{Re}(\lambda)$ is sufficiently regular we see that $\omega_{P_1}^{\varepsilon}(\mathbf{x}, \lambda, \mu, \psi, \theta)$ is the sum over $\mathbf{s} \in \Omega^{-1}(\pi_P)$ of the integral over $\mathbf{s} \cdot \mathbf{N} \cdot \mathbf{s} \cdot \mathbf{P} \cdot \mathbf{N} \cdot \mathbf{N}$

$$(-1)^{a}l_{B_{P|P_{1}}}^{s}(s^{-1}(H(px)-T))M(s, \lambda)\psi(px, s\lambda+\rho_{s})a(p)^{-2\rho_{s}}$$

times

$$E_Q^{\varepsilon sP}(\varepsilon(px), \theta, \mu)$$
.

It may be convenient to transform the last term. Let $\theta_{\epsilon}(x) = \theta(\epsilon(x))$ and $\mu_{\epsilon}(H) = \mu(\epsilon(H))$, then this term equals

$$E_{Q}^{sP}(px, \theta_{\varepsilon}, \mu_{\varepsilon})$$

which in turn equals the sum over $t \in \Omega^{\mathbb{Q}}(\epsilon^{-1} \pi_{\mathbb{P}}, s \pi_{\mathbb{P}})$ of

$$\overline{M(t, \mu_{\epsilon})\theta_{\epsilon}(px, t\mu_{\epsilon}+\rho_{s})}$$
.

Summing up we get the

LEMMA 12.2.2. Assume that ψ and θ are cuspidal on P then the following equality of meromorphic function holds for x in $A_1(\mathbb{R})^O K$:

$$\begin{split} \omega_{P_1}^{\varepsilon}(\mathbf{x}, \lambda, \mu, \psi, \theta) &= \sum_{\mathbf{s} \in \Omega} \sum_{\mathbf{n}} \sum_{\mathbf{n} \in \Omega} (\mathbf{n}_{P}) \underbrace{\mathbf{t} \in \Omega^{Q}(\varepsilon^{-1} \mathbf{n}_{P}, \mathbf{s} \mathbf{n}_{P})}_{\mathbf{n}_{P}, \mathbf{s} \mathbf{n}_{P}} \\ &= \sum_{\mathbf{s} \in \Omega} \sum_{\mathbf{n} \in \Omega} (\mathbf{n}_{P}) \underbrace{\mathbf{t} \in \Omega^{Q}(\varepsilon^{-1} \mathbf{n}_{P}, \mathbf{s} \mathbf{n}_{P})}_{\mathbf{n}_{P}, \mathbf{s} \mathbf{n}_{P}} \\ &= \sum_{\mathbf{n} \in \Omega} \sum_{\mathbf{n}_{P}, \mathbf{n}_{P}, \mathbf{n}_{P}, \mathbf{n}_{P}} \underbrace{\mathbf{n}_{P}, \mathbf{n}_{P}, \mathbf{n}_{P}}_{\mathbf{n}_{P}, \mathbf{n}_{P}, \mathbf{n}_{P}} \\ &= \sum_{\mathbf{n}_{P}, \mathbf{n}_{P}, \mathbf$$

where $\psi^{\mathbf{X}}(\mathbf{p}) = \psi(\mathbf{p}\mathbf{x})$, the scalar product (,) sM¹ is the scalar product in $L^{2}(sM \setminus sM^{1})$ and

Denomination $\hat{B}_{P|P_{1}}^{s}(x, \lambda) = \int_{P_{1}}^{P_{1}} B_{P|P_{1}}^{s}(H-X)e^{\lambda(H)}dH \cdot G_{s}(x, \lambda) = \int_{P_{1}}^{R} B_{P|P_{1}}^{s}(H-X)e^{\lambda(H)}dH \cdot G$

The two members are well defined and equal when $\operatorname{Re}(\lambda)$ and $\operatorname{Re}(\mu)$ are sufficiently regular; they have meromorphic analytic continuation in $(\lambda, \overline{\mu})$ to the whole space and hence are equal everywhere. \square

12.3. Some application.

According to Lectures 10 and 11, the "right-hand side" of the trace formula is the sum over pairs of parabolic subgroups $P_1 \subset P_2$ such that there exists one and only one ϵ -invariant parabolic subgroup Q between P_1 and P_2 of terms $J_{P_1}^2$ which are equal to the sum over $P_1 \cap P_1 \cap P_2$ of the integral over $P_1 \cap P_1 \cap P_2 \cap P_2$ of

$$\varepsilon^{0}$$
 $\alpha_{1}^{2}(H(x)-T)K_{P_{1}}(x, w\varepsilon(x))$.

Using the spectral decomposition it was shown that $K_{P_1}(x, y)$ is equal to the sum over $P \subset P_1$ and over $\pi \in \prod_2 (M_p)$ of

$$\frac{1}{n_{1}(A_{P})} \int_{i(\boldsymbol{\sigma}_{P}^{1})^{*}} \frac{P}{\pi^{1}(\mathbf{x}, \mathbf{y}, \lambda, \lambda) d\lambda}$$

where $\Xi_{\pi}^{P_1}(x, y, \lambda, \nu)$ is given by

$$\int_{\mathbf{i}} \mathbf{m}_{\mathbf{P}_{1}}^{*} - \Lambda \ \psi \in \mathbf{B}_{\pi}$$

$$= \frac{\sum_{\mathbf{p}_{1}} (\mathbf{x}, \mathbf{I}_{\lambda + \lambda_{1}}(\phi) \psi, \lambda + \lambda_{1})}{\sum_{\mathbf{p}_{1}} (\mathbf{y}, \psi, -\overline{\mathbf{v}} - \overline{\lambda_{1}}) d\lambda_{1}}.$$

In this expression λ and ν belong to $(\pi_P^{P_1})^* \otimes \mathbf{C}$ and $\Lambda \in \pi_{P_1}$. We assume ϕ to be K-finite and the sum over $\psi \in B_{\pi}$ may be assumed to reduce to a finite sum. We have not included Λ in the notation $\Xi_{\pi}^{P_1}$ since it is in fact independent of Λ . To see this one should remark that $\lambda_1 \longrightarrow I_{\lambda+\lambda_1}(\phi)\psi$ is of Paley-Wiener type since ϕ is compactly supported and hence we are free to shift the integration domain. As a function of (λ, ν) it is meromorphic and we have tacitly assumed that (λ, ν) is not a singular value.

The main result of Lecture 11 may be stated in the following way: the sum over π and w and the integral over $i(\boldsymbol{\pi}_{P}^{1})^{*}$ and $P_{1} \cdot \boldsymbol{\sigma}_{E}^{-1} \cdot \boldsymbol{\sigma}_{E}^{1} = \sum_{\pi}^{P_{1}} (x, w_{E}(x), \lambda, \lambda)$ is absolutely convergent, so that we are free to interchange the order of those sums and integrals. Before using this we need some preparation.

LEMMA 12.3.1. The series

$$\sum_{\mathbf{w} \in P_1 \setminus Q/\epsilon(P_1)} \sum_{\boldsymbol{\xi} \in P_1 \cap \epsilon^{-1} \mathbf{w}^{-1}(P_1) \setminus P_1} \mathbf{E}_{\pi}^{P_1}(\mathbf{x}, \mathbf{w} \epsilon(\boldsymbol{\xi} \mathbf{x}), \lambda, \nu)$$

is absolutely convergent and defines a meromorphic function of (λ, ν) which we shall denote by $Z_{\pi}^{P}(x, \lambda, \nu)$.

We first remark that the series may be written

$$\sum_{\Xi_{\pi}} \Xi_{\pi}^{P_{1}}(x, \xi \varepsilon(x), \lambda, \nu) .$$

Now consider $a_1 \in A_1(\mathbb{R})^0$ and $y \in \mathbb{N}_1 M_1^1 K$ then

$$\mathbf{E}_{\mathbf{P}_{1}}(\mathbf{a}_{1}\mathbf{y},\ \psi,\ -\overline{\mathbf{v}}-\overline{\lambda}_{1}) = \mathbf{a}_{1}^{-\overline{\lambda}_{1}}\mathbf{E}_{\mathbf{P}_{1}}(\mathbf{y},\ \psi,\ -\overline{\mathbf{v}}) \ .$$

Recall that

$$\lambda_1 \longrightarrow \Lambda^{T,P_1} E_{P_1}(x, I_{\lambda+\lambda_1}(\phi)\psi, \lambda+\lambda_1)$$

is of Paley-Wiener type on $i \mathbf{a}_1^* \otimes \mathbf{C}$; this implies that

$$a_1 \longrightarrow \Xi_{\pi}^{P_1}(x, a_1 y, \lambda, \nu)$$

is compactly supported in some compact set $\omega \subset A_1(\mathbb{R})^0$ independent of y. From this we deduce that the series reduces to a finite sum uniformly when x, λ , ν are in compact set in the holomorphy domain for $(\lambda$, ν). \square

LEMMA 12.3.2. Assume that $Re(-v) + \Lambda$ is sufficiently regular in n_Q^* then $Z_{\pi}^{1}(x, \lambda, v)$ equals

$$\int\limits_{i\boldsymbol{\alpha}}^{\boldsymbol{\pi},P_1} \boldsymbol{E_P_1}^{(\mathbf{x},\ \mathbf{I}_{\lambda+\lambda_1}(\boldsymbol{\phi}),\ \lambda+\lambda_1)} \boldsymbol{E_Q(\boldsymbol{\epsilon}(\mathbf{x}),\ \psi,\ -\overline{\boldsymbol{\nu}}-\overline{\lambda_1})} d\lambda_1 \ .$$

This is an immediate consequence of the fact that when $\text{Re}(-\nu-\lambda_1)$ is sufficiently regular, then

$$\mathbf{E}_{\mathbf{Q}}(\mathbf{y},\ \psi,\ -\overline{\mathbf{v}}-\overline{\lambda}_{1}) = \sum_{\boldsymbol{\xi}\in\mathbf{P}_{1}\setminus\mathbf{Q}} \mathbf{E}_{\mathbf{P}_{1}}(\boldsymbol{\xi}\mathbf{y},\ \psi,\ -\overline{\mathbf{v}}-\overline{\lambda}_{1}) \quad . \quad \Box$$

LEMMA 12.3.3. The function $p \longrightarrow Z_{\pi}^{P_1}(px, \lambda, \nu)$ is integrable over $P_1 \setminus P_1^1$ and its integral defines a meromorphic function $S_{\pi}^{P_1}(x, \lambda, \nu)$.

Lemma 6.6 shows that

$$p \longrightarrow \Lambda^{T_1P_1} E_{P_1}(px, I_{\lambda+\lambda_1}(\phi)\psi, \lambda+\lambda_1)$$

is a "rapidly decreasing" function in a Siegel domain ${\bf G}$ in ${\bf P}_1^1$, uniformly in λ_1 since λ_1 is trivial on ${\bf P}_1^1$, and hence all we need to prove is that

$$p \longrightarrow \sum_{\substack{\xi \in P_1 \setminus Q \\ a_1(\xi \varepsilon(px)) \in \omega}} E_{P_1}(\xi \varepsilon(px), \psi, -\overline{\nu})$$

is slowly increasing in ${\bf G}$. To see this we consider ${\bf w} \in {\bf P}_1 \backslash {\bf Q}/{\bf P}_0$ and ${\bf N}_0^{\bf w}$ a subgroup of ${\bf N}_0$ isomorphic to ${\bf N}_0$ o ${\bf w}^{-1}{\bf P}_1 {\bf w} \backslash {\bf N}_0$; using the slow increase property of Eisenstein series, that is, that

$$|E(y, \psi, -\overline{v})| \leq c|y|^{N}$$

for some N and some constant c, all we need to remark is that given a compact set $\ \omega' \subset A_1(\mathbb{R})^O$

$$a \longrightarrow \sum_{\substack{\eta \in N_0^w \\ a_1(w\eta a) \in \omega'}} |\eta|^N$$

is "slowly increasing" for a $\in A_0(\mathbb{R})^0$. All those evaluations are uniform for x, λ , ν in compact sets outside the singular set. \square

The main result of Lecture 11 may be restated using the functions $S_{\pi}^{P_1}$: the $J_{P_1}^{P_2}$ are equal to the sum over $P \subset P_1$ and over $\pi \in \prod_2 (M_P)$ of

$$\frac{1}{{^{n}\boldsymbol{s}^{(A_{p})}}}\int\limits_{i(\boldsymbol{\sigma}_{p}^{P_{1}})^{*}}\int\limits_{i(\boldsymbol{\sigma}_{p}^{P_{1}})^{*}}\boldsymbol{p}_{1}^{1}\backslash\boldsymbol{G}_{\epsilon}^{\prime}}^{1}(\mathbf{H}(\mathbf{x})-\mathbf{T})S_{\pi}^{P_{1}}(\mathbf{x},\ \boldsymbol{\lambda},\ \boldsymbol{\lambda})\,d\boldsymbol{\lambda}d\mathbf{x}\ .$$

Using Lemma 12.2.2 a more concrete formula for $S_{\pi}^{P_1}(x, \lambda, \nu)$ can be given for some π and some values of λ and ν ; this is the aim of the next

LEMMA 12.3.4. Assume that $Re(\lambda)$ and $Re(-\nu+\Lambda)$ are suitably regular, then if $x \in A_1(\mathbb{R})^0 K$ and π is cuspidal on M:

$$S_{\pi}^{P_{1}}(x, \lambda, \nu) = \sum_{\substack{P \\ \text{t} \in \Omega_{e}^{Q}(\sigma_{P}, \sigma_{P}) \leq Q \\ \text{d}_{1}}} \int_{1}^{d\lambda_{1}} d\lambda_{1}$$

$$t \in \Omega_{e}^{Q}(\sigma_{P}, \sigma_{P}) \leq Q () \neq E$$

$$a_{(x)}^{\lambda_{1}-t(\nu+\lambda_{1})} \hat{B}_{P|P_{1}}^{S}(s^{-1}T, \lambda-t(\nu+\lambda_{1})) \qquad \Rightarrow e^{-1}$$

$$\sum_{(x)} (M(s, \lambda)I_{\lambda+\lambda_{1}}(\phi)\psi^{X}, M(st\epsilon, -\overline{\nu-\lambda_{1}})\psi^{X}_{\epsilon})$$

$$\psi \in B_{\pi}$$

$$Consequency \lambda_{T}\lambda_{\tau}$$

$$(\lambda+\lambda_{\tau}) - t(\nu+\lambda_{\tau})$$

Under the regularity assumptions all integrals and series are	
absolutely convergent and we may appeal to Lemma 12.2.2 since π is	
cuspidal.	