Lecture 12

THE INNER PRODUCT FORMULA

J.-P. Labesse

12.1. The constant term of Eisenstein Series.

We consider a standard parabolic subgroup P = MN and a smooth
function ¢ on G such that
(1) w(nx) = ¥(x) neN, xe G.
(ii) m —> yY(mx) is for all x € G a square integrable
automorphic form on M\M1 which is a matrix
coefficient of some unitary representation m of M
with central character W trivial on AP(R)O.
(iii) k +— y(xk) is K-finite.
We shall say that y 1is cuspidal on P if m b ¢(mx) is cuspidal (for
all x).

Given x € G we have defined H(x) € A it may be convenient

to introduce its exponential in AO(R)O:

a(x) = exp H(x)

*

so that for A € JLO

® C we may write

a(x))\ - e.X(H(x))

Let p or p, denote the half sum of positive roots of A in N; we

-



have (with notations introduced earlier)
- 2p
(SP(x) = a(x)
*
Given A € ozP ® C and ¢ as above, we define
A
P(x, A) = p(x)a(x)

and if Q is a parabolic subgroup of G containing P we introduce

Ey(xs ¥, 2) = Y wlyx, Mp)
vyeEP\Q

Q
P

hand side is known to have a meromorphic analytic continuation to the

a convergent series where Re(X, a) > (a, p) for all o €A The left-

*
whole space 0ty ® C. We need the formula giving the constant term of

EQ along a parabolic subgroup R € Q:

Eg<x, b, N = Ejnx, v, Nn

We assume that Re(a, 1) > (a, p) for all a € Ag and then this equals

the sum over w € P\Q/R of

] ) P(wgnx, Mp)dn

EER(P,W)

R(P, w) = R nw“lpw\R

where
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We shall assume now that ¢ is cuspidal on P and hence the

contribution of a double coset w € P\ Q/R 1is zero except perhaps if

WNRW 1 n M is trivial., In such a case we may assume that the repre-

sentative w of the double coset w is so chosen that w = w;l where

Q

w_ represents s € Q (the Weyl group of MQ) satisfying the following

NN Qo ‘\) a—’w\vé\\&) \-d\‘u{h“-a-, ,\ “Q_,

+
. -1 -1 R
properties: w Mw_~ ¢ MR and s o0 >0 for all a & AO . Then there ?
s s v \&\Nb,
exist a standard parabolic subgroup of R which we shall denote by s-P _
with Levi subgroup sM = \VSMw;l. The set of all such s will be denoted
. Q . v -~ g\mg Q.—.\& v\o\l °*?_
by @~ (&y, R). Lok AL sV e >
eV
Let us introduce a coset
S -1 N - N
- NN . LN A M
N NR N WSNWS \ NR S R R
= sN n w_Nw_l\sN SN
= sN nwNw_"\s \1$\\\°r\\’\¢>w, ¢ Ny
and define N Wowl PN ANg
J
—s)\—ps -1 {
(M(s, MY (x) = a(x) J w(w 'nx, Mp)dn %
S !
N g S
—
where Pg = Peps the integral is absolutely convergent if 3(\'
R P
Re(A, a) > (p, a) for all a € Ag. In the contribution of w = w;l the v f)\:
integral over may be replaced by an integral over @ and /g\ ﬁ
#
since R(P, w; )/NS = sP\ R we have obtained the (::- J !
i Id
W _fl:
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Eg(x, v, A) = ) I (M(s, M) (Ex, sivp)
seszQ(ozP,R) £e sP\ R

We need a formula for

T,P a,-a
1 R 71
A Ep (x, v, N = ] (-1
1
RC:Pl
P
I gl (H(sx)-T)ER (6%, ¥, V)
1
§ € R\ P1
Py
We shall assume as above that Re(\, o) > (p, a) for all « €& AP
T,P
and ¢ is cuspidal on P. We see that A 1EP (x, ¢, A) is the sum
P 1
over R C P1 of the sum over s € Q l(a-LP, R) of
= ap~a, P
I D T aUH(8%) -T) (M(s, M)¥)(8x, sk+p)
sesP\ Pl
As in Lectures 5 and 9 it is convenient to introduce the Weyl sets
P P
Q 1(0‘(, ) which are the union of the Q l(n , ft_ ) for all P
P P P P2 2
standard in Pl' Given se l(nP) we define a function on
npl ‘V\wﬂ NIES 5‘5';1‘?‘\“\?)\( \7‘
P
P < 2 SAG\VQ - < lsu
R, v
BS (X) = z (-1 RT 1(SX) S YO = & {>°
P[P, R )
SPCRCP nP_ rs t<ye Ay
P Q Vs

S I> ° 9— /50

where PS is the standard parabolic subgroup such that o € AO
if and only if snla > 0. We obtain the

P

LEMMA 12.1.2. Assume Re(x, a) > (p, o) for all o & Apl and ¢



T,P

cuspidal on P then A lEP (x, ¥, X) equals
1
41 S -1
(-1) p L I Bpjp (s (H(sx)-T))(M(s, 1)y)(8x, sito )
SEQN l(ltP) § € sP\ P1 1

12.2. Computation of an inner product.

Let Q be an ¢-invariant parabolic subgroup and let P <& P1 cQ.
We consider functions ¢y and 6 cuspidal on P attached to unitary
representations 7 and yx with central characters 0 and u)X trivial
on A_(R)°.

P

We are looking for a rather explicit formula for the function

(x, A, 4, ¥, 8) defined to be the integral over Pl\Pi of

WE
Pl
T,P1

prH— A Epl(px, v, K)EQ(e(pX), 8, 1)

We shall assume that Re(X) is sufficiently regular and in particular

P
Lemma 12.1.2 applies. We obtain a sum over s € { 1(5‘(,P) of an integral

over Pl\Pi of a sum over sP\ P1 and we may combine the sum and
the integral if the resulting expression is absolutely convergent.
This amounts to proving that the integral over sP \P]i of the

absolute value of

S

A
PIPI(S(H(pX)_T)M(S’ M v(px, S>\+os)EQ(e(pX), 8, w)

p— B

is finite. Since the Eisenstein series E is known to be slowly in-

Q

creasing, that is, that
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is bounded for some N, we need only to show that given N/, lv(u,,\)q
S . _).,,,L
X 5L b_,).&»
N'\_s -1 Siteg “ ~ s
|am| IBP|Pl (s “(H(a)-Tha  “fv(mx, si+p [ L~ A
. < ’
k v
P1 o 1 -
is bounded for a € ASP(R) and m in a Siegel domain of M",

uniformly for x in a compact set provided that Re()) is sufficiently

regular. We have assumed that ¢ is cuspidal on P and hence
Nl
| Vg, sieo,|

is bounded when m is in a Siegel set of Ml and x in a compact set.

The boundedness of

vilhe ot

SA+p
s—l(H(a)-T))a sl W oe s L_'}"S

SOA)

=M B3 p ¢

SR =
is an immediate consequence of the following

LEMMA 12.2.1. The support of BISD‘P is contained in the cone
P 1
MX) < 0 for all eﬁpl' e W M b
Nel

The proof of this property has already been given in the proof of

Lemma 9.2.7. We repeat the argument. Up to a sign B;ip is the
P L
characteristic function of the set of X &€ & 1 such thatQ\m’a(sX) >0

P P.n ?P

1 1 ?/PS . -1

if o€ ASP - ASP , i.e., if s "a <0 anckiﬂ\ﬁfa(sX) <0 if
P.naP
_ S
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(X, = I, @ (sX).s Tald) <0

aeASP

P1 %
for any regular A € ﬂﬁp .0

Then provided that Re(}) is sufficiently regular we see that
P
mli (x, A u, y, 68) 1is the sum over s € Q 1( U(,P) of the integral over
1

P
sN sP\ Pi = sM\ le x ASI]; X (KnPl) of the product of

2] s -1 ~2eg
(-1 BP]P (s "(H(px)-T))M(s, My(px, s>\+ps)a(p)
1

times

ESSP(Q (pX) y B U)

It may be convenient to transform the last term. Let es(x) = 8(e(x))

and ue(H) = u(e(H)), then this term equals

sP
Eq (px, 8_, 1)
. . Q, -1
which in turn equals the sum over te€ Q (e “P’ snzP) of

M(t, ue)ee(px, tu€+os)

Summing up we get the

LEMMA 12.2.2. Assume that ¢y and 8 are cuspidal on P then the

following equality of meromorphic function holds for x in Al(R)OK:




e s}\+‘c_u—E
wP (X’ PR TP e) = P 2 z a(X)
1 SEN l(azP) tEQQ(e_la‘zP,snP)
o b+
/Douﬂ“\/ “’PY‘/
a
14s -1 -1,- X X
(-1) Bplp (s "T,\x+s tu))(M(s, MY, M(t, w)80)
1 sM
where wx(p) = y(px), the scalar product ( , ) 1 is the scalar
sM
product in LZ(SM\le) and
\(H) WX )
. -~ S _ s Cs v ¢
: B (x, M) = B (H-X)e dH . o - N
/'D.J\o*—""&y P|P1 j Pl P‘Pl PR (‘T)
PENES
] 279 The two members are well defined and equal when Re(X) and
3
A%

Re(p) are sufficiently regular; they have meromorphic analytic continuation

in (A, nu) to the whole space and hence are equal everywhere. O

12.3. Some application.

According to Lectures 10 and 11, the "right-hand side" of the trace

formula is the sum over pairs of parabolic subgroups P1 c P2 such that

there exists one and only one c-invariant parabolic subgroup Q between
P
P1 and P2 of terms JPZ which are equal to the sum over
1
1

w E.Pl\ Q/E(Pl) of the integral over Pl ne W_l(Pl) \G'€ of

eoi(H(x)-T)Kpl(x, we (x))

Using the spectral decomposition it was shown that KP (x, y) 1is equal
1

to the sum over P €@ P, and over GWZ(MP) of

1
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where Ewl(x, ¥y, X, v) is given by

5
I, D EPl(x, Imlw)w, Ay
ifl, -\ veB
1 m

%1(}” \P, = ->\1)d>\1

P1 %

) ® C and A € 01, .
P Pl
We assume ¢ to be K-finite and the sum over ¢ € BTr may be assumed

P
to reduce to a finite sum. We have not included A in the notation Co

In this expression A and v belong to (0

since it is in fact independent of A. To see this one should remark that
Ay > Ix+>\1(¢)1p is of Paley-Wiener type since ¢ is compactly supported
and hence we are free to shift the integration domain. As a function of
(A, v) it is meromorphic and we have tacitly assumed that (A, v) 1is not

a singular wvalue.

The main result of Lecture 11 may be stated in the following way:

P«
the sum over 7 and w and the integral over i(ozPl) and
P
P1 nc lw-l(Pl)\ Gi of Eﬂ_l(x, we(x), A, A) is absolutely convergent,

so that we are free to interchange the order of those sums and integrals.

Before using this we need some preparation.

LEMMA 12.3.1. The series

y F1
) E (x, we(Ex), X, V)

wePl\Q/s-:(Pl) £ G.Pln e_lw_l(Pl)\ Pl
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is absolutely convergent and defines a meromorphic function of (X, V)
P
which we shall denote by Zﬂl(x, A, V).

We first remark that the series may be written

P

I =l ze), A )
£eP,\Q
Now consider a, € Al(]R)O and vy € NlMiK then

-A
— = 1 =
EP]_(aly’ ¥, "V">\1) = al Epl(Y, P, -v)

Recall that

T,P1
1 1
*
is of Paley-Wiener type on im.l ® C; this implies that
Pl
a; —> E_ (x, ajy, A V)

is compactly supported in some compact set w C.Al(}R)o independent
of y. From this we deduce that the series reduces to a finite sum

uniformly when =x, A, v are in compact set in the holomorphy domain

for (A , v). O

LEMMA 12.3.2. Assume that Re(-v) + A is sufficiently regular in
P

* 1
nQ then Z1T (x, A, v) equals

1 Ty
[, 8 TEp G0 Ly (00, MADEYGE(, 4 SR dy
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This is an immediate consequence of the fact that when Re(—v-—Kl)

is sufficiently regular, then

EQ(Y’ d)’ _\)—Al) = z Epl(gy,v w’ _\)_>\1) . D
g€ Pl\Q
1
LEMMA 12.3.3. The function p —> ZTT (px, A, v) is integrable over
P

Pl\ Pi and its integral defines a meromorphic function Swl(x, A, V).

Lemma 6.6 shows that

T1P1
p — A EP(px,I
1

e, (95 XY

is a "rapidly decreasing" function in a Siegel domain G in Pi, uniformly

in Al since kl is trivial on P%, and hence all we need to prove is that

p —> ) Ep (Ee(px), ¥, -V)
£€P\ Q 1

al(i e(px))e w

is slowly increasing in G . To see this we consider w € Pl\Q/P0 and
N\ON a subgroup of N0 isomorphic to N0 n w_]'le \NO; using the

slow increase property of Eisenstein series, that is, that

IE(y, », -9 | <cly|V

for some N and some constant c, all we need to remark is that given a

compact set w'C Al(R)O
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w
0
al(wna)e w!

neN

is "slowly increasing" for a € AO(R)O. All those evaluations are uniform

for x, A, v in compact sets outside the singular set. O

The main result of Lecture 11 may be restated using the functions

P P
S 1: the J 2 are equal to the sum over P € P, and over m € TT-(My)
T P, 1 2P
of
1 2 P1
a (A J J LO(H(x)-T)S “(x, A, A)didx
6 P P1 * 1 '
1 it 57) PI\G.

P
Using Lemma 12.2.2 a more concrete formula for Sﬂl(x, As V)

can be given for some m and some values of X and v; this is the

aim of the next

LEMMA 12.3.4. Assume that Re()) and Re(—\)+_/\.) are suitably regular,

then if x g Al(R)OK and n© is cuspidal on M:

Py
S T(x, nov) = g f . dry
1 igr -A
sen (czP) P,
t eQ?(nP,MP) < ﬂQ C 3y AN 12
No—t(vt.) ) aFTARY D s ¢ = O
2 LA s Tl een ) ¥
Fexl 7
/ . JRPN \en )(\,\
\ . VYA A b‘\ \‘

Y (M(s, AM)I )

IbeB”

x+x1(¢)"’x’ Mste, -v1))

Com verontng MR %) = T NN
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Under the regularity assumptions all integrals and series are
absolutely convergent and we may appeal to Lemma 12.2.2 since 7 is

cuspidal. [J



