
Chapter 5

The Symmetric Group

The symmetric group S(n) plays a fundamental role in mathematics. It
arises in all sorts of different contexts, so its importance can hardly be over-
stated. There are thousands of pages of research papers in mathematics
journals which involving this group in one way or another. We have al-
ready seen from Cayley’s theorem that every finite group can be treated
as a subgroup of S(n) for some n. We will also see below its presence in
the orthogonal group O(n,R), namely as the set of all n × n permutation
matrices. It turns out that due to the LPDU decomposition which we saw
in Chapter 2 that S(n) also plays a role in describing the structure of the
general linear group GL(n,F), as well as certain other linear groups.

The purpose of this Chapter is to derive some of the elementary proper-
ties of S(n). For example, we will see that there are several standard ways of
representing its elements. We will also take a somewhat historical sidetrip
by showing how S(n) was involved in the critical work of Marian Rejew-
ski which led to the first breaking of the Enigma cipher machine employed
by the German military during the Second World War and made possible
the now well known successes in deciphering the Enigma made at Bletchley
Park. This was one of the turning points in the Second World War. An-
other reason Rejewski’s work was historically significant is that was the first
instance where modern algebra was actually used to solve a non-pure (i.e.
applied) problem.

5.1 The Structure of S(n)

As always, S(n) is the group of bijections or permutations of a set of n
objects, say Xn = {1, 2, . . . , n}. Its group operation is the composition of

119



120

bijections. We will frequently refer to the objects being permuted as letters.
This will be convenient for when we take up cryptography.

Recall the notation

σ =
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
.

To simplify the notation, we will notation by also write

σ = [σ(1), σ(2), . . . , σ(n)].

We will also frequently denote the identity element of S(n) by (1). Notice
that for each n, we can embed S(n) as a subgroup of S(n + 1), namely as
the set of all permutations σ ∈ S(n+ 1) such that σ(n + 1) = n+ 1.

The next topic we take up is how to decompose a permutation into
manageable pieces. The first method we will see is to use transpositions.

5.1.1 Transpositions

We now introduce a set of building blocks for the symmetric group. These
are called transpositions.

Definition 5.1. A permutation σ which interchanges two letters i and j
and leaves all the other letters unchanged is called a transposition. The
transposition σ which interchanges i and j will be denoted by (ij).

Clearly, transpositions are the simplest permutations since if σ ∈ S(n)
moves the letter i to j, then j also is permuted to something else. Notice that
by our convention that S(n) ⊂ S(n + 1), the transposition (ij) ∈ S(n) for
all n such that i, j ≤ n. Transpositions are easy to multiply. For example,
(23)(12) represents the permutation

1→ 2→ 3, 2→ 1→ 1, 3→ 3→ 2.

Hence, (23)(12) = [3, 1, 2].
Obviously there are two ways to write a transposition: (ij) = (ji). Also,

(ij)−1 = (ij): each transposition is its own inverse.
Here are some further examples.

Example 5.1. Consider S(3). We saw above that (23)(12) = [3, 1, 2]. Tak-
ing the product in the other order gives a different result, namely (12)(23) =
[2, 3, 1]. Hence (23)(12) 6= (12)(23). To continue this example, note that

[2, 3, 1](12) = (12)(23)(12) = [3, 2, 1] = (13).
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We can therefore infer that [2, 3, 1] = (13)(12). Thus [2, 3, 1] can be written
as a product of transpositions.

Here’s another example.

Example 5.2. If σ ∈ S(3) is arbitrary, then

[σ(1), σ(2), σ(3)](23) = [σ(1), σ(3), σ(2)].

That is, if we multiply on the right by (ij), we interchange σ(i) and σ(j).
(We will also use thisfact below.) On the other hand,

(12)[2, 3, 1] = [1, 3, 2] = (23).

Thus multiplying on the left by (ij) interchanges i and j in σ. Notice also
that

(12)[2, 3, 1](12) = (23)(12) = [3, 1, 2].

The basic result is that every element of S(n) can be decomposed into a
product of transpositions. For example, from the last calculation, [2, 3, 1] =
(13)(12) = (12)(23). More generally, we have
Proposition 5.1. If n > 1, every element of S(n) can be represented in
some (non-unique) way as a product of transpositions.

Proof. Let σ ∈ S(n) be represented as σ = [σ(1), σ(2), . . . , σ(n)]. Suppose
σ(n) = k. Then (kn)σ(n) = n, and we have

(kn)σ = [σ(1), σ(2), . . . , σ(n), . . . , σ(n − 1), n],

where σ(n) is the k-th component above. Now let us induct on n. The result
is clear if n = 2, so let’s suppose it’s true for n− 1 where n ≥ 3. But then
with σ as above, σ′ = [σ(1), σ(2), . . . , σ(n−1)] ∈ S(n−1) can be represented
as a product of transpositions lying in S(n − 1), say σ′ = t1 · · · tm. Hence,
σ = (kn)t1 · · · tm is a representation of σ as a product of transpositions.
This completes the proof.

In practice, finding this product representation of an element of S(n) is
analogous to what you do when you invert a matrix using row operations.
Here’s an example.

Example 5.3. Consider [2, 4, 1, 3] ∈ S(4). We have

[2, 4, 1, 3](13) = [1, 4, 2, 3], [1, 4, 2, 3](23) = [1, 2, 4, 3],
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and
[1, 2, 4, 3](34) = [1, 2, 3, 4] = e.

Hence
[2, 4, 1, 3](13)(23)(34) = [1, 2, 3, 4] = e.

Therefore,
[2, 4, 1, 3] = (34)(23)(13),

since (ij)−1 = (ij).

5.1.2 Simple Transpositions and the Length Function

Certain transpositions can be further decomposed into transpositions. For
example, (13) = (12)(23)(12). The special transpositions used here, i.e.
those of the form (i i + 1), are called simple transpositions. For another
example, note that

(14) = (12)(23)(34)(23)(12).

Observe that (14) = π(34)π−1, where π = (12)(23). Hence, we can refine
Proposition 5.1 as follows.

Proposition 5.2. If n > 1, every element of S(n) can be represented as a
product of simple transpositions, although the representation still won’t be
unique.

One of the ways that the simple transpositions are used is to measure
the complexity of an element of S(n). We associate a length to an element
of S(n) as follows.

Definition 5.2. The length `(σ) of an element σ of S(n) is defined to be
the least number simple transpositions (counted with multiplicity) needed
to express σ. A minimal length expression of an element σ is said to be
reduced.

For example, the length of a simple transposition is 1, but `(14) = 5
since the expression (14) = (12)(23)(34)(23)(12) is minimal. The length
function has a number of interesting properties, some of which we will state
in the next theorem. The proof of this result will be omitted.

Theorem 5.3. The length function ` on S(n) has the following properties:

(i) If τ is a simple transposition, then for any σ ∈ S(n), `(τσ) = `(σ) ± 1
and `(στ) = `(σ)± 1.

(ii) For any σ ∈ S(n), `(σ) = `(σ−1).
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(iii) There exists a unique element σ0 ∈ S(n) of maximal length. The length
`(σ0) of σ0 is n(n1−)/2.

(iv) For any σ ∈ S(n), `(σσ0) = `(σ0σ) = `(σ0)− `(s).
The element σ0 is called the longest element of S(n).

Example 5.4. We can see how it works in the case of S(3). The simple
transpositions were denoted by σ1 and σ2, and the elements of S(3) beyond
the identity are σ1, σ2, σ1σ2, σ2σ1, and σ1σ2σ1 = σ2σ1σ2. Note that every
expression here is reduced. Then we can see directly that multiplying any
element by a simple transposition changes its length by ±1.

5.1.3 Cycle Notation

In addition to representing permutations as products of transpositions, there
is another standard technique for representing permutations. This is called
the cycle notation.

Definition 5.3. A element σ of S(n) is called a k-cycle if and only if
σ(i) = i for all but k integers i with 1 ≤ i ≤ n, and if σ(i) 6= i, then
i, σ(i), σ2(i), . . . , σk−1(i) are the integers which σ permutes, i.e. does not
fix. Such an element of S(n) will be denoted by (i σ(i) σ2(i) · · · σk−1(i)).

We can illustrate cycle notation by taking an example from S(4). The
permutation σ = [2, 3, 4, 1], namely

1→ 2, 2→ 3, 3→ 4, 4→ 1

is the cycle denoted by
(1234)

since each each letter i is sent to the one to its right and the last letter
is sent back to the first. This notation is slightly ambiguous, since each
one of the cycles (1234), (2341), (3412) also represents σ. One gets around
this by simply agreeing to identify two symbols if they represent the same
permutation. Thus the symbols (1234), (2341) and (3412) are all equal since
they stand for the same permutation. Notice that the entries occuring in a
cycle don’t need to be consecutive. For example, (135) is a 3-cycle in S(5).
Also note that a one cycle, e.g. (i), is the same as the identity permutation,
which we have already agreed to denote by (1). Thus the only one cycle we
will use is (1).

Transpositions are cycles of length two. For example, the transposition
σ given by

1→ 1, 2→ 3, 3→ 2, 4→ 4
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is denoted by the cycle
(23).

Cycles are multiplied, like transpositions, by composing their permuta-
tions. For example, (123)(13) = [1, 3, 2, 4] = (23). Two cycles that don’t
share a common letter are said to be disjoint, for example (13) and (24).
Disjoint cycles commute. Indeed, since they act on different sets of letters,
it doesn’t matter in which order they are applied. Hence the product of
two or more disjoint cycles can be written in any order, e.g. (13)(24)(56) =
(56)(24)(13) or (123)(456) = (456)(123) in S(6).

Non-disjoint cycles do not commute, however: (ab)(bc) = (abc) while
(bc)(ab) = (acb). The important point is that all elements of S(n) can be
expressed as products of disjoint cycles, as we now prove.
Proposition 5.4. Every element σ of S(n) different fromn (1) can be writ-
ten as a product of disjoint cycles of lengths greater than one. In any such
representation of σ, the cycles themselves are unique, but the order in which
they are written is irrelevant.

Proof. Given σ, we can construct its cycle decomposition as follows. Con-
sider the sequence σ(1), σ2(1), . . . . Eventually, this sequence has to repeat,
and if the first repetition occurs after i applications of σ, we have σi(1) = 1
with i minimal. If i = 1, then (1) is a cycle. However, since a cycle of
length one is the identity in S(n), we can just omit it. If i > 1, then
(1 σ(1) σ2(1) · · · σi−1(1)) will be a cycle in σ. Now repeat this process with
the smallest integer m not appearing among the powers σj(1), ommiting one
cycles. Continuing in this manner, we will eventually include every element
i which σ does not fix in a cycle, so we obtain a cycle representation.

The proof of uniqueness will be by induction. Suppose we have a cycle
representation of σ, say σ = c1c2 · · · ck. If k = 1, the representation is clearly
unique. Thus suppose k > 1, and assume uniqueness holds for all cycle
decompositions involving less than k disjoint cycles. Let σ = d1d2 · · · dm
be another disjoint cycle representation of σ. Since we can rearrange the
product in any order, we may suppose that 1 occurs in both c1 and d1. It is
thus clear that c1 = d1. Hence c2 · · · ck and d2 · · · dm are two disjoint cycle
representations of c−1

1 σ = d−1
1 σ. By the induction hypothesis, k = m, and

the cycles c2, . . . , ck and d2, . . . , dk coincide up to order. This proves the
uniqueness assertion and thus finishes the proof.

Example 5.5. Lets express the element σ = [2, 3, 1, 5, 4] ∈ S(5) as a product
of disjoint cycles. Now σ(1) = 2, σ(2) = 3, σ(3) = 1. Thus, (123) will be
one of the cycles. The other will be (45), so σ = (123)(45). Similarly,
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τ = [5, 3, 2, 1, 4] will have (154) and (23) as its disjoint cycles. Thus τ =
(154)(23)

5.1.4 Conjugacy Classes

We will now prove another result about the disjoint cycle representation.
Two elements σ and σ′ of S(n) will be said to have the same cycle structure
if in their disjoint cycle representations σ = c1c2 · · · ck and σ′ = c′1c

′
2 · · · c′m

have the same number of cycles (i.e. k = m) and for each subscript i, the
cycle length of ci and the cycle length of c′i coincide. We now introduce a
new definition, which allows us to say when two permutations have the same
cycle structure.

Definition 5.4. Let G be an aribitrary group. Two elements a, b of G are
said to be G-conjugate if there is an x ∈ G such that b = xax−1. The set
of all elements of G conjugate to a is called the G-conjugacy class of a, or
simply, the conjugacy class of a. We will denote this conjugacy class by Ga.

Proposition 5.5. The conjugacy classes in a group G are the equivalence
classes of an equivalence relation on G.

Proof. The equivalence relation is simply that two elements are equivalent
if and only if they lie in the same conjugacy class.

Proposition 5.6. Two elements of S(n) have the same cycle structure if
and only if

Proof. If σ is a k-cycle, then so is τστ−1 for all τ ∈ S(n). It follows from
this that two elements in the same conjugacy class have the same cycle
structure. Conversely, if two permutations have the same cycle structure,
then they are conjugate. This follows form the fact that any two k-cycles
are conjugate, and the cycles are disjoint, so that the permutations involved
in the conjugations can be chosen so that they commute. We will omit the
details.

For example, according to the theorem, (12)(34) and (13)(24) are similar
since they both consist of two disjoint 2-cycles. Clearly (23)(12)(34)(23) =
(13)(24).
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5.2 The Alternating Group and the Signature

The signature of a permutation was already defined in Chapter ?? to be the
mapping sgn : S(n)→ {±1} defined by the expression

sgn(σ) =
∏
i<j

σ(i)− σ(j)
i− j .

We can compute sgn(σ) from the following Proposition.
Proposition 5.7. For any σ ∈ S(n), sgn(σ) = (−1)n(σ), where

n(σ) = |{(i, j) | 1 ≤ i < j ≤ n suchthat σ(i) > σ(j)}|.

Proof. It suffices to note that i < j and s(i) > σ(j) implies (s(i)−σ(j))/(i−
j) < 0. Otherwise, (s(i)− σ(j))/(i − j) > 0.

The fundamental result about the signature is

Theorem 5.8. The map sgn : S(n) → C2 = {±1} is a homomorphism.
Thus, if σ, τ ∈ S(n), then sgn(τσ) = sgn(τ)sgn(σ). If Moreover, if σ is a
transposition, then sgn(σ) = −1. Consequently, sgn(σ) = (−1)m, where m
is the number of transpositions in any decomposition of σ into a product of
transpositions. In particular, sgn(σ) = (−1)`(σ).

Let us review the proof. In fact, now that we know the basics of group
theory, we can simplify it a fair bit. Showing that sgn is a homomorphismis
easy. If σ, τ ∈ S(n), we can write

sgn(στ) =
∏
i<j

στ(i)− στ(j)
i− j

=
∏
i<j

σ(τ(i)) − σ(τ(j))
τ(i)− τ(j)

∏
i<j

τ(i)− τ(j)
i− j

= sgn(σ)sgn(τ),

since τ is a bijection of {1, 2, . . . , n}. The second step is to show that the
sgn of a transposition is −1. Since τ(i j)τ−1 = (τ(i) τ(j)), we only need to
show sgn(1 2) = −1. For if τ(1) = i and τ(2) = j, then

sgn(i j) = sgn(τ(1 2)τ−1) = sgn(τ)sgn((1 2)sgn(τ−1) = sgn(1 2).

But sgn(1 2) = (−1)n(1 2), where n(1 2) is the number of i < j such that
(1 2)(i) > (1 2)(j). If i = 1, then only j which contributes to n(1 2) is
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j = 2. If i ≥ 2, we only need to look at j’s such that j > i, and for these,
(1 2)(i) < (1 2)(j). Thus, n(1 2) = 1, so sgn(1 2) = −1. Since, by the result
of Exercise

It follows for example that the number of transpositions in any expression
for σ is always either even or odd, depending on sgn(σ). If sgn(σ) = 1, we
say that σ is even. Likewise, we say σ odd if sgn(σ) = −1.

Definition 5.5. The alternating group A(n) is the normal subgroup of S(n)
defined as the kernel of the signature map. Thus A(n) consists of all even
permutations.

By the Isomorphism Theorem, A(n) has index two, as the image of sgn
is C2. A famous result in classical algebra says that if n > 4, then A(n) has
no normal subgroups. We will prove this in a later chapter.

Definition 5.6. A group G with the property that its only normal sub-
groups are itself and the trivial subgroup {e} is called simple.

For instance, a cyclic group of prime order is simple, and we just stated
that A(n) is simple if n ≥ 5. In the last three or four decades, There was a
major effort to classify the finite simple groups. Apparently, this program is
now finished, although no one is completely certain since the papers whose
union is supposed to comprise the classification take up some 10,000 pages
in math journals. Hence there is still a need to simplify and unify all these
results.
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Exercises

Exercise 5.1. Find disjoint cycle representation of all the elements of S(3).

Exercise 5.2. Find the expression for the k-cycle (1 2 · · · k)i n terms of
the simple transpositions.

Exercise 5.3. Suppose that σ ∈ S(n) is a k-cycle. Show that σ is even if
and only if k is odd.

Exercise 5.4. Find an expression for the longest element of S(4) and de-
compose it into disjoint cycles.

Exercise 5.5. Let (i1 i2 · · · ik) denote a k-cycle in S(n). Show that for
any σ in S(n), we have that

σ(i1 i2 · · · ik)σ−1 = (σ(i1) σ(i2) · · · σ(ik)).

Exercise 5.6. Use the result of Exercise 5.5 to show that any k-cycle
(i1 i2 · · · ik) ∈ S(n) is conjugate to (1 2 . . . k). Conclude that any two
k-cycles are conjugate.

Exercise 5.7. Write down all the elements of S(3) and A(4) in disjoint
cycle notation.

Exercise 5.8. Prove Proposition 5.5.

Exercise 5.9. Write the element (ab)(bc)(cd)(de)(af) of S(6) as a product
of disjoint cycles.

Exercise 5.10. Find the disjoint cycle decomposition for the permutation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F B V R S U E N Z J A C M D L P Q S K O H T X I Y G

Exercise 5.11. Assume τ ∈ S(n).
(a) Show that if τ is a transposition, then for any σ ∈ S(n), στσ−1 is

also a transposition.
(b) Show that if τk = (1) for some k > 0, then the same is true for

στσ−1 for all σ ∈ S(n).
(c) Show that for any τ , there exists a σ ∈ S(n) such that στσ−1 = τ−1.

Exercise 5.12. Compute the disjoint cycle decompositions of (abcd)i for i =
2, 3, 4. In general, how do the disjoint cycle decompositions of a permutation
π and its square π2 differ?

Exercise 5.13. Give a recipe for the order of an element of S(n), and use
it to find the largest order of an element in S(n).
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Exercise 5.14. What is the largest order of an element in A(n).

5.3 S(n) and the n× n Permutation Matrices

Recall that the set P (n) of n × n permutation matrices consists of all ma-
trices P which can be obtained by a rearrangement of the rows of In. The
permutation matrices were introduced in the context of row operations, since
for any n× n permutation matrix P and any A ∈ Fn×n, PA is A up to the
same rearrangement of A’s rows as in P .

We have already seen that P (n) is a matrix group. In fact, each element
of P (n) has orthonormal columns, so P (n) ⊂ O(n,R). But it can easily be
shown that P (n) is closed under multiplication, so P (n) is a finite subset of
a group which is closed under multiplication hence is a subgroup.

Since the symmetric group is also involved in rearrangments, it’s not
unexpected that S(n) and P (n) should have similar properties. In fact, we
will now show S(n) ∼= P (n) by exhibiting an explicit isomorphism. This is
a very useful result, since, as we will also show below, the group P (n) has
an important geometric interpretation. Thus This demonstrates is one way
of relating combinatorics and geometry.
Proposition 5.9. For each σ ∈ S(n), let

Pσ := (eσ(1) eσ(2) . . . eσ(n)).

Then the mapping ϕ : S(n)→ P (n) defined by ϕ(σ) = Pσ is an isomorphism
onto P (n).

Proof. A convenient way to describe the permutation matrices is to note
that every column and row has exactly one nonzero entry and that entry
is 1. Thus any permutation matrix P has the form Pσ , so ϕ is surjective.
To show ϕ is a homomorphism it suffices to consider the case where σ is
a transposition, say σ = (ij). Then Pσ = P(ij) is simply In with rows
i and j interchanged, which is the same thing as In with columns i and
j interchanged. Therefore, since right multiplication by P(ij) interchanges
the ith and jth columns and leaves all the other columns alone, PτPσ is
Pµ, where µ ∈ S(n) is the element such that µ(m) = τ(m) if m 6= i, j,
µ(i) = τ(j) and µ(j) = τ(i). But µ is exactly τ(ij), hence

PτPσ = Pµ = Pτ(ij) = Pτσ .

Since every element of S(n) is a product of transpositions, we immediately
conclude that ϕ(στ) = ϕ(σ)ϕ(τ) for all σ, τ ∈ S(n). Since ϕ sends S(n)
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onto P (n), it is also one to one as both S(n) and P (n) have order n! Hence
ϕ is an isomorphism.
Corollary 5.10. For every σ ∈ S(n), we have det(Pσ) = sgn(σ). Hence,
P (n) ∩ SO(n) is isomorphic to the alternating group A(n).

Proof. By the classical formula for det,

det(P ) =
∑

π∈S(n)

sgn(π) pπ(1)1 pπ(2)2 · · · pπ(n)n.

Clearly, if P = Pσ, then the only non-zero term is sgn(σ). For another proof,
note that the sign of det changes sign when two rows of P are interchanged,
so it follows that det(Pσ) = (−1)`(σ) det(In). But sgn(σ) = (−1)`(σ) and
det(In) = 1.

5.3.1 The Connection With Reflections and Rotations

We will now make a remark on the isomorphism S(n) ∼= P (n) which reveals
a fundamental connection between the symmetric group and the geometry
of Rn. As we have seen, S(n) is generated by transpositions (ij), so let us
consider what sort of orthogonal linear transformations the corresponding
permutation matrices P(ij) define. Clearly P(ij) interchanges ei and ej and
leaves every other ek fixed. I claim that P(ij) is the reflection through the
(n − 1)-dimensional subspace H in Rn with equation xi − xj = 0, i.e. the
hyperplane orthogonal to ei − ej . To see this, note that H is spanned by
the ek, where k 6= i, j, and ei + ej . As P(ij) fixes each of these vectors, it
leaves the hyperplane H pointwise fixed. It also sends the vector ei − ej
orthogonal to H to its negative ej − ei, so P(ij) is indeed the reflection of
Rn through H. We will call P(ij) the reflection matrix corresponding to H.
We conclude
Proposition 5.11. The group of n× n permutation matrices P (n) is gen-
erated by the n× n reflection matrices P(ij). In fact, it is generated by the
reflection matrices P(i i+1) corresponding to the simple reflections.

Proof. This follows from the above discussion and the fact that S(n) is
generated by the simple transpositions.

Example 5.6. The permutation matrix

P =

0 1 0
1 0 0
0 0 1
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sends e1 to e2, e2 to e1 and e3 to e3. Thus P leaves the plane H spanned
by e1 + e2 and e3 pointwise fixed and sends e1 − e2 to e2 − e1.

A finite subgroup of O(n,R) which is generated by reflections is called a
reflection group. The mathematics of reflection groups is extremely elegant.
For a detailed but elementary treatment of reflection groups, see Refelction
Groups and Coxeter Groups by James Humphreys. Reflection groups are
also used in crystallography and some other areas of chemistry and physics.

Exercise 5.15. List all elements of P (3) and decompose each into a product
of P(ij)’s, where (ij) is a simple transposition.
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Exercises

Exercise 5.16. List all elements of P (3) and decompose each into a product
of P(ij)’s, where (ij) is a simple transposition.
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5.4 S(n) Pairings

We’re now going to give a beautiful result on S(n) which even played an
important role in crytography in during the Second World War and the
period immediately preceding it. This result describes the structure of the
product of two S(n) pairings.

Definition 5.7. A pairing is an element of S(n) which is equal to its own
inverse.

Transpositions are pairings. For example, (ab)(ab) = (1). (Notice that
we are using the convention that (1) denotes the identity element of S(n).)
Elements that can be written as products of disjoint transpositions are pair-
ings. For example, (ab)(ce)(df) is a pairing in S(6). Indeed,

((ab)(ce)(df))2 = (ab)2(ce)2(df)2 = (1).

Conversely, if π ∈ S(n) is a pairing, then π can be written as a product of
disjoint transpositions. Let’s consider an example with n = 4. If π(a) = c
for example, then π(c) = a since π = π−1 and π−1(c) = a. Thus (ac) is one
of the disjoint cycles of π. The only possibilities for π(b) are b or d. In the
first case, π = (ac), and, in the other, π = (ac)(bd).
Proposition 5.12. The pairings in S(n) are exactly those elements of S(n)
which can be written as a product of disjoint transpositions.

Proof. The reasoning we have just given obviously extends for all n.

If π is self inverse, then the substitution cipher constructed from π is also
deciphered by π. This is primarily why pairings are interesting. It turns out
that products of pairings have a beautiful property.

Example 5.7. Let σ = (ab)(cd) and τ = (ad)(bc). Both σ and τ pairings
in S(4). Let’s compute τσ and στ .

τσ = (ad)(bc)(ab)(cd),

which is the permutation

a→ c, b→ d, c→ a, d→ b.

Hence τσ = (ac)(bd). Similarly, στ = (ac)(bd) too. In this example, the
product of the two the pairings is a pairing. This isn’t the case in general
however. What turns out important is the structure of the cycles in the
product.
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The beautiful key fact about pairings was discovered by a Polish cryptog-
rapher named Marian Rejewski in the 1930’s, while he was trying to unravel
the mystery of the German cipher machine known as the Enigma. This
theorem has been called ”the theorem that won WWII” because Rejewski
used it to find a crack the Enigma cipher.
Theorem 5.13. Let σ and τ be pairings in the same S(n) which fix exactly
the same letters (and hence move exactly the same letters). Then the num-
ber of disjoint cycles in στ of every length is even (but possibly 0). Thus, if
στ has a cycle of length k > 0, then it has an even number of them. Con-
versely, an element of S(n) which has the property that in its disjoint cycle
representation, there are an even number disjoint cycles of each possible
length is a product of two pairings (though possibly in many ways).

Note that the condition that σ and τ fix exactly the same letters elimi-
nates possible problems such as what happens when σ = (12) and τ = (23).
The product τσ = (132), which clearly doesn’t satisfy the conclusion of the
Theorem.

In Example 5.7, στ has 4 cycles of length two. Let’s see why Rejewski’s
Theorem holds. Consider two pairings

σ = (a e)(b f)(c g)(h d) and τ = (b e)(f c)(h g)(a d)

both of which move a, b, c, d, e, f, g and no other letters. The way to un-
derstand why there are an even number of cycles of each length in στ is to
consider the following arrangement:

a h c b a
d g f e

.

Note that one sees how τ acts by reading diagonally down from left to right,
while σ is obtained by reading diagonally up from left to right. Thus the
disjoint cycle decomposition of στ is immediately revealed. Read the top
row from left to right to get one cycle, and read the bottom row from right to
left to get the other. Hence the cycles of each length occur in pairs. Clearly,
this consideration can be used on the product of any two pairings that move
the same letters.
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5.5 Cryptology and the Symmetric Group

Cryptology is the science of designing and breaking ciphers. A cipher is
a system for disguising a message so that only the sender and the person
the message is intended for can read it. Thus a cipher needs to be distin-
guished from a code, although coding theory is certainly a part of cryptology.
Cryptology has two area, cryptography and cryptanalysis. A cryptographer
designs ciphers and a cryptanalyst tries to break them.

5.5.1 Substitution Ciphers and S(n)

The symmetric group, which we know plays a major role in combinatorics,
also has many applications in cryptology. Let’s begin with a simple example
of this. A substitution cipher is a permutation of the alphabet, that is
an element of the group S(26). The following substitution cipher can be
deciphered by analyzing the frequencies of the letters the message contains.

F KVZSDVS XNZVN
NSKZOFOSK OL ULWESO

ZOK ULHDRSWK ZK CLKO
FCUWSR DLWON XNZOSNSFR

Exercise 5.17. Solve the cipher.

Without giving the solution, we can make a few general comments. Let σ
be the permutation which produces the cipher. To decipher the message,
we have to find σ−1. The frequencies in the cipher text should roughly
correspond to the frequencies of letters in ordinary English. For example,
there are 8 S’s, it’s a good guess is that S is E or I. There are six Z’s, so Z
is another candidate for E or I. But there are no commonly used two letter
words that begin with E, and several that begin with I, so Z very likely is I.
Since I has now been used and the only two one letter words are A and I,
we may infer that F is A. This is a start, but there is still some work to do.

If the cipher text were altered, your job as a cryptanalyst would be to
determine how. For example, F LXCWIBZ FWJGZ is an encipherment of
the first line of the cipher text.1 The new cipher text is no longer obtained
by a simple substitution.

A more sophisticated cipher would be one which enciphers the first let-
ter by a permutation σ1, the second by another permutation σ2, the third

1The second letter is shifted one to the right, the third two etc.
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by σ3 and so on. If the sequence of permutations was sufficiently random
and didn’t repeat often, the cipher would be virtually unbreakable. This
variation of the substitution cipher has been incoporated into a number of
commercial cipher machines. We will take up the most famous of these ma-
chines, which is known as the Enigma. This was the cipher machine which
was used by the German military in World War II. In the original Enigmas,
the sequence of permutations repeated every (26)3 = 17576 letters, and later
models were even more sophisticated. We will describe how the Enigma op-
erated and how the initial breakthrough was made by some Polish math
students in the early 1930’s.

5.6 Breaking the Enigma

The Enigma machine is a cipher machine that was used by the German
military from about 1929 until the end of the Second World War in 1945.
It was adapted from a commercial cipher machine manufactured and mar-
keted in Germany starting in 1920. The purpose of a cipher machine is, of
course, to encipher a plain text message to produce a cipher text, which only
someone with the same machine will be able to decipher without actually
breaking the cipher. The Enigma was one of the most sophisticated cipher
machine ever built. For each message, there were approximately 7.02× 1060

possible decipherings. Because of this, it’s not surprising that the Germans
considered it unbreakable.

We will now describe how the Enigma worked and how three inexperi-
enced Polish cryptanalysts had by 1932 made the initial breakthrough which
eventually lead to a complete understanding of the Enigma cipher. In order
to keep the presentation as simple as possible, we will ignore some of the
features of the design and concentrate on the key components, which were
the rotors and how they were set. A complete account can be found in
”Enigma” by W. Kozacuk, which contains appendices written by Rejewski
himself. Another account is given in ”Intercept” by Jozef Garlinski. Both
books are fascinating reading.

One of the most significant points is that the solution of the Enigma
cipher was the first occasion abstract algebra was applied to the field of
cryptology. Nowadays, cryptology is recognized as a sub-field of mathe-
matics, and nations employ thousands of mathematicians as cryptographers
and cryptanalysts. But before 1932, no one had ever used anything more
sophisticated than elementary statistics in analyzing a cipher.

Before 1929, Polish Military Intelligence, concerned about the potential
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threat posed by German rearmanent, had been deciphering a substantial
amount of Germany’s military transmissions. In 1929, an entirely new sys-
tem of encipherment started to be used. Messages appeared to consist of
random letter groups. There were no discernable patterns. It was guessed
that Germany had begun to use a cipher machine to conceal its military
secrets, and some sort of machine like the Enigma, which after all, was
available on the open market, would have been a likely candidate. Not
wanting to show their cards, the Germans had left the commercial version
of Enigma on the market, and the Poles were able to obtain one. They
readily surmised that the German military was using a modified version of
their machine, and they set about to see what they could learn. Poland
was intercepting from 60 to 80 of these enciphered messages a day and had
begun to suspect that the first six letters in each message contained the
instructions telling an Enigma operator how to set up his machine for the
deciphering process. In fact, as we will see below, it was logical to guess
that they were a double encryption of the rotor settings the operator should
use.

At first the Poles made little headway, but their efforts were bolstered
Poland’s close ally, France, which had obtained some information from a
disgruntled German communications clerk. Out of this came a confirmation
that the Germans were indeed using modified Enigmas. In addition the
Poles received some vital data which proved to be crucial.

Now in 1929, the cryptographer’s basic tools were probability, statistics,
intuition, luck and the willingness to sacrifice one’s sanity by pouring over
messages trying to discern the key patterns. Although the first two of these
tools were of no help in attacking the Enigma cipher, Poland, in 1929, had
many of the world’s best mathematicians, and, to take advantage of this,
the head of the Polish Cryptographical Bureau (secretly) recruited some of
them to teach a course in cryptography at the University of Poznan. It
turned out that three of the students excelled in the course, and they were
recruited to work on the Enigma for the Polish Cryptographical Bureau.

The first clue came from a pattern common to all the first six letter
groups. Suppose that the following first six letter groups came from fifteen
messages all intercepted on the same day. See if you can spot the clue.

fowvat wrtyuo qvtnmo kophau evprmu
qmlnxz wvqymk dgybhj orcdla mijwce
abocrh coeiaw ntplbu zugmcf lhmqzp

In order to grasp the significance of what you may have discovered, we
need to say something about how an Enigma machine worked. An Enigma
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has typewriter keyboard except there are only keys for the standard alpha-
bet, hence only 26 keys. A lampboard with 26 lights also labelled a through
z is mounted behind the keyboard, and each key is wired to a light. When-
ever a key is pressed, one of the lamps is illuminated. But if a letter, say
a, is pressed over and over, a different lamp lights each time. For example,
pressing aaaaa might produce bsfgt. Actually, the pattern would eventually
repeat but not until a was pressed (26)3 times. Another feature was that if
a key were pressed, its own lamp could never light. This is because pressing
the letter a for example disconnected the a lamp. Another feature was that
if pressing a produced b, then pressing b would have produced a.

Operating an Enigma required two people, one to type in the plain text
and the other to read the cipher text as the lights on the lampboard illumi-
nated one after another. An enciphered message was then sent by telegram.

Inside an Enigma were three internal rotors side by side and rotating on
a horizontal axle. Each of the rotors had 26 terminals equally spaced around
its right hand circumference and 26 around its left hand circumference. The
terminals around each circumference represented the alphabet in the usual
abc . . . order. The key was that each terminal on the right circumference of
a rotor was wired internally to a terminal on the left. Thus when a current
passes through a rotor from a right hand terminal to one on the left, the
corresponding letter on the right is permuted, so each rotor acted as an
element of S(26). On the left of the third rotor was a reflector having 26
terminals around its circumference, each in contact with the 26 terminals on
the left side of the third rotor. The reflector acted by an element of S(26),
except that the permutation given by the reflector was, by construction, a
pairing (why?). Moreover the reflector had to move every letter, since if an
unpaired letter were pressed, no lamp would be illuminated.

Briefly then, the terminals on adjacent rotors were in contact (left side
of the right rotor to right side of the middle rotor etc.) and in contact with
the reflector. So when the operator pressed a key, say a, a current passed
through the three internal rotors from right to left, through the reflector
then back through the rotors in the opposite order causing a lamp different
from a, perhaps w, to light up.

For example, suppose the permutations for the three rotors from right
to left are labeled σR, σM , σL and ρ is the pairing of the reflector. Suppose
the a key is struck. Then this action is represented by

σ−1
R σ−1

M σ−1
L ρσLσMσR(a) = w
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Now ρ is a pairing and

σ−1
R σ−1

M σ−1
L ρσLσMσR = (σLσMσR)−1ρσLσMσR.

Thus the enciphering of a→ w is produced by a pairing, since any element
conjugate to a pairing is a pairing. This shows why pressing w instead of
a would give a. It is because, by definition, a pairing is its own inverse.
This key feature of the Enigma made enciphering and deciphering the same
operation.

What complicated the encipherment is the fact that each rotor could be
independently rotated through all 26 positions, so every rotor could in fact
produce 26 distinct elements of S(26). Every time a key on the keyboard was
pressed, the first rotor moved forward one terminal. This shift corresponds
to the cyclic permutation π = (abc . . . xyz). Hence the second letter would
be enciphered by a new pairing, namely

π−1σ−1
R πσ−1

M σ−1
L ρσLσMπ

−1σRπ.

Notice that we have used π−1σRπ here since the middle and left rotors would
have been kept stationary. Without the factor π−1, all three rotors would
advance 1/26 revolution together. As soon as the first 26 letters had been
enciphered and the right hand rotor had made a complete revolution, the
middle rotor advanced 1/26th of a revolution. The 27th letter was thus
enciphered by

σ−1
R π−1σ−1

M πσ−1
L ρσLπ

−1σMπσR

since π26 = (1). As soon as 262 = 626 letters were enciphered, the left hand
rotor moved forward 1/26th of a revolution and so on. The rotors thus kept
cycling through different pairings until 263 = 17576 keys were pressed, after
which the cycle repeated.

As we noted above, for two Enigmas with the same initial rotor settings,
enciphering and deciphering were the same operation. The operator who
received a message had only to type in the ciphertext and the assistant read
off the plaintext as the lamps lit up. To ensure that the starting positions
were always the same, a daily key schedule was issued. On a given day,
all machines would be set at the daily key. If on September 5, 1930, the
daily key was xsf , then on that day all Enigmas would begin sending and
deciphering with the right rotor set at f , the middle at s and the left at x.
To increase security, each operator also selected another three letter key, a
so called telegram key, e.g. arf . Then, before enciphering took place, the
operator, with the Enigma set to the daily key xsf , enciphered the telegram
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key arf . As an error detecting device, the operator actually typed arfarf ,
producing the six letter string (such as wyuigh) which opened the message.
This six letter string was then sent (by morse code) as the first six letters of
the enciphered message. After sending this doubly enciphered telegram key,
the operator set his rotors to arf and proceeded to encipher the plaintext.
The operator on the receiving end, with his Enigma set to the daily key xsf ,
typed in wyuigh. The deciphered string arfarf told him to reset his rotors
to arf before typing in the ciphertext. Of course, if something like antark
was received, this signalled a transmission error and the message couldn’t
be deciphered until the doubly enciphered telegram key was resent.

The double encipherment of the telegram key was considered necessary.
Radio transmissions were often hard to pick up, and moreover, there was
always the possibility of human error under the difficulties experienced under
battle conditions. This, however, turned out to be the weak link. The reason
was a particular feature of the method for enciphering the telegram key.
Look at the first six letter groups from the fifteen messages all intercepted
on the same day again.

fowvat wrtyuo qvtmno kophau evprmu
qmlnxz wvqymk dgybhj orcdla mijwce
abocrh coeiaw ntplbu zugmcf lhmqzp

The interesting feature of all the above six letter groups is that whenever
two messages have the same first letter, they have the same fourth letter and
conversely. This also holds for the second and fifth letters and the third and
sixth letters. A trained cryptographer would have noticed this feature right
away, but an untrained eye (such as the author’s) might not see it for quite
awhile. This pattern clearly supported the double encryption hypothesis.
But what could be sometimes deduced from it was the telegram key itself.

The significance was realized by one of the three cryptographers, Mar-
ian Rejewski, who was mentioned in the previous section. His idea was to
string together all the first and fourth letters of first six letters for all the
intercepted messages from a particular day. Doing this for the above fifteen
intercepts gives

aci . . . zmwy . . . qnlq . . . odb . . . fv . . . er . . . kh . . .

Working from the 60-80 daily intercepts, Rejewski was sometimes able to
string together the whole alphabet each time getting an element of π ∈
S(26). This permutation π could then be factored into disjoint cycles. For
example, in the above example, (qnl) is a cycle. What Rejewski noticed was
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that the permutations he obtained had the property we considered in the
last section. The cycles of length k occured in pairs. That is, the number
of cycles of each length in π was a multiple of two. Rejewski (realizing the
result stated in Theorem 5.6) could then seek to decompose this element of
S(26) into two pairings.

He did the same for the second and fifth and the third and sixth letters.
If successful in all three cases, he would ultimately obtain six pairings, all of
which contained some information, however little, about the wiring of the
rotors. But as we will see below, this job could be extremely difficult.

Why does π have to be the product of two pairings? Recall that on a
given day, all Enigmas were set to the same daily key, say xsf . If an operator
chose arf as the telegram key, then after setting his Enigma to xsf , he
typed arfarf . This would produce a six letter group such as wyuigh. Then
π(w) = i. Now let σ1 be first pairing, so that σ1(a) = w. The second pairing
gives σ2(a) = i. Then clearly,

σ2σ1(w) = σ2σ
2
1(a) = σ2(a) = i.

Thus π = σ2σ1, which explains why there were an even number of disjoint
cycles of each length in π, and also gives an explicit factorization of π into
pairings.

Of course, if we know either σ1 or σ2, then we know that the first letter of
the telegram key is σ1(w) = σ2(i) = a. If the other pairings are also known,
it follows that the complete telegram key for this transmission is known.
Knowing the telegram keys for an enciphered message would be extremely
useful if the daily key were also known. This is where the contribution of
the French spy came in. It turned out that French intelligence had turned
an apparently disgruntled German code clerk who sold them the daily keys
covering a period of two months. These were turned over to the Poles which
turned out to be a tremendous windfall. The only problem, which will be
illustrated below, is that although the factorization into pairings exists, it
isn’t necessarily unique.

However, with this as a starting point, using several other very clever
and imaginative devices, the three crytographers were able to decipher their
first Enigma message by the end of 1932, and, by 1934, they had completely
solved the puzzle of the wiring of the rotors and were able to build an exact
replica of the Enigma (an Enigma double). This story should serve as as an
inspiration to every budding young mathematician!!

Let’s now take a simple example of how the pairings are found.

Example 5.8. Suppose the alphabet has been shortened to abcdef and
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consider (ahc)(dgb). We want to write this as στ , where σ and τ are pairings.
We can clearly see that e→ e and f → f . Imitating the procedure illustrated
after Rejewski’s Theorem, consider the three possibilities taking the cyclic
permutations of b, d, g into account:

a h c a
b g d

a h c a
g d b

and
a h c a

d b g

Thus there are three possible solutions:

σ = (ab)(hg)(cd)(ef), τ = (ad)(cg)(bh)(ef),

σ = (ag)(dh)(bc)(ef), τ = (ab)(cd)(gh)(ef),

σ = (ad)(bh)(cg)(ef), τ = (ag)(cd)(dh)(ef).

Notice that we included (ef) in each pairing in order to involve all the
letters, but it disappears in the product since (ef)2 =. It’s not hard to see
that these are the only solutions.

Example 5.9. Consider the permutation

π = (depzvlyq)(aronjfmx)(bgktu)(wscih).

Thus we consider pairs of arrays such as

d e p z v l y q d
x m f j n o r a

and
b g k t u b

h i c s w

One possible solution is therefore

σ = (dx)(em)(fp)(jz)(nv)(lo)(ry)(aq)(bh)(gi)(kc)(st)(uw),

and

τ = (ad)(qr)(oy)(ln)(jv)(fz)(mp)(ex)(bw)(us)(tc)(ki)(gh).

Since we obtain all solutions by cyclicly permuting the second rows of the
two arrays, there are 128 solutions in all.
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To continue our discussion, if the hypothesis that the first 6 letters are
the key repeated is correct, then we must have σ(d) = τ(e). But this is the
case, since σ(d) = x and τ(e) = x. This suggests the possibility that the
first letter in the key is x. Now it is a fact of human nature, extensively
exploited by the Poles, that the German operators would tend to choose
familiar keys; so we would be led to suspect that the key is xyz. This would
lead us to seek solutions σ, τ for (2) so that σ(h) = τ(c) = y and solutions
σ, τ for (3) so that σ(z) = τ(n) = z. But this last fact kills our hypothesis,
since, in (3), σ(z) 6= z. Thus, we have to discard xyz as a possible key and
test some other possibility, say xxx.

As mentioned above, by 1934, the three cryptographers had succeeded in
reconstructing the rotors and all other aspects of the machine and the Polish
government had secretly manufactured their own duplicates. This was all
quite amazing since Poland was economically depressed, and the financial
outlay for this project was a serious strain on the national treasury. Yet
because of the ingenuity of the cryptographers, the Poles were light years
ahead of the British and French, who despite their great economic advantage,
had been completely shut out in their own attempts to unravel the Enigma’s
mystery (which illustrates once more that money is not always the answer).

Rejewski had even constructed a primitive computer, which he called a
Bomb, to test for the daily keys. Fortunately, a couple of months before the
Germans’ surprise invasion of Poland in September, 1939, two of the dupli-
cate Enigmas were handed over to the French, who gave one to the British.
With this windfall, the British cryptographers at Bletchley Park were im-
mediately able to encipher a certain amount of the intercepted radio traffic,
somewhere on the order of 150 intercepts per day. But after the war started,
the Germans upgraded their security far more often, so the cryptographers
would frequently be stymied until they figured out what modifications the
Germans had made. In 1943, the British, under the leadership of Turing,
built the first true electronic computer to test for the daily keys. They also
called it the Bomb, apparently in deference to the Rejewski’s original. How-
ever, the British do not seem to have been willing to admit that they had
not made the original Enigma breakthrough. With the Bomb, the Bletchley
Park cryptanalysts were eventually able to read virtually all of the top secret
communications of the German High Command, apparently often before the
generals for whom the communiques were intended.

An amusing sidelight is that when the British and French needed to com-
municate about matters concerning Enigma, they used their own Enigma
doubles to ensure complete security. Apparently, the Germans never guessed
that this radio traffic came from duplicates of their own Enigmas. If they
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had, it would have tipped them off that the Enigma was no longer secure,
which would have been a disaster.
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Summary The purpose of this chapter was to give an introduction to the
theory of the symmetric group. In particular, we say that it is generated by
transpositions and that two elements of S(n) are conjugate if and only if they
have the same cycle structure. We also proved that S(n) is isomorphic to the
group of n×n permutation matrices. The signature of a permutation, which
was introduced in Chapter ?? is a homomorphism of S(n) to C2 = {±1}
whose kernel A(n) is the set of all even permutations, which is known as the
alternating group. The alternating group is the first example of a non-cyclic
group which is simple. That is, the only normal subgroups of A(n) are itself
and the trivial subgroup.

We next presented a not well know but nevertheless beautiful result of
Rejewski on pairings. It turns out that this result played a crucial role in
breaking the Enigma cipher used by Germany in WW2. In the last section
of this chapter, we gave a description of the Enigma and how pairings were
crucial in its decryption.


