Mathematics 437/537 – Homework #6

due Wednesday, November 29, 2006 at the beginning of class

- 1. (NZM 9.5 7 (H)) Prove that in any quadratic field $\mathbb{Q}(\sqrt{d})$ the following assertion is false: If $N(\alpha)$ is a rational integer then α is an algebraic integer.
- 2. (NZM 9.7 3) Prove that $11 + 2\sqrt{6}$ is a prime in $\mathbb{Q}(\sqrt{6})$.
- 3. (NZM 9.7 5) Prove that there are infinitely many primes in any quadratic field $\mathbb{Q}(\sqrt{d})$.
- 4. Prove that $Q(\sqrt{d})$ is a Euclidean field if and only if for every $x + y\sqrt{d} \in Q(\sqrt{d})$, there is an algebraic integer $a + b\sqrt{d} \in Q(\sqrt{d})$ such that $N(x + y\sqrt{d} a b\sqrt{d}) < 1$.
- 5. (NZM 9.8 1) Prove that $\mathbb{Q}(\sqrt{-11})$ is a Euclidean field.
- 6. Prove that $\mathbb{Q}(\sqrt{13})$ is a Euclidean field.
- 7. (NZM 9.9 5) Prove that the primes of $\mathbb{Q}(\sqrt{2})$ are $\sqrt{2}$, all rational primes of the form 8k + 3, all factors $a + b\sqrt{2}$ of rational primes of the form $8k \pm 1$, and all associates of these primes.
- 8. (NZM 9.9 -*6 (H)) Prove that if d is square-free, d < -1, |d| is not a prime, then $\mathbb{Q}(\sqrt{d})$ does not have the unique factorization property.
- 9. (NZM 9.9 7) Find all solutions of $y^2 + 1 = x^3$ in rational integers
- 10. (similar to NZM 5.4 11) Define $f(x) = (x^2 2)(x^2 17)(x^2 34)$. Prove that for every integer *m*, the congruence $f(x) \equiv 0 \pmod{m}$ has a solution.