Mathematics 437/537 - Homework \#5

due Wednesday, November 15, 2006 at the beginning of class

1. (NZM $3.6-8$) Prove that if a positive integer n can be expressed as a sum of the squares of two rational numbers then it can be expressed as a sum of the squares of two integers.
2. (based on NZM 3.6-11,12) Show that if n is of the form $4^{m}(8 k+7)$ for non-negative integers k, m, then there are no integers x, y, z for which $n=x^{2}+y^{2}+z^{2}$.
3. Let c, d be integers with $d>0$. Define $u_{0}=c, u_{1}=d$ and use the notation of (7.1) on NZM p. 325 for the Euclidean algorithm (but assume $(c, d)=g$ where g need not be 1). Let x_{n}, y_{n} be the integers determined by the Extended Euclidean algorithm, such that $u_{n}=x_{n} c+y_{n} d$ for $n=0, \ldots, j+1$. Determine (and prove) the relationship between x_{n}, y_{n} and the p_{n}, q_{n} for which $\left\langle a_{0}, \ldots, a_{n}\right\rangle=p_{n} / q_{n}$ with $\left(p_{n}, q_{n}\right)=1$.
4. (NZM $7.3-6)$ Given a prime number p with $p \equiv 1(\bmod 4)$ and a $u>0$ with $u^{2} \equiv-1$, let $u / p=\left\langle a_{0}, \ldots, a_{n}\right\rangle$ and let k be the largest integer such that $q_{k} \leq \sqrt{p}$. Put $x=q_{k}$ and $y=\left|p_{k} p-q_{k} u\right|$. Show that $y \leq \sqrt{p}$, that $0<x^{2}+y^{2}<2 p$ and that $x^{2}+y^{2} \equiv 0(\bmod p)$, and hence that $x^{2}+y^{2}=p$. (This is a method due to Hermite, 1848).
5. (NZM 7.4-*6) Let $\theta=\left\langle a_{0}, a_{1}, \ldots\right\rangle$, and as usual (for us) write $p_{n} / q_{n}=\left\langle a_{0}, \ldots, a_{n}\right\rangle$ and $\theta_{n}=\left\langle a_{n}, a_{n+1}, \ldots\right\rangle$. Show that for $n \geq 1$,

$$
\theta-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n}^{2}\left(\theta_{n+1}+\left\langle 0, a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle\right)} .
$$

6. Of the first 1000 multiples of e, which one is closest to an integer? (Please don't do this by brute force!)
7. (NZM 7.8-10) In this problem, "smallest solution" means the ordered pair (x, y) of positive integers with y as small as possible.
(a) Compute the continued fraction expansion of $\sqrt{61}$.
(b) Find the smallest solution to $x^{2}-61 y^{2}=-4$.
(c) Find the smallest solution to $x^{2}-61 y^{2}=-1$.
(d) Find the smallest solution to $x^{2}-61 y^{2}=1$.
(Hint: What is the relationship between the solutions for (b),(c) \& (d)?)
8. Suppose that p is a prime with $p \equiv 1(\bmod 4)$. Show that $x^{2}-p y^{2}=-1$ has an integral solution. (NZM 7.8-12 outlines a proof).
9. (a) Given an integer $k \geq 2$, compute the continued fraction expansions of $\sqrt{k^{2}+4}$.
(b) Prove that the equation $x^{2}+1=\left(k^{2}+4\right) y^{2}$ has no integer solution (x, y) if k is even, but infinitely many integer solutions if k is odd.
10. Show that $x^{2}-34 y^{2}=-1$ has no integral solution but that it does have the rational solutions $(x, y)=(5 / 3,1 / 3)$ and $(3 / 5,1 / 5)$. Use these to show that $x^{2}-34 y^{2} \equiv-1(\bmod m)$ has a solution for all positive integers m. (NZM 7.8-13 has some hints).
