Mathematics 437/537 - Homework \#4

due Monday, October 30, 2006 at the beginning of class

1. (NZM $3.2-* 20)$ Show that $\left(x^{2}-2\right) /\left(2 y^{2}+3\right)$ is never an integer when x and y are integers.
2. Given any non-zero integer a, define a function f_{a} from the odd integers to $\{-1,0,1\}$ by the Jacobi symbol $f_{a}(x)=\left(\frac{a}{x}\right)$. Prove that f_{a} is periodic with period $4|a|$ (perhaps not the least period).
3. (NZM $3.3-{ }^{*} 13(\mathrm{H})$) Let the reduced residues modulo an odd prime p be divided up into two nonempty sets S_{1}, S_{2} so that the product of two elements in the same set is in S_{1} and the product of an element in S_{1} and an element in S_{2} is in S_{2}. Prove that S_{1} consists of the quadratic residues and S_{2} consists of the quadratic nonresidues modulo p.
4. (NZM $3.3-* 21$) Let m be a positive odd integer and let \mathcal{G} denote the set of those reduced residue classes $a(\bmod m)$ such that $a^{(m-1) / 2} \equiv\left(\frac{a}{m}\right)(\bmod m)$. Show that if $a, b \in \mathcal{G}$ then $a b \in \mathcal{G}$ and if $a \in \mathcal{G}$ and $a \bar{a} \equiv 1(\bmod m)$, then $\bar{a} \in \mathcal{G}$. (Thus \mathcal{G} is a subgroup of the multiplicative group of reduced residue classes $(\bmod m)$.)
5. (NZM $\left.3.3-{ }^{*} 14\right)$ Suppose that p is a prime with $p \equiv 1(\bmod 4)$ and that $a^{2}+b^{2}=p$ with a odd and positive. Show that $\left(\frac{a}{p}\right)=1$.
6. (NZM $\left.3.3-{ }^{*} 15(\mathrm{H})\right)$ Suppose that p is a prime, $p \geq 7$. Show that $\left(\frac{n}{p}\right)=\left(\frac{n+1}{p}\right)=1$ for at least one number in the set $\{1,2, \ldots, 9\}$.
7. (NZM $3.3-9)$ For which positive integers n do there exist integers x and y with $(x, n)=1$, $(y, n)=1$ and $x^{2}+y^{2} \equiv 0(\bmod n) ?$
8. Use the algorithm given by the proof in class of Fermat's Lemma 2.13 (NZM p.54) to compute x and y such that $x^{2}+y^{2}=p$, where p is the prime 100049. You may use a calculator or computer but show the sequence of successive a_{k}, b_{k} and m_{k} with $a_{k}^{2}+b_{k}^{2}=$ $m_{k} p$.
9. (based on NZM $2.1-56$) Let p be a prime number and suppose that x is an integer with $x^{2} \equiv-2(\bmod p)$. Show that $a^{2}+2 b^{2}=p$ has a solution.
10. Show that a prime number p can be expressed in the form $a^{2}+2 b^{2}$ if and only if $p=2$ or $p \equiv 1$ or $3(\bmod 8)$. (See NZM, $2.1-57-60$, but you need not slavishly follow their hints).
