Mathematics 437/537 - Homework \#2

due Monday, October 2, 2006 at the beginning of class

1. Which integers satisfy all of the congruences $x \equiv 3(\bmod 14), x \equiv 5(\bmod 15)$ and $x \equiv$ $7(\bmod 17)$ simultaneously?
2. Find the smallest positive integer n such that $2 n \equiv 3(\bmod 5), 3 n \equiv 4(\bmod 7)$, and $5 n \equiv 6(\bmod 11)$. (Hint: there is a painless way.)
3. (based on NZM $1.3-42 \& 44)$ Let a and k be integers greater than 1.
(a) Suppose that $a^{k}-1$ is prime. Prove that $a=2$ and that k is prime (these are the Mersenne primes).
(b) Suppose that $a^{k}+1$ is prime. Prove that a is even and that k is a power of 2 (these are the Fermat primes).
4. (NZM $2.5-4 \& 5)$
(a) Suppose that m is square-free and that d, e are positive integers with $d e \equiv 1(\bmod \phi(m))$. Show that $a^{d e} \equiv a(\bmod m)$ for all integers a.
(b) Suppose that m is not square-free. Show that there are integers a_{1} and a_{2} with $a_{1} \not \equiv a_{2}(\bmod m)$ but $a_{1}^{e} \equiv a_{2}^{e}(\bmod m)$ for all integers $e>1$.
5. (NZM $2.6-9)$ Suppose that $f(a) \equiv 0\left(\bmod p^{j}\right)$ and that $f^{\prime}(a) \not \equiv 0(\bmod p)$. Let $\overline{f^{\prime}(a)}$ be an integer chosen so that $f^{\prime}(a) \overline{f^{\prime}(a)} \equiv 1\left(\bmod p^{j}\right)$ and put $b=a-f(a) \overline{f^{\prime}(a)}$. Show that $f(b) \equiv 0\left(\bmod p^{2 j}\right)$.
6. How many solutions are there to the congruence

$$
x^{4}-x^{3}+x^{2}-x+1 \equiv 0(\bmod 2269355) ?
$$

7. (NZM $2.7-10$). Let $p \geq 5$ be a prime. Write $1 / 1+1 / 2+\ldots+1 /(p-1)=a / b$ with $(a, b)=1$. Show that $p^{2} \mid a$.
8. Let a, b and m be integers with $m \neq 0$ and $(a, m)=(b, m)=1$. Let h, k, ℓ denote the orders modulo m of $a, b, a b$, respectively. Prove that

$$
\left.\frac{h k}{(h, k)^{2}} \right\rvert\, \ell \quad \text { and } \quad \ell \left\lvert\, \frac{h k}{(h, k)}\right.
$$

9. (NZM $\left.2.8-{ }^{*} 24\right)$ Let a and $n>1$ be any integers such that $a^{n-1} \equiv 1(\bmod n)$ but $a^{d} \not \equiv 1(\bmod n)$ for every proper divisor d of $n-1$. Prove that n is a prime.
10. (NZM $2.8-* 31$) Show that the decimal expansion of $1 / p$ has period $p-1$ if and only if 10 is a primitive root of p.
