Mathematics 437/537 – Homework #2

due Monday, October 2, 2006 at the beginning of class

- 1. Which integers satisfy all of the congruences $x \equiv 3 \pmod{14}$, $x \equiv 5 \pmod{15}$ and $x \equiv 7 \pmod{17}$ simultaneously?
- 2. Find the smallest positive integer n such that $2n \equiv 3 \pmod{5}$, $3n \equiv 4 \pmod{7}$, and $5n \equiv 6 \pmod{11}$. (Hint: there is a painless way.)
- 3. (based on NZM 1.3 42 & 44) Let a and k be integers greater than 1.

(a) Suppose that $a^k - 1$ is prime. Prove that a = 2 and that k is prime (these are the *Mersenne* primes).

(b) Suppose that $a^k + 1$ is prime. Prove that a is even and that k is a power of 2 (these are the *Fermat* primes).

4. (NZM 2.5 - 4 & 5)

(a) Suppose that m is square-free and that d,e are positive integers with $de \equiv 1 \pmod{\phi(m)}$. Show that $a^{de} \equiv a \pmod{m}$ for all integers a.

(b) Suppose that m is not square-free. Show that there are integers a_1 and a_2 with $a_1 \not\equiv a_2 \pmod{m}$ but $a_1^e \equiv a_2^e \pmod{m}$ for all integers e > 1.

- 5. (NZM 2.6 9) Suppose that $f(a) \equiv 0 \pmod{p^j}$ and that $f'(a) \not\equiv 0 \pmod{p}$. Let $\overline{f'(a)}$ be an integer chosen so that $f'(a)\overline{f'(a)} \equiv 1 \pmod{p^j}$ and put $b = a f(a)\overline{f'(a)}$. Show that $f(b) \equiv 0 \pmod{p^{2j}}$.
- 6. How many solutions are there to the congruence

$$x^4 - x^3 + x^2 - x + 1 \equiv 0 \pmod{2269355}$$
?

- 7. (NZM 2.7 10). Let $p \ge 5$ be a prime. Write $1/1 + 1/2 + \ldots + 1/(p-1) = a/b$ with (a,b) = 1. Show that $p^2|a$.
- 8. Let a, b and m be integers with $m \neq 0$ and (a, m) = (b, m) = 1. Let h, k, ℓ denote the orders modulo m of a, b, ab, respectively. Prove that

$$rac{hk}{(h,k)^2} \mid \ell \quad ext{and} \quad \ell \mid rac{hk}{(h,k)}$$

- 9. (NZM 2.8 *24) Let a and n > 1 be any integers such that $a^{n-1} \equiv 1 \pmod{n}$ but $a^d \not\equiv 1 \pmod{n}$ for every proper divisor d of n-1. Prove that n is a prime.
- 10. (NZM 2.8 *31) Show that the decimal expansion of 1/p has period p 1 if and only if 10 is a primitive root of p.