Mathematics 440/508 – Final Examination, April 10, 2002

Instructions
1. You may consult your textbook and course notes.
2. Each question is worth 20 marks.
3. Five questions are sufficient for a complete paper. If you do more than 5 questions, your mark will be based on the best 5 answers.
4. Complete answers to a few questions are preferable to incomplete answers to a larger number of questions.

Questions
1. Find all entire functions \(f \) for which \(f(1/n) = 1/n^2 \) for all \(n = 1, 2, 3, \ldots \). Be sure to justify your answer.

2. Suppose that a function \(f(z) \) is defined in \(|z| < 1 \) by a power series \(\sum_{n=0}^{\infty} a_n z^n \) with radius of convergence 1. Is it possible that \(f(z) \) can be continued analytically to all of \(\mathbb{C} \) as an entire function? Give your reasoning.

3. Show that for any integer \(n > 1 \), the polynomial \(z^n - 3z^{n-1} - 1 \) has exactly \(n - 1 \) zeros in \(|z| < 1 \) and one zero in \(|z| > 1 \). Let \(\alpha_n \) denote the zero in \(|z| > 1 \). Show that \(\lim_{n \to \infty} \alpha_n = 3 \).

4. Let \(f(w) \) be defined by the double integral \(\iint_{\bar{U}} \frac{1}{z-w} \, dx \, dy \) over the closed unit disk, \(\bar{U} = \{ z = x + iy : |z| \leq 1 \} \). Show that \(f(w) \) is an analytic function of \(w \) in the exterior domain \(D = \{ w : |w| > 1 \} \cup \{ \infty \} \). Evaluate the residue of \(f \) at \(\infty \).

5. Let \(D \) denote the quarter disk \(D = \{ z = x + iy : |z| < 1, x > 0, y > 0 \} \). Find a conformal map \(f \) of \(D \) onto itself which extends to the boundary \(\partial D \) and for which \(f(0) = 1, f(1) = i \) and \(f(i) = 0 \). Be sure to justify your answer.

6. Let \(D \) be a simply connected domain. Show that for any two points \(z_1, z_2 \) in \(D \) there is an analytic function \(f \) mapping \(D \) one-one onto itself for which \(f(z_1) = z_2 \). Is \(f \) unique? Is this result true if \(D \) is not simply connected?

7. Let \(D \) and \(G \) be two domains in \(\mathbb{C} \) and let \(f_n(z) \) be a sequence of analytic functions such that \(f_n(D) \subset G \). Suppose that \(f_n(z) \) converges normally to \(f(z) \) in \(D \). Show that either \(f(z) \) is a constant or else \(f(D) \subset G \). (Recall that we found that the “proof” of this sketched on p.456 of the text is not correct. Try to give a correct proof.)