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1. Introduction. A systematic approach is given for finding similarity solu-
tions to partial differential equations and, in particular, the heat equation, by
the use of transformation groups. New solutions to the heat equation are ob-
tained.

The application of group theory to the solution of partial differential equations
was first considered by Lie [1] and later by Ovsjannikov [2] and Matschat and
Miller [3]. If a one-parameter group of transformations leaves invariant an
equation and its accompanying boundary conditions, then the number of vari-
ables can be reduced by one. The functional form of the solution can be deduced
by solving a first order partial differential equation derived from the infinitesimal
version of the global group. The functional form of the solution for two inde-
pendent variables (x, t), say, is

(1) u(z, t) = F(z, t, 7, f(ﬂ))

where 7 is called the similarity variable. The dependence of F on z, {, #(z, £)
(for calculation purposes, as will be seen later, it is convenient to isolate »), and
Sf(n) is known explicitly from invariance considerations. f(n) satisfies some ordi-
nary differential equation obtained by substituting the form (1) into the given
partial differential equation. The form (1) is called the general similarity solu-
tion. Initially no special boundary conditions are imposed since eventually we
use the invariants of the group to establish the boundary conditions.

2. Formulation of invariance. Let
2) u = 0(z, )
be a solution of a certain partial differential equation
3) Mu] = 0

defined over a region R in the (z, ) plane (Fig. 1) on which boundary conditions
1025
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B,(u, z,t) = 0 are prescribed on curves ,(z, t) = 0. We have in mind a unique
solution defining a single surface v = 0(x, ?) in the (u, z, t) space (Fig. 1). We
consider a group of transformations, depending on the parameter ¢, which takes
the (u, z, t) space into itself:

@ {;: = t'(z, t, u; G)J.

w = u(z, t,u;e

x,(x} ¢ u; é)

Under the transformation (4), in general:

5) ) region B — region R’

(6) (ii) solution surface u = 6(x, t) — u = 6'(2/, V).

Invariance is defined as follows:

(7) (1) equation (3) is left invariant, 4.e., W'[u'] = 0 iff N[u] = 0 where M'[u']
is obtained from M[u] if (z, ¢, u) is replaced by (z/, ¢, u’)

(8) (i) the boundary conditions and boundary curves are left invariant, 7.e.,
region R’ = region R, B,(v/, ', t') = 0 on w,(z’, ¢') = 0 for each a.

Then, assuming a unique solution to (3) over R with the associated boundary
conditions, the solution surface must go into itself, 7.e., v'(z, t, 0(x, t); ) =
6(2’, t'), and hence the functional form of 6 can be deduced.

Now we consider the infinitesimal transformations corresponding to (4).

Jx’ =z + eX(z, t,u) + 0(62)1
9) v =1t+ l(z, t,u) + O ¢
Lt' =u+ Uz, t,u) + O(ez)J
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The infinitesimal version of the invariance condition (8) is thus derived from
0(x + X, t + €T) = 0(x, t) + eUlx, t, 0) + O(E).
Expanding the latter expression and equating O(e) terms, we have

a0 a0
(10) X, t,0) 5+ T, 1, 0) 5. = Ula, 1, 0).
(10) is the general partial differential equation of an invariant surface.

The characteristic equations corresponding to (10) are

(11) dx _ dt _ o
X(x,t,0 T, t 0 Ul,t, 6

In principle (11) is solvable, and if X/T is independent of 6, we obtain the
similarity form (1) for the solution 4. The similarity variable

(12) n(x, f) = const.

is the integral of the first equality in (11) and defines path curves (similarity
curves) in (z, t)—space. The dependence of I on 7 involves an arbitrary function
f(n) which is the solution to some ordinary differential equation obtained by
substituting (1) into (3).

Now in order to find out which infinitesimal transformations can be admitted
we need also to study the invariance of the differential operator 9. We now
calculate how derivatives transform. It is a little more convenient to calculate

the operator in coordinates («’, t'). We are interested in partial derivatives along
a surface

(13) u = 0(z, t).

Along such a surface the general form of (9) is

(14) {x = v ‘)}.
v = t'(z, 1)

We compute directly how derivatives transform:

b@% =1 — X, + X.0.] + 0@

a%’? — — X, + X.0] + 0(&)
(15)

%7 — 1 — (T, + T.0] + 0(&)

ot 2

o —€T, + T.0.] + O().

Thus we can calculate the transformation between various partial derivatives.
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We start from (9) and write
(16) 0@, ) = 0(x, t) + Uz, t, 6) + O().

Then after collecting terms we have:
’
¢)) g—zv =0, + U, + (U. — X,)0, — T.0, — X,0; — T.,6,0,] + O(¢").

The second derivative follows:

2n7
g‘% = 01:; + G[Uza: + (2Uzu - X:c:c)oz - Tzzot + (Uuu - 2qu)0:

(18) pye

- Tzuoa:ot - quoi - Tuuoiat + (Uu - 2X:c)0zz - 2Tzaxt
- 3Xu0zzoz - Tuezxot - 2Tu0;¢0¢] + 0(62)‘

Similar expressions are formed for the time derivatives by interchanging the
roles of  and ¢. For instance

4
(19) % — 0, + U, + (U. — TN, — X.0, — T.0" — X.0.0,] + 0(&).

3. General similarity solution of the heat equation. We now apply the
results of the previous section to a case which allows many different transforma~
tions, the classical heat equation. We try to keep the discussion as general as
possible here. For the classical heat equation (9[u] = du/dt — 9°u/dz* in (3)).
We are looking for those infinitesimals (X, T, U) for which the fact that 6(x, f)
is a solution of the heat equation

a0 3’0
(20) ot a®
implies that ¢'(2’, ') is also a solution of the heat equation

396’  3°0
-7 — w3 = 0.

1) ' oz

This fact together with the invariance condition (7), which must be investigated,
will allow the conclusion (8) that the solution is invariant. From (18) and (19)
we have an expression for the heat operator on ' in terms of the solution 8(z, t):

a0’ 30 9 i
@ - =2 St dU ~ U+ (X — X, — 2000,

+ (Tzz + Uu - Tt) ot + (2X:m - Uuu)ei + (2Txu - Xu)otﬂs
- Tuof + quoz + Tuuozot + (2Xz - Uu)ozz
+ 2T:;0zt + 3Xu0:czaz + Tuozzal + 2Tuezt0x] + 0(62)-

Our first method of proceeding which we call the “classical’”’” method only
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makes use of the given equation (20) and thus involves setting the right hand
side of (22) proportional to (6, — 6.,). This provides a set of conditionson X, T', U
without the use of the invariant surface condition (10). Here the latter condition
is used later to find the functional form of the solution.

The classical method simply involves equating to zero terms with the same
derivatives of 6, .e., the coefficients of 6.6,. , 6.0, , 62, 6,. , 0, , 6, and the terms
free of derivatives of 0, after substituting 6, for 6,. in (22). This procedure is
sufficient for finding similarity solutions. Successively equating to zero the
coefficients of 6.0,, , 0.0, , 0,0, in (22), we find that:

[ T, =0
(23) lX., =0
U.=0
and thus
[ Ule, t,w) = f(z, hu + g(x, t)l
(24) X(z, t,u) = X(z, t) .
lT(x, t,u) = T(x, t) [

Then successively equating to zero the coefficients of 6,, , 0, , 0, , and the re-
maining terms, we find that:

(25) T, = 0 which implies that T = T(¢)
(26) 2X, —T't) =0

@7 X, —X..+2=0

(28) feo = fi =0

(29) Gee — g1 = O.

Thus g(z, £) is any solution to (20). At first we shall only consider the subgroup
for which g(z, t) = 0.
Solving (26) for X we are led to:

(26") X = ‘2732—(9 + A(t) with arbitrary  A(D).

Substituting (26") into (27) and solving for f we obtain:

2y
27 f= _z T8 (®) _
where B(t) is arbitrary.

Substitution of (27’) in (28) yields:

8) —T; 0, = T’8"(t) N xA;(t)

220 1 By

— B'(f) = 0.
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Solving (28’) we obtain finally the classical group of the heat equation:
X =« + 6t + Bxr + yxt
(30) T = a4 28t +

2t ox
f= ‘"7[2-1-5]—?-1—)\

where a, 8, v, 8, k, A are 6 arbitrary parameters.

In (z, t) space, the group (30) is a subgroup of the projective group. All of the
parameters, except for v, individually represent ‘trivial” transformations.
« represents translation invariance in «, « translations in ¢, 6 represents invariance
under a Galilean transformation, and B8 represents similitudinous invariance
which is the invariance used to find the well-known source solution of the heat
equation. We will consider those cases where v # 0.

From (11) we see that if g(z, t) = 0, then only the ratios
(31) L =A@, ), 2 =ul, 0
are needed. Keeping in evidence the translation invariance (z — %, , £ — &),
and appropriately relabelling the constants, we can rewrite (30) as

(x - xo)(t - to) + Va().
ao + (t - to)z

Correspondingly, for C(z, t), we may write

(32) Alx, §) =

1 1 2
_ o — 3t = b) — i@ — x)"
(33) Cla, ) = B2 s
We now find the similarity curves by integrating
dx
(34) s Az, 1).

It is convenient to treat the cases a, > 0, a, < 0 separately since the integrals
which occur and the geometry of the path curves are different.
For

a >0, let a, = a
a <0, let a, = —b°.
We show details for a, < 0; write (34) as

de zt— Vb

(85) P

We can always use the correspondence

(36) T — o, te> t — .
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This linear equation can be written as

d x Vb

87 ‘(ﬁ (t2 _ b2)1/2 = —(t2 _ 62)3/2
so that integration gives

4
(38) (—tz“:xp;m =9+4+V T

7 is the constant of integration and n(zx, {) = const. are the equations of the
similarity curves. Thus

(@ — ) — V(I — 1)

(39) = = o = )

or

(40) x—xo = V(t — t) + 2((t — to)’ — b))
For a, > 0, we have correspondingly

(41) g =@ =V~ t) + 1t — )’ + a*)'"

These curves have 4 parameters (z, , t, , V, a). Sketches of the similarity curves
are shown in Figs. 2, 3. The curves of (20) are evidently well adapted for initial
value problems since ¢ = ¢, + (8 is a similarity curve. Several limiting cases are of
interest since simplified equations result.

Limiting Case 1. b*> — 0. This case is between the two cases illustrated in

t 3
»
3
4
’ 10
0& . o‘“‘,"
) /
K& +00
‘b
NO CURVES (%o, %)
PEFINED HERE b »x

Fig. 2 Similarity Curves for ag <0
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Fig. 3 Similarity Curves for ag, > 0
Figs. 2, 3. For t > t, + b we have in (40) as b* — 0

49 == V(t— 1) + n(t — to>{1 ‘%(t——@i@‘” }

A distinguished case occurs if as b — 0, n — «© so that b® is finite. This limit only
makes sense if V gets large and 7 is relabeled.

(43) 7= =V 4+ 9* where Vb® = —2k
and consider the limit to take place with k fixed. (42) becomes
k

_ — o ®(f _
(44) X Lo n (t to) (t _ to)
or

* r — Xo k .

“5) L A (=N

The similarity curves n* = const. have 3 parameters (x, , ¢, , k). Sketches appear
below.

Limiting Case 2. a® — «: Write (41) as
— 2
(46) x*fl?o:V(t—to)+ﬂa{1+%(t—‘&§tt)—)“+"'}'

Then as a — © we need n — = to get a significant limit. Thus also 2, — . Let
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- oy — T
47 n = 2ka a
(48) 2o = —2ka® + z,
and consider (k, 9*, z, , t,) fixed as @ — «. Then (46) becomes
(49) n* =Vt — t) + k(t — )" — (= — ).

Here the similarity curves n* = const. have 4 parameters (z; , t,, V, k) and are
shown in Fig. 6.

Next the functional form of the solution corresponding to the general simi-
larity curves (39) and the special limiting cases (45) and (49) is worked out. In
order to do this, we integrate

(50) B = cGatn, 1, 9 at.

> X
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Using (40) and (33) [(x — xo) <> x, (t — t,) <> t] we have
(61  C((, 1), ?)

N S S |
28 — b 4

Integration of these terms is elementary:

£ 1 ¢
Ve W gy

1
=—Z"2+t2£b2

_ _ 1. (iiﬁ>_l 2 _ 2
(52) loga—det— 47715 2blog PR 410g(t b%)

l 2l l’_ (iié)] — _1_ 2 pa\1/2
+4V[ t+5log\;— g V(" — 09" + log F(n).
Then the general similarity solution for this case has the form

B 1 (t—t)+0b|
(53) 0(x, t) = [t — t)* — v [(t — 1) — b]

“lexp {—i(n" — V(¢ — 1) —3V(& — 0)}1F(n)

where

_1 2__,1_11 _ (@ —xy — V(i — t)
p = 8bV 2b’ n = ((t— t0)2 _ b2)1/2

The independent parameters in this solution are (z, , £, , V, b, u). The solution
needs a slight modification in the complementary case (a, > 0). In (51) we can
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replace b® by —a® and then [ dt/(t* + a°) contributes tan™ t/a terms. Thus,
instead of (53), we obtain

B o9 = ey ow |(§ 7+ B ()

— i’ = VIt — 1) — 3V(z — xo)}]F(n)

where

_ (=) — V(¢ — to)_
n= ((t = t)" + az)x/z

Now, the ordinary differential equation satisfied by F(»), must be found by
substituting the similarity forms (53) or (54) into the basic heat equation (20).
The result is

d2 F (bz V2 b2ﬂ2> _
Corresponding to (54) replace b by —a®. The differential equation is that of the
parabolic cylinder functions (a special case of confluent hypergeometric func-
tions) and the solutions can be expressed in standard forms corresponding to
the equation

(56) L o+i-1r=0
where

2z = by, v+ 1 = 1pV? — u/b.
Any two of

DV(Z)) D,(—z), D—v—l(iz)) D—v—l("'iz)
are linearly independent solutions of (56). Their properties are well known.
(G1)) D,(z) = 2V%e™*"/*

P(Z) 2 —1/2 I‘( 2 — 1
[F(z — ) IFI( _1’: 21 22) + 2 r( ) 1F1(2 §V, ,azz)]

For integer values v = n = 0, 1, 2 the solutions are expressed by (orthogonal)
Hermite polynomials

D) = ¢ ** He,(?); He, = (—1)%" g; e’
(58)

Heo 1, H61 =2z, He2 = 22 - 1, ete.

If

while
(59) D_,(z) = e"/*(2n) " erfc (27'%), D_, = ete.
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The series (57) shows the behavior for small z while asymptotically for 2| >

l”l’ 1

D,(z) = Z¢”7*[1 + 0], larg 2| < ‘i—?r

(GU) — zve—z*/«;[l + O(z—z)] (Fzgr) )evn -r-1 29/4[1 + 0(2_2)],

Ezf>argz>%1r

zve—z2/4[1 + O(z—z)] _ (2&"‘)1/; e-—nro —v=—1 s’/4[1 + O(an)],

—iT > argz > o,
4
The parabolic cylinder functions are entire functions of 2.

According to the similarity of a particular problem a choice is made for the
solutions F. The boundary conditions are prescribed on a similarity curve =
7o = const. and F(n,) (or F’, or a linear combination of F and F) must be chosen
accordingly (¢f. 53). One point is worth mentioning which applies to various
linear cases. The parameter u appears only in the equation and not in the simi-
larity coordinate or boundary condition. Thus u can play the role of an eigenvalue
in the case of homogeneous boundary conditions; superposition of eigenfunctions

can be used to represent arbitrary conditions on a suitably chosen curve where
n # const.

Special Case. (b — »,t,— —w,V — 0, y — «): To connect up with the
well known fundamental solution which is expressed in (xt™'/?) it is necessary
to consider a limiting case of (53). Let

(61) b = t() - tl
and consider the limit where {, —» — », t, fixed, Vi, — 0. Then

(E—t)? =02 =1 — 2t + 2 — (o — t.)* = (=2t)(t — t,)

and

_(x"xo)_v(t_to) T — Xy
62) i (s Ly TN (R
Let
(63) W= n(=20)" = 2518

Then, disregarding the infinite multiplication constant (which can always be
scaled out), the general similarity solution (53) takes the form
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1
(t — tl) w/2+1/4

(64) 0z, t) = ¢ "R ().

We have assumed p — « so that

Then, the differential equation (55) becomes

EF (L, gy =
(69) I+ (o - L)re = 0.

This is brought to the standard form (56) if

(66) Z=’2‘;7Tz=@z%:—‘gf)*x7§, ©=v+3
Then (53) becomes
©67) 0z, 1) = L =rpg.

(t — t])(v+1)/2

If the initial line ¢ = 0 is to be a similarity curve we must choose ¢, = 0. For the
source problem we must have a solution vanishing (actually exponentially)
as 2 — = . The asymptotic form (60) shows that integer values of » are neces-
sary while [, u dz = const. implies » = 0. Then the solution (67) becomes (the
constant is chosen from overall conservation of heat):

(68) 0(x, 1) = (4rt) ™™=

Other well known solutions are included in (67). For example, if 6(z, 0) = 0,
6(0,t) = 1(x > 0, > 0) theny = —1 and

(69) 0(x, t) = e */*C-D_,(z) = erfc 2—675 = erfe —2—;:775

Of course, in general in ¢ > 0, ¢ > 0 with zero initial conditions (67) gives

C

(70) oz, ) = <5me D
and at x = 0(z = 0) we have

C I\(l)2l/2r
(71) 0(0) t) = t(,,+1)/2 D"(O) = C I‘(% —1V)t<v+1)/2.

Ast— 0, the solution makes physical sense only for » < 0, so that a finite amount
of heat is added across the boundary # = 0. Such considerations always have to
be added and are never contained in the similarity reasoning.

Next we construct the functional form of the solution and find the differential
equations for the two limiting cases discussed earlier. The limit processes could
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of course be applied to the solution but it is simpler to apply them to the equa-
tions.

Limiting Case 1. b*> — 0(VH® = —2k): The limit process is that of (43) with
the result (45) and the similarity curves of Fig. 5. We carry out the limit on the
general solution (53).

(72) 0, ) > (¢ — to)”
“lexp {—in**(t — o) + F*/3(t — )°* — n/(t — t)}1F(2*)

where
x _ T — T k.
T L T
In the equation for F(z), (55), the same limit is performed and (53) becomes
d’F
(73) i (# + kn*)F(n*) = 0.

Limiting Case 2. a® — : We use the solution form (54) replacing u by u*.
From equation (55),

2
O — Ca'V* =l 4 WIF = 0
we obtain
sz 2 2 1 2 2 2
(74) + K°a® — ky* — $V?/a® — u*/a®)F = 0

dn**

and keeping V fixed we let

(75) p* =k +ud® + - as a—> o,
Thus

d’r
(76) T (en* + wWF(n*) =0

which is the same equation as (73). With the further simplifications of (75) and
omitting the scale factor, we find that

(77) 6(x, t) = (exp {[kn* +3V* + pl(t — to) — 3k°(t — 1)° — 3V (z — ) DF(n*)
* =~ —x) — V(- t) — k(t — to)z]-

A special case of the solutions (77) have been used by J. M. Burgers [4] as eigen-
solutions of the heat equation for a semi-infinite space bounded by a moving
boundary of parabolic form

(78) z =1

D
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(See Fig. 7). These eigensolutions are obtained from (77) if

(79) k=% V=0 =z =0, th=0
and

(80) b= —0n

is the eigenvalue. Eqn. (77) becomes

(81) On(z, 8) = (exp { =75’ + 3%t — out})F.(n*)

7* = 3 — g,

The F.(n*) are the Airy function solutions of (76) which die out as n* — o

d’F,,
* 2 - 1/2 21/2
(83) Fo(n*) = (1—21—/63‘?/5)—— Kl/g(—g‘ [n* — 20m]3/2)’

The o, are chosen so that (—2s,) are the zeroes of the Airy function or of the
continuation of (83) to negative arguments

2 - *\1/2
B P =Tt

21/2 21/2
'{‘]—1/3(_3— (2(71» - 77*)3/2) + Jl/a(—3" (2'Tm - "7*)3/2)}‘

Thus F..(0) = 0, all m. Burgers shows that this set of eigenfunctions is orthogonal
and thus uses them to construct a representation of a unit source at (z, , ¢,)
reflected in the moving boundary. This representation is

£ — 1 iyt — tn*}
M = 1 —_— 8 8l s
(85) 0(x, t; x, ) £) 2 €Xp { 12 + B)

. - Fm(n*z_li_v_n@)_ —am(t—t4)
D O E ’

Burgers’ method of deriving (81) was to assume a separation of variables form
G(t, v) H(t, v) and to choose @ so that essentially a similarity form resulted for
0 .
Next we consider the influence of g(z, ¢) (¢f. 29) and take as an example the
‘“trivial”’ case where

tzt,, 6 =0, t<t,.

g(x, t) = ¢ = const.

and

(86) {X = }
T = 2
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* /,"‘é

22

Fie. 7

Here the similarity variable is 7 = z/t"* and
87 0 = clog t'* + F(y).

Thus, for this linear case, the effect of g(x, £) # 0 is to make F(») the solution
of an inhomogeneous equation. Then F(y) satisfies

(89) F" + 3oF = }e.
Thus

n
(89) =t [ an,

@

Next we give the ‘‘non-classical” method of procedure which makes use of
both the given equation (20) and the invariant surface condition (10).

Since in (10) the equation can be divided through by (X, T, or U) there are
really only two independent infinitesimals. Thus we will assume that T = 0,
divide through by 7, and thus in (10) replace

(90) Iox, You
The condition for an invariant surface now reads
(91) 6, = U — Xo,
which implies that
(92) 0 = (U, — XU) + (U, — X. + X*)6, — X.6; .

Now using (91), (92) the RHS of (22) can be expressed as coefficients times
powers of 6, . Successively equating to zero the coefficients of 62 , 62, 6% , and 6"
we get:

(93) X =0



HEAT EQUATION 1041

(94) Uw — 2X,.+2XX, =0
(95) X, —2UX, +2U,, — X., + 2XX, =0
(96) U..—2UX, - U, =0.

If we differentiate (94) once and (95) thrice with respect to u, then we have:
Uuuu + 2XuXu = 0

97

UiuX. = 0.
Then using (94) again we find that:
©8) {U.m = 0}

X.=0
and thus
©9) {U=W@0+D@D}

X = Az, ¥

From (95) we have
(100) A, + 244, — A,, = —2C,
and from (96)
(101) C,—C,,+24.C =0
(102) D, — D, +24,.D = 0.
The characteristic differential equations corresponding to (91) are now
(103) de _ dt _ do

A, ) 1 D, t) + Cz, 1)
The similarity variable
(104) n(zx, t) = const.

is the integral of the first two of (103) and defines the similarity curves. Once
n(z, t) is known explicitly the functional form is found, for example, by replacing
z by z(f, 1) and integrating the second of (103).

The problem of finding the general similarity solution to the heat equation
has thus been ‘“‘reduced” to the study of the nonlinear equations (100), (101),
and (102), C and A are coupled and D ~ C is always possible. However, it is
clearly impossible to construct the general solution of these equations. Rather
classes of special solutions must be examined, each of which generates a similarity
solution of the original heat equation. But any solution to the system (100, 101,
102) reduces the heat equation to an ordinary differential equation.

Let A = 2¢, , then from (100),
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If M(t) = 0, then (101) implies that
(106) Drzzz — 2§0tz:c - 4‘1”:‘?:::: - 8‘1012‘?:\:;:: + 4§Dzz§0t + 8¢xz¢: + Pie + 4§0z¢zl = 0.

The “classical” case results when we set ¢,., = 0(4,, = 0).

It is interesting to note that if C = 0, then (101) becomes the Burgers equation.
Setting A = —H,/H, where H is a solution to the heat equation, we can show
that the resulting solution 8 satisfies the relation 6, = H.

The non-classical solutions are more general than the classical ones. However,
all simple solutions we have thus far found for this case are included in the classi-
cal case. For other equations the non-classical solutions have been shown to be
more general.

4. Conclusion. The main aim of this paper has been to demonstrate the
use of the method of infinitesimal transformations for the construction of simi-
larity solutions of partial differential equations. The general forms of the simi-
larity solution (53) and (54) are new results and contain many new special cases.
In addition the ‘“non-classical” method represents a new approach to the dis-
covery of similarity solutions.

The same method can be applied to a wide variety of linear and nonlinear
cases. For example, the system of equations for one-dimensional unsteady gas-
dynamices is discussed in [2]. In [5], the method is applied to a Fokker-Planck
equation, a general axi-symmetric wave equation, and a nonlinear heat equation.
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