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ON MAPPING LINEAR PARTIAL DIFFERENTIAL EQUATIONS
TO CONSTANT COEFFICIENT EQUATIONS*

GEORGE W. BLUMANf

Abstract. A constructive algorithm is developed to determine whether or not a given linear p.d.e, can
be mapped into a linear p.d.e, with constant coefficients. The algorithm is based on analyzing the
infinitesimals of the Lie group of transformations leaving invariant the given p.d.e. As consequences, in two
dimensions, necessary and sufficient conditions are given for mapping:

(1) a parabolic p.d.e, into the heat equation;
(2) a hyperbolic p.d.e, into the wave equation;
(3) an elliptic p.d.e, into Laplace’s equation or the Helmholtz equation.
The corresponding mappings are given explicitly.

1. Introduction. In this paper we develop a constructive algorithm for answering
the question of whether or not a given linear partial differential equation can be
mapped into a partial differential equation (p.d.e.) with constant coefficients.

A constant coefficient p.d.e, with n independent variables is invariant under the
n-parameter Lie group of translations of its independent variables. Hence it is necessary
that a given p.d.e, with n independent variables be invariant under at least an
n-parameter Lie group of point transformations in order to have a mapping to a
constant coefficient p.d.e. The constructive algorithm presented in this paper is based
on the idea of mapping infinitesimals of the Lie group of point transformations leaving
invariant a given linear p.d.e, into infinitesimals corresponding to invariance under
translations.

For examples we consider the parabolic, hyperbolic, and elliptic equations in two
dimensions. In the respective cases necessary and sufficient conditions are given for
the variable coefficients so that a mapping to a constant coefficient p.d.e, is possible.
In addition each corresponding mapping is given explicitly.

2. The mapping algorithm. Consider an ruth order homogeneous linear p.d.e.
with n independent variables x (x 1, x2, , x,) and dependent variable u (x):

(1) A(x)u q-Ail(x)ui1-1-" "-bAili2""im(x)uixi:z...im "-0,

where

A(x), Aii2""ik(x) R --> ,
ik 1, 2, ", n,Uili2"’it

Xi Xi:z Xit
k 1, 2, , m, x s domain D c Rn. (Throughout this paper repeated indices are sum-
med from 1 to n.)

Our aim is to map (1) (and determine whether or not this is possible) into a
constant coefficient linear p.d.e, with respect to some new independent variables

(q, :2," ", n) and new dependent variable U(:):

(2) BU +BqUi +" + Bii:z’"i’uii:z...i,r, O,
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where {B, B ili2"’’ik} are all constants,

Ui z

The mapping is given by

it‘ 1, 2, ’, n,

(3) x x(), u(x) F()U(,)

k=l, 2,...,m.

where u(x) solves (1) in domainD if and only if U() solves (2) in domainS. The
one-to-one mapping x() transforms domain @ into domain D with inverse mapping
given by sO(x). F(sc) is called the multiplier of the mapping (3).

The constant coefficient p.d.e. (2) has the property of being invariant under the
n-parameter Lie group of translations

(4) so/* :i + ej 8ij, U* U,

1, 2, , n, where {e 1, ez, , e,} are the n parameters. Hence it is necessary that

(1) be invariant under at least an n-parameter Lie group of point transformations in
order to have a mapping into some constant coefficient p.d.e. (2). Moreover, under
the mapping (3) (to be determined) some representation of the Lie group leaving (1)
invariant must be transformed into the n-parameter Lie group of translations (4). In
particular, for some representation, the infinitesimals of the Lie group leaving (1)
invariant must be transformed into the corresponding infinitesimals for translation
invariance.

Given a linear p.d.e. (1), there is an algorithm to find its invariance Lie group of

point transformations. This group is of the form

(5)
x x + eX(x + O(e),,
u* u + eg(x)u + O(e 2)

i=l,2,...,n

where the infinitesimals {Xi (x), g (x)} correspond to the solution of a set of determining
equations. (Bluman and Cole (1974), Ovsjannikov (1962)). If p.d.e. (1) is invariant
under at least an n-parameter Lie group of point transformations then it is possible
to have an n-parameter {e 1, e2,""", en} representation of (5) of the form

(6)
1, 2, ., n,

where det [Xq(x)[ # 0 in D.
If there is some mapping (3) of p.d.e. (1) into a constant coefficient p.d.e. (2)

then it must map a representation (6) of the infinitesimals of the Lie group leaving
invariant p.d.e. (1) into the translation group (4). If such a mapping (3) exists then it
follows that

OXi
X Xi -[- F’lX1"i(X) @ Xi(*) Xi ’[- Ej (k]() "["’" ",

u*= u(x)+eigi(x)u(x)+ F(:*)U(C)

1, 2, , n,

OF()
U() +

Taking each independent parameter {e 1, e2, En } in turn, one finds that the mapping
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(3) is given by the set of equations

Ox__2=Xji(x) 1 OF
(7)

0:j ff 0-. gi(x), i, ] 1, 2,..., n.

Thus the necessary and sufficient condition for mapping p.d.e. (1) into a constant
coefficient p.d.e. (2) is the existence of a solution {x (:), F()} of the system of equations
(7). Of more interest is (x) related to x() by the Jacobian conditions:

Ox_.._j.i Oi 6ik, i, k 1, 2, , n.(8)

From (7), (8) :(x) is found by solving the system of equations

Oi-’6ik i,k 1, 2, , n.(9t Xki(X

(lO)

The system (7), and hence (9), has a solution if and only if

02xi 02xi

0
i,j,k 1,2, ,n.

The consistency relations (10), applied to (7), correspond to the infinitesimals
{X. (x), g(x)}, det IXq(x)l o, satisfying the system of equations

OXI. OXki Ogj Ogk(11) Xkt----- Sjl, Skl., Stir, i, j, k 1, 2,. , n.
OXl OXl OXl

The mapping algorithm can be summarized as follows"
(I) Find the determining equations for the infinitesimals of the Lie group of

point transformations leaving invariant the given equation (1). (It is unne-
cessary to solve the determining equations explicitly as will be seen in the
examples.)

(II) Find the coefficients of (1) so that the system of equations (11) has a nontrivial
solution where det IXq(x)l # 0 in some domain D.

(III) Solve the system of equations (9) to find ’(x).
(IV) Find the multiplier F(:) by solving the second set of equations in (7) or

equivalently by solving the set of equations

1 OF
F Oxi

gi(x )--xi’ i=l,2,...,n.

(a) The case n 2. For the case of two independent variables, n 2, we introduce
the notation XlX, x2y, XIX, X2 Y, X11X, X21X2, X2 Y, X22 Y2,-, :2- n.

In this notation the mapping equations (7) become

Ox
(7a) O----Xl(X, y),

O.y_. YI(X, y),(7b)
0
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OX
(7c)

On
X2(x, y ),

o__y Y(x, y),(7d)

1 OF
(7e) ff 0--z gl(x, y),

1 OF
(7f)

r/O
g2(x, y),

where

det X X2 0
Y Y2

in domain D.
If a mapping to a constant coefficient p.d.e, is possible, the new independent

variables (sO(x, y), r/(x, y)) correspond to a solution of the system of p.d.e’s

(9a)

(9b)

(9c)

(9d) on o__n O.X(x, y -x+ Yl(X, y
0y

For some representation of the infinitesimals leaving invariant the corresponding
p.d.e. (1), the consistency relations (11) become

OXx OXx XI OX2 OX2(11a) X-x+ Y O- --x+ Y’
0y

0 Y2 0 Y. 0 Y1 0 Yx
(11b) Y, ---y +X,--x Y2--y +X2 0-=-’

(llc)
Og Og Og2 Og__2X-x + Yz-y X -x + r

Oy

In the following sections of this paper we find the most general second order
linear p.d.e, of the form

(12)

02U
+2b(x,y)a(x, y)
OX 2

O2U O2U
+c(x, y)

Ox Oy Oy

OU OU
+d(x, y)x-x +e(x, y)y-y +f(x, y), =0

which can be mapped into a constant coefficient p.d.e.
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According to the sign of b2-ac, we can reduce (12) to one of three canonical
forms by well-known transformations of the independent variables (Mikhlin (1970)).

(i) b 2 ac 0 in D (parabolic case).

2u
+ (x, y)

u u
(13) - xx+/3(x, y)y-y+ V(x, y)u =0

where/ (x, y) is of fixed sign in D, say fl (x, y) > 0 in D.
(ii) b 2 ac. 0 in D (hyperbolic case).

02u
+ c (x, y)

0u 0u
(14)

Ox 0--- -x+[3(x, y)y+V(x, y)u =0.

(iii) b 2 ac < 0 in D (elliptic case).

OEu 02U OU OU
(15) 0x++a(x’Oyz Y) xx+/ (x, Y 0y

+V(x, y)u =0.

We now study each of these three cases separately.

3. The larabolie equation. By known transformations of the dependent and
independent variables any linear parabolic p.d.e. (13) can be reduced to an equivalent
form

t92U tgU’
(16) +:-;,+G(x’, y’)u’ 0

O(x’)2

where

x’= (x, y) [/3 (z, y)]1/2 dz,

U e-C(x"Y’)u
oc (oc ,x, y)

GCx’, r’)= oc+ +’oy’ \Ox’] /(x,y

and C(x’, y’) is such that

ox--’= -- Y)]-/"+ Ox"

For convenience of notation we unprime the primed variables of p.d.e. (16) and
consider

02u Ou
Ox 2(17) +0y +G(x, y)u 0.

In Bluman (1980) it was shown explicitly that p.d.e. (17) is equivalent to the
"backward" heat equation

(18)
o2U oU
o+=0

if and only if G(x, y) is of the form

(19) G(x, y)=qo(y)+ql(y)x +q2(y)x 2
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where {q0(y), qx(y), q2(Y)} are arbitrary functions of y, by mapping the infinitesimals
of the group leaving invariant p.d.e. (17) into the infinitesimals of the 6-parameter
group leaving invariant p.d.e. (18). We now show that the mapping algorithm described
in 2 achieves this result in a much simpler way. Before showing this it should be
noted that any constant coefficient parabolic p.d.e.

02U 0U’ 0U’
(20) 0(,)2 + 2A--7-+B--, + CU’ 0

is equivalent to (18) through the transformation

(21) U(, n) U’((, n’)e ’’+’’’ ’, n n__-
B

where A, ta. (C -AZ)/B. Thus the problem of mapping p.d.e. (13) into a constant
coefficient p.d.e, reduces to using the algorithm of 2 to find all functions G(x, y)
and corresponding mappings (3) such that p.d.e. (17) is equivalent to p.d.e. (18).

Equation (17) is invariant under the Lie group of point transformations

x*=x +eX(x, y)+O(eZ),.
(22) y* y + e Y(x, y)+ O(e2),

u* u + eg(x, y)u + O(e z)
where the determining equations for the group infinitesimals {X, Y, g} reduce to

Y(x, y) r(y),

(23) X(x, y) =xr (y) +A(y),

g (x, y)
x 2.,,(y) + 1/2xA’(y) +B (y),

8

and with respect to a given G(x, y), {r(y), A (y), B (y)} satisfy

(24)

,,(y+ 1/4"r"(y) +xA +B’(y)

oG 0G++[xr’(y) +A(y)]-x+ r(y)y r’(y)G 0.

(In equations (23), (24) a prime denotes differentiation with respect to y.) In terms
of the notation of 2,

(25)

Y/(x, y) ri (y),

X(x,y) x’ri (y +Ai(y ),
2

g,(x, y)=X 7", (Y) +1/2xA(y)+B,(y), i= 1, 2.
8

(26)

The consistency relations (1 lb, a) are

rx(y)r (y)= r2(y)r (y),

A2(y)r (y)+ 2A’(y)r2(y)= A(y)’ (y) + 2A(y)r(y),
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of which the general solution is

(27) rl(y) k’2(y), Al(y)=kA2(y)+l[’r2(y)]1/2

where k, are constants. Without loss of generality (w.l.o.g) we can set k 0,
by an appropriate linear transformation of the variables (, r/), namely ls, r/+
and then unbarring the barred variables. Thus w.l.o.g.

(28) rl(y) 0, Al(y) [’2(y)]1/2

With respect to invariance under the infinitesimals corresponding to parameter
(24) becomes

(29) 0--1/2xA(y)+B’(y)+Al(y) OG O.

Hence it is necessary that

(30)
c93G
Ox 3 = 0,

leading to G(x, y) necessarily satisfying (19). Moreover (19) and (29) lead to Al(y)
(hence r2(y)) and BI(y) satisfying

(31) A (y)+ 4qz(y)A l(y) 0,

(32) B (y)=-ql(y)A l(y).

The other consistency relation (1 lc) leads to

A (y)AI(y A(y)A (y) 2B (y)rz(y ).(33)

Hence

(34)

for some constant m.

A.(y [2B (y) + m]A1(y)

Finally, with respect to invariance under the infinitesimals corresponding to
parameter e2, equation (24) leads to B2(y) satisfying

(35) B(y)=-’2(y)-[’2(y)qo(y)]’-A2(y)q(y).

Moreover one sees that it is necessary and sufficient that G(x, y) is of the form (19).
(a) Construction of the mapping. Equation (9d) leads to

(36) 0n =0 ::> n n(Y).
Ox

Equation (9c) then leads to

1
(37) n’(Y) ’2(y)"

From (28), (31) and (37) we see that r/(y) is a solution of the differential equation

(38) 2r’"n’- 3(n")z- 16q(Y)(n’) 0.

The solution of this differential equation is discussed in Bluman (1980).
Equations (9a, b) lead to

(39) (x, y)=x[7’(y)]l/2+D(y)
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where

D’(y) -Az(y)[r/’(y)]3/z.
Finally, (7e, f) lead to the multiplier F(, rt) satisfying

Bl(y)
(40) log F(#, rt) x2A(y)" +x + W(y)

AI(y) AI(y)

where

(41) W’(y) B (y)rt (y) Az(y)B (y)[rt’(y ]3/2.
It turns out that the corresponding U(:, rt) of (3) satisfies the constant coefficient

p.d.e.

(42)
02U 0U 0U

Oz +-Ort m+pU 0

where the constant

(43) p =1/2A’x(y)a(y)-[Bx(y)]2+Bz(y)-mBx(y)+qo(y)[Ax(y)].
A discussion of various aspects of this mapping and special cases is given in

Bluman (1980).

4. The hylerlml|e equation. Equation (14) is invariant under a Lie group of
point transformations of the form (22) where for given coefficients {a(x, y), fl(x, y),
/(x, y)} the determining equations for the infinitesimals {X, Y, g} reduce to

X(x, y) =I(x), Y(x, y) J(y),

0 -/3Z’(x)
0/3

(43b) (x) -OyJ(y),Ox

tOg -aJ’(y)- (y)- (x),(43c)
Oy Oy Ox

0g 0g02____g + c +/3 O,(43d)
Ox Oy Ox -y

(43e) V[I’(x)+J’(y)]+O’YI(x)+OYJ(Y) =0.
Ox Oy

(A prime denotes differentiation with respect to the indicated variable.)
In terms of the notation of 2,

(44) Xi(x, y) I,(x), Y(x, y) =J,(y), i= 1, 2.

The consistency relations (1 l a, b) are

J (y)Ja(y)=J (y)J(y),
(45)

Z’ (x)tz(x) Z’z (x)I(x)
of which the general solution is

(46) Jz(y kJ1(y), 11 (x) llz(x

where k and are constants. Without loss of generality we can set k 0 correspond-
ing to the linear transformation : + kr/, rt + l" followed by unbarring the barred

(43a)
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variables. Thus w.l.o.g.

(47) J2(y) =- 0, Ix(x)=-O.

Hence from (43b, c) the corresponding {gx(.x, y), gE(X, y)} satisfy

(48a) Og__ 0[3Jl(y ),
Ox Oy

Og--z=-ctJ’ (y) y-yJl(y),(48b)
0y

(48c)
Og I’ 0/- . (x I2(x ),ox x
0g2 Oot

xI2(x).(48d)

The consistency relation (11c) and equations (48a, d) lead to { (x, y),/ (x, y)), satisfy-
ing the first necessary condition

(49)
Oy Ox"

Let

Ot
(50) (x, y) =x+,t.

Equation (43d) for g gl, g2 leads to the following second necessary condition relating
(a(x, y),[3(x, y)):

(51) 06jx(y) +6J (y) O,
Oy

t(x)+z’ (x) O.

Equations (51) are equivalent to 8(x, y) satisfying

02
(52)

Ox 0----" [log 6 (x, y )] O.

In particular, from (51),

(53) 8(x, y)
m

t(x)A(y)

for some constant m. Similarly from (43e) one sees that

(54) y(x, y) P
r2(x)rl(y)

for some constant p.
(a) Construction of the mapping; basic theorem. Equations (9a, b, c, d) reduce to

(55a) Jl(y) yy 1,

(55b) I2(X)x O,
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Or/
(55c) Iz(x) -x 1,

On
O.(55d) J(Y)

Oy

Hence the new variables are

1
s (x, y s (y) Ji(y) dy,

(56)
1

dx.r/(x, y)= r/(x)=
I2(x)

In the hyperbolic case the solution of (7e, f) leads to the multiplier F(’, rt) satisfying
the consistent pair of equations

1 OF q
(x, y)

(57)
1 OF r

F Ox I(x)

where q, r are arbitrary constants.
The corresponding U(, rt) of the mapping (3) satisfies the constant coefficient

p.d.e.

02U + 0U 0U
(58)

O O------ r--+q- +[qr +p-m]U=O.

It is convenient to choose q r 0.
In summary we have the following basic theorem:
THEOREM. The hyperbolic p.d.e. (14) is equivalent to a constant coefficient p.d.e.,

in particular

OaU
+(p-m)U =0(59) asc Or)

if and only if its coefficients {a(x, y),/3 (x, y), 3,(x, y)} satisfy

0[3 Oa Oa
+ aft mK’(x )L’(y ), , (x, y) pK’(x )L’(y(60) ay ax’ ax

for some differentiable functions {K (x), L(y)} and constants m, p. The mapping of the
corresponding p.d.e. (14) to p.d.e. (59) is given by

(61) =(y)=L(y), r/=q(x)=K(x), U(, r/)=u(x, y)H(x, y)

where multiplier H(x, y) satisfies
1 OH 1 OH

(62) -- O-- a (x, y), - O-- fl (x, y).

The first two equations of (60) are equivalent to a (x, y) satisfying

(63a) O__[mK’(x )L’(y Oa/Ox] O___.a
Oy a Ox



MAPPING TO CONSTANT COEFFICIENT EQUATIONS 1269

with

(63b) /3 (x, y)
mK’(x )L’(y cga/Ox

Note that if p rn =0, then w.l.o.g. L’(y)=K’(x) =- 1, and hence s =y, r/=x.
We now consider three particular cases:
(i) p m 0; mapping to the wave equation. If y(x, y)--0, the above theorem

leads to showing that p.d.e. (13) can be mapped into the wave equation

02U
(64)

0s 0--- 0

if and only if

B’(y) A’(x)
(65) a(x, y)= /3(x, y)=A(x)+B(y)’ A(x)+B(y)

where {A (x), B (y)} are arbitrary differentiable functions. The mapping is given by

(66) sO=y, r/=x, U(s,r/)=u(x,y)H(x,y)

where

H(x, y)=A(x)+B(y).

(ii) a a (x), an arbitrary differentiable function of x. In this case, from (60), one
can show that it is necessary and sufficient that

(67) (x, y)=ya’(x)+h(x)

where

(x)

for some constant c. Correspondingly

(68) K’(x)=a(x)a’(x), L’(y)=y+c, m =1

and

3(x, y)=pa (x)a’(x)(y +c).

The mapping to (59) is given by

U(s, r/)= u(x, y)H(x, y)
O2(X)

(69) = +cy, r/= 2

where
(x)(y+c)e

(70) H(x, y)=.
(x)

(iii) a a (y), an arbitrary differentiable function of y. In this case, from (60), it
is necessary and sufficient that /(x, y)=/(x), an arbitrary differentiable function
of x. Correspondingly

K’(x)=B(x), L’(y)=a(y), rn =1
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and

v (x, y) p/ (x)a (y).

The mapping to (59) is given by

d d
U(, n)=u(x, y)H(x, y)

where

H(x, y) e t(y>+n(x>l.

(iv) An important corollary. The following corollary is an obvious consequence
of the basic theorem of this section"

COROLLARY. The p.d.e.

02U+/(x, y)u 0(71)
0x 0y

can be mapped into a constant coefficient p.d.e, by some transformation of the form (3)

if and only if /(x, y) is separable in the form

(72) y(x, y) K’(x)L’(y)

for some differentiable functions {K(x),L(y)}. The mapping is given by (61) with
multiplier H =- 1.

(b) A particular class ofhyperbolic equations. We apply the theorem of this section
to the particular class of hyperbolic p.d.e’s.

(73) C2(X) t)
02u "02u
0x---- Sr 0.

The criteria represented by (60) show that p.d.e. (73) can be mapped into a constant
coefficient p.d.e, if and only if the following conditions (I) and (II) hold:

(I) The "wave speed" C(x, t) satisfies

t2C 10COC
(74)

Ox Ot C Ox Ot
=0"

The general solution of p.d.e. (74) can be expressed in the form

(75) C(x, t)=
g’(t)

>0
f’(x)

for arbitrary differentiable functions {g(t), /(x )}.
(II) For C(x, t) of the form (75), let

(76) v =f(x)+g(t), w =f(x)-g(t).

{g(t), C(x, t)} satisfy

O2C 2 02C
(77) 2COx--+ C Ot2

---3 - =-16m[g’(t)]K’(v)L’(w)

for some differentiable functions {K(v),L(w)}, constant m.
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If C(x, t) satisfies (75), (76), (77) then the transformation

(x, t) (w L(w ),

(78) r/(x, t)= rt(v)=K(v),

U(, rt)= u(x, t)H(x, t),

where the multiplier

(79) H(x, t) [[’(x)g’(t)]1/2

maps (70) into the constant coefficient p.d.e.

02U
-mU=0.(80) o on

(i) The case m O, mapping to the wave equation. If m 0, one can show that
p.d.e. (73) can be mapped into the wave equation (64) if and only if C(x, t) is of the
form

2ao + 2aix + azx(81) C(x, t) b’o + 2blt + bzt2

where constants {ao, a a, a2, bo, ba, b2} are related by

(a x)z- azao (b)z- bzbo A, say.

We examine separately the cases A 0, A > 0, A< 0.
(I) A 0. Here the mapping is given by

1 1 1 1
rt=+ U(:, rt)=u(x, t)H(x, t)(82) s azx + a b2t + ba a2x + a b2t + bl’

where the multiplier

H(x, t) [(aEx + aa)(b2t + ba)]-1/2.

(II) A p2> 0. Here the mapping is given by

(83)

where

log a2x +al-p

a2x +al +p

log I[_a?__x + _a_l
a2x +al +p

o/2

-log

o/2

+ log

b2t+b-p
b2t +bl +p

b2t+bl-p
b2t+bl+p

U(s, rt) u (x, t)H(x, t)

o/2

o/2

H(x, t) [(ax +2aax +a2x2)(bo+2bat +b2t2)]-/2.

(III) A _p2 < 0o Here the mapping to the wave equation is given by

a2p
(a.x + a a.) 1 (bzt + blarctan
\ azp arctan \ bzp )’
(azx + a a) 1 (bzt + ba)arctan + arctan

azp p \ bzo
(84) 1

azp

U(, q)= u(x, t)H(x, t)
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where the multiplier

H(x, t) [(ao + 2a aX + azx2)(bo + 2bit + bet2)]-1/2.
(ii) The special case C(x, t) C(x). In this case one can show that

O2u 02u
(85) C2(X ox 2 Ot2

0

(88)

maps into a constant coefficient p.d.e, if and only if C(x) satisfies the differential
equation

d [ CC ](86) -x 2C-Z(-C’)2J =0"

Let c(x) be such that ’(x)= 1/C(x). Then equation (86) is equivalent to

(87) 2CC"- (C’)2= -16m e
for some constants a, m. The transformation

e a[c(x)-t] a
(x, t)

a
a[c(x)+t]e -a

n(x,t)=
a

u(, n)=[C(x)]-/u(x, t)
maps p.d.e. (85) into p.d.e. (80).

$. The ell|pile equation. In the case of the elliptic p.d.e. (15), the use of complex
variables z x + iy, 2 x- iy, reduces the computations to those for the hyperbolic
equation (14). In particular the corresponding basic theorem is as follows"

THZORZM. The elliptic p.d.e. (15) is equivalent to a constant coefficient p.d.e.
and only if its coefficients {a(x, y ), fl (x, y ), y(x, y )} satisfy

Ox Oy’

+

[or some analytic .function K(z and real constants m, p. If the coefficients o] the elliptic
p.d.e. (15) satisfy (89), the trans[ormation

(90) ’+in K(z), U(’, n)= u(x, y)H(x, y),

where the multiplier H(x, y) satisfies
2 OH 2 OH

(x, y), t(x, y),
H 0x H 0y

maps equation (15) into the Helmholtz equation

(91)
OZU 02U
O2 ++0n2 (p m)U O.

Note that if p m 0, one can have sc x, rt y.
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(a) An interesting special case. If a (x, y) and/3 (x, y) are harmonic conjugates,
in particular

(92) B+ia=2hK’(z) and m-plK’(z)l

for some constants h, p, then conditions (89) are satisfied and the transformation

(93) +ir/= K(z), U(, r/)= u(x, y)e

maps p.d.e. (15) into the Helmholtz equation

(94)
02U
O2 -’[- -’l- (p A 2)U 032
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