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The wave equation ¢*(x)u,, — u,, = 0 is solved for wave speeds c(x) corresponding to two-
layered media with smooth transition from layer to layer. The wave speed c¢(x) has four free
parameters to fit a given medium. Solutions are constructed from invariant solutions of a
related system of first-order partial differential equations that admit a four-parameter
symmetry group. These solutions are superposed to solve general initial value problems for
data with compact support; the computation of the superposition coefficients uses elementary
Fourier analysis. Solutions are illustrated for various initial conditions.

I. INTRODUCTION

In a previous paper’ we classified all wave equations of
the form

(L.1)

which are solvable by group theoretical methods. In particu-
lar, we showed that the system of partial differential equa-
tions

2
c“xu, —u, =0,

(1.2)

equivalent to Eq. (1.1), admits a maximal four-parameter
Lie group of point transformations if and only if the wave
speed c(x) satisfies the ordinary differential equation

2
v, =u,, u,=c(x)u,

cc'(c/c')” = const = pu. (1.3)

If u =0, the solution of Eq. (1.3) reduces to either
c(x) = e*or c(x) = x*, where A4 is an arbitrary constant. In
Ref. 1 we constructed the corresponding invariant solutions
of (1.2).

If £ #0, Eq. (1.3) reduces to one of the following four
standard forms’:

p=1
¢ =vlsin(vlogc); (1.4)
¢’ =v~!sinh(v logc); (1.5)
¢ =logc; (1.6)
p=—1
¢ =v~!cosh(vlogc); (1.7)

where v#0 is an arbitrary constant. Solutions of (1.1) and
(1.2) are discussed in Ref. 2 for c(x) satisfying (1.5) or
(1.7) withv =1,

If c(x) = ¢(x,v) is a solution of any one of the equa-
tions (1.4)—(1.7) then the corresponding general solution of
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Eg. (1.3) is given by
c(x) =K¢(Lx + M,v),

where K 2L 2 = |u| for any constants {L,M,v}.

For each of the equations (1.4)-(1.7) solutions c(x)
are monotone functions of x; ¢(x) is bounded on ( — 0, 0)
if and only if c(x) satisfies Eq. (1.4). Such a bounded ¢(x)
has a smooth simple jump (cf. Fig. 1). This corresponds to
wave propagation in a two-layered stratified medium with a
smooth transition from layer to layer.

In the rest of this paper we construct various invariant
solutions of system (1.2) and hence solutions of (1.1),
where the wave speed c(x) satisfies (1.4); without loss of
generality v > 0. We show how to solve general initial value
problems by a superposition of these invariant solutions. We
illustrate our results by solving initial value problems for
initial humps of varying shape and location.

(1.8)

Il. PROPERTIES OF c(x)

Say ¢(x) solves (1.4). Then |¢'(x)|<1/v,and¢'(x) =0
if and only if
ka/v

c(x)=e k=0,+1,+2,.... 2.1)

30 — T T —T
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FIG. 1. Profile of ¢(x) = ®(x,v).
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Now consider the region where
1<c(x) <e™. 2.2)

In this strip ¢’ (x) > 0 and the inflection point x = x* occurs
where ¢(x*) = ™%, ¢'(x*) = 1/v. Equation (1.4) leads to

/v

lim e ___ .o, 2.3)
e-0* Jov sin(v log c)
and
/v
im [ —% = 4o (2.4)
0" Ji 1 ¢ sin{vlogc)
Hence it follows that lim,_ ., c(x)=¢€"",
lim, __ c¢(x) =1 Thus ¢=1, ¢c=¢"" are horizontal

asymptotes for ¢(x) in the strip (2.2). Since Eq. (1.4) is
invariant under translation in x, without loss of generality
we can set x* = 0.

Now let

c(x) =P(x,v) (2.5)
be the solution of Eq. (1.4) with properties

i lima° P(x,v) =1, (2.6)

x liTw ®(x,v) =™, 2.7

D(0,v) = ™. (2.8)

One can show that Eq. (1.4) has solutions

c(x) = e~ " P(( — 1)"e"*x,v) 2.9)
on the horizontal strip

e <o(x) <en T, (2.10)

n=0,4+1,+2,..

From property {1.8) it follows that each strip solution
leads to the same general solution of Eq. (1.3). Thus from
now on we will only consider the solution ¢(x) = ®(x,v) of
Eq. (1.4).

Graphs of @ (x,v) and (d /dx)P(x,v) are given in Figs.
1 and 2, respectively, forv =1, 1.4, 2.

1.0 + 4

Tor v =1

MippLe v = 1.4

Bottom v =2
0.5 + 4
6.0

X
-50 0 50 100

FIG. 2. ¢’ = ®'(x,v).
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Here ®(x,v) has asymptotic properties,

Pxv)=1+4+C (v)e*¥+o(e) as x— — w, (2.11)
®(x,v) = e [1 ~ C*+(v)e= " 7"]

+ole=“"""% as x— + o, (2.12)
D(x,v) = e + x/v+o(x?) as x-0, (2.13)

for some positive constants {C ~(v), C " (v) }.
To obtain a bounded monotonically increasing solution
¢(x) of Eq. (1.3) with the properties

lim c(x)=c¢, (2.14)
lim c(x) =c, (2.15)
X~ 4 o0
and
max c'(x)=m, (2.16)

x€( ~ 00,00)
where {c,, c,, m} are arbitrary positive constants with
0<c,<c, wesetin (1.8),

K=c,, L= (m/c)v*,

v =v* = r(log c,/c;) L.

The general solution of Eq. (1.3) satisfying (2.14)-
(2.16) is

(2.17)

c(x) = ¢, D((m/c;)v*x + My*), (2.18)

where M is an arbitrary constant.

The width of the transition region in x is O{(c, — ¢;)/
m). Since ®(x,v) exponentially approaches its horizontal
asymptotes, a wave speed ¢(x), represented by (2.18), effec-
tively approximates a two-layered medium. The transition
between layers can be as abrupt as one wishes.

lIl. INVARIANCE PROPERTIES OF SYSTEM (1.2)

As shown in Ref. 1, when c(x) satisfies (1.3) for x>0,
the system (1.2) admits the four-parameter {p,q,7,s} Lie
group of point transformations

X =x+e(xt)+0(),

T=1t+er(x,t) + 0(€),

U=u+eli(x,t)u +j(x,t)v] + O(),

V=uv+elk(x,t)v+ I(x,0)u] + O(€?),
where in terms of

B(t) =pe' —ge™", (3.2)
{&,7.i, j.k,I} are given by

§=28"(O)[e(x)/c'(x)],

=28 [{c(x)/c (X)) — 1] +r,

i=B'"()[2—(c(x)/(X))]+s,

j= =B c(x)/c'(x)],

k= —B'(Oc(x)/c(x)] +5,

I= —B@®)[/e(x)c'(x)].

The group generators for the parameters {p,q,7,s}, re-

3.1)

(3.3
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spectively, are

2¢c 0 c)' ]8

L =é|———+2 -1l =
i e[c 8x+[(c at
9

-Gl

3.4)

The commutators of the Lie algebra are
[LpLy] = — 8L,, [L.L,]=L,,

[L,L,]=—-L,, [L,L]= [LgL,] = [L,.L,] ‘”‘(-30'5)

The global transformation generated by (3.1)-(3.3) is
found by solving the characteristic equations

dX _ dT
XN (XD
_ dU
X,DU+j&X,DV
= av = de, (3.6)
KX,DV+ XU
where
X=x, T=t U=u, V=v, ate=0. 3.7

The global transformation for r30 is obtained from the glo-
bal transformation for » = QO by letting £ — ¢ + ». Without loss
of generality weset 7 =0.

Now let

(B —-p>
Then the resulting implicit global transformation is
z=p(T)sin Y,
[[e(X)) 12U + [e(X) ]2V ]?

= [4e**sin Y 1[B(T)cos Y+ B8' (D],
[[e(XO]72U - [e(XD)]V?V )

= [Be**sin Y ] [B(T)cos Y —B'(D];

Y=vloge(X), y=4pg= (3.8)

(3.9)

and

(/v — ¥)log|cos Y+ (1/y — ¥)B'(D)sin Y|
=E—2¢ for y<0,

(l/v\/—)arctan[ﬁ‘/_n

(3.10)
cot Y] =F—2¢e for y>0.
(3.11)
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The integration constants {z,4,B,E} are expressed in terms
of {x,t,u,v} by using the initial condition (3.7). Without loss
of generality y =1ify>0,y= — 1if y <0.

Now we construct invariant solutions of system (1,2)
forr=0. Let

y=vloge(x). (3.12)
We choose the invariant

z=P(t)siny (3.13)
as our similarity variable.

By setting A = A(z), B = B(z), we obtain from (3.9)-
(3.11) invariant solutions of the form

u=e~*"I[e(x)|siny|]'?[|B(2)cos y + B’ (8|24 (2)
+ |B(t)cos y — B'(1)|'*B(2) ], (3.14)

v=e""=P[[c(x)]|siny|]/*[|B(t)cos y
+B'(1)|M?4(2) — |B(t)cos y — B'(1)|'/*B(2)1,

(3.15)
where
€(x,t) = (1/2v)logjcosy + B'(t)siny| for y= —1,
(3.16)
and
e(x,t) = (1/2v)arctan[cot p/B'(2)] for y=1. (3.17)

The substitution of (3.14) and (3.15) into the system
(1.2) leads to a coupled system of first-order linear ordi-
nary differential equations for A(z) and B(z). The form of
these ODE’s depends on the signs of y and
B(t)cosy +B'(1).

If y = 1, then either

B(t)cosy +B'(t)>0 and B(t)cosy —B'(r) <0
or
B(ticosy +B'(1) <0 and B(f)cosy—B'(t) >0

for all x, ¢.

Ify = — 1, thenfor any given, bothB(¢)cos y + B'(t)
and B(t)cos y — B'(r) change sign once as x varies from
— o 10 + 0.

It is convenient to let

A(z) = (sgn[B(t)cos y + B'()]) f(2),

3.18)
B(z) =g(2). (
Then { f(z),g(z) } satisfy the system
2(22——1)d—f+[—i+(2——s—)z]f
dz v v
— (1/v)|22 - 1|V?g =0,
( ;)I |'g (3.19)
2(z2—1)—g-+[i+(2—i)z]g
d v v
1 22—
+—= Izz |l/2f 0
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if y = — 1, and satisfy the system
1
2@+ 0Ly -2 p TR Tg =0,
(3.20)
2(22 + 1) + [2z+—]g+ VZ+1f=0,
The invariant solutions for y = — 1 are not valid for all

t> Osince (3.19) has a singular point at z = 1. For the rest of
this paper we consider solutions of system (1.2) for y = 1.

IV. INVARIANT SOLUTIONS OF SYSTEM (1.2) FOR y=1
A. The general solution of (3.20)
Let
=1/2v,

o= —s/2v. 4.1)

Then f(z) satisfies the equation

2f+ 3z df 1
Z2+1dz z2 1

02+az]

1 2 T2 =

[+R Z+1 /=0
(4.2)

and

(4.3)

V2 ¥l af z+o
8@ =" [dz+z2+1f]'

The general solution of (4.2) is

— io/2
=C(L_J
1+iz
XF(1 +iR,1 —iR;§ —io; } (1 + iz))
+ C2(1 +iz)—l/2(22 + l)ia/z

XF(+i(0+R),}
+i(ec—R); 3 +io3} (14 i2)),

f2)

(4.4)

where F(a,b;c;z) is the hypergeometric function,® C, and C,
are arbitrary constants.

Let
¥(z) =log(z+VZ + 1) (4.5)
and
W) =VZ¥1f(2).
Then (4 2) transforms to
__0”+osinh \P] _
d‘l’2 [ cosh® ¥ f=0. (4.6)

B. Closed form solutions of (3.20)

Now we construct closed form solutions of (4.2) and
(4.3) for various values of o. From (4.5) and (4.6) we see
that for o =0,

F=/z8) = (1/VZZ +1)cos[RY(2) + ¢ ] 4.7

solves (4.2) for any real constant £. Correspondingly, from
(4.3) one gets

g=80(z£) = — (1/VZ +1)sin[R¥(z) + ¢ .
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(4.8)

Now consider the raising and lowering operators

d (1=21)z+i
Lt*A) =+ 14— T (4.9)
dz 2WZ+1
_ d (1+20)z—1i
L-W)=yZ+1 —4 -T2 (4.10)
dz 2,[?.{_1

One can show that if f = f; (2;{) solves (4.2) foro = —iA,
then

S=LT(A)fi(z8) (4.11)
solves (4.2) foro = —i(4 + 1), and
Sf=L (D), (z8) (4.12)
solves (4.2) foro = —i(A —1).
For o= —in, n=1,2,..., recursively we can obtain
closed form solutions
f=f(z) =L *(n—1)f,_,(z5), n=12,.,
(4.13)
for (4.2) from f,(z;{) defined by (4.7).
From (4.3), the corresponding solution is
o FZEI[dhED | z—in, ]
g_gn(z:g)— R dZ zz+lfn(z’§) .
(4.14)

From (4.7)-(4.11), it then follows that
L=(n)f,(z£) = —3{(2n— 1)+ 4R21 f,_, (z£),

n=12,... (4.15)
Using (4.13)—(4.15), one can show that
Sas1(z8) =(a(n,2) R ) f;t(z;;)] (4.16)
8n+1(Z:6) —R  a(nz)/ 18.(z6)
where
a(nz)= —(n+Plez—-dANZ+1], n=012,..,

and a(n,z) is the complex conjugate of a(n,z).
Let

& = arccot z.

Then

a(nz) = — (n+4)e"".

In computing { £, (z;£).g, (z;£) } it is useful to note that

Su(z:8) _(A(n,z,R) B(n.z,R) ) fo(z)
8. (z:4) — B(nz,R) A(nz.R)/ 1g(z5)

(4.17)
for functions 4A(n,z,R) and B(n,z,R) determined from
(4.16), n = 1,2,... . Further details on {f, (z;{), g, (z:£)}
are given in the Appendix.

Say Aisreal. Thenf = f, (z;{) solves (4.2) foro = — i
if and only if the complex conjugate of f; (z;{), namely

f= fi(z£) solves (42) for o =Iil. Consequently, for
o =in, n = 1,2,..., we have closed form solutions

[=f_.&z5) = f,(z5),

=g_,(z0) = g,(z0),
for system (3.20).
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Moreover if A is real, using (3.20), one can prove that
| £z + |81 (0

_const _ (00 + 181 (0:5)]?

142 142 '

Other sequences of solutions are found by the standard
technique of using the raising and lowering operators (4.9)
and (4.10). Namely we first find functions £ which satisfy
(42)and L ~(A)f=0o0r L *(A)f= Ofor particular values
of A = io. For the lowering operator L ~ (1), resulting solu-
tions are

f=_7i = (I/J?Tl‘)e(i/z)[armnzzpmog(z’+l)] (4.19)

for A =1 4 iR. For the raising operator L * (1), solutions
are

(4.18)

f=}'i = (l/m‘l‘)e—(i/2)[mumzimog(z2+1)1 (4.20)
for A= —}4iR. Sequences of  solutions

{f&. fE.Ft 0 {foi,}'f l,}"fz,...}, are then obtained
as follows:

FE I =L*(n+3+iR)fE (4.21)
forA=n+31+iR,n=0,12,.,and
FEr, =L (n—}+iR)fZ (4.22)

forA=n—31+iR,n=0—-1-2,...

C. Properties of solutions (3.14) and (3.15)

Since the solutions (3.14) and (3.15) depend on simi-
larity variable z we examine the similarity curves

z=const = B(t)siny = B(¢)sin[viogc(x)], (4.23)
where
B(t) =pe' —ge™', pg=]}. (4.24)

We consider solutions for te( — e, ). Then without loss of
generality we can set p = g = } by a suitable choice of initial
time ¢, so that

B(t) =sinh ¢ (4.25)

10

~-20 0 20 40 60

FIG. 3. Similarity curves z = (sinh #)sin(v log c(x)). Nine similarity curves
are plotted for v = 1.4. The corresponding values of zarez = 10" withn = 3
(topline),2,1,0, — 1, — 2, — 3, — 4, — 5 (bottom line). The dashed line
represents the profile of ¢(x) for v = 1.4.
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~-20 o] 20 40

FIG. 4. z as a function of x; z is plotted as a function of x for v= 1.4 and
selected values of £: ¢ = 1 (top), 2, 3, 4, 5 (bottom).

Representative similarity curves are plotted in Fig. 3 for var-
ious value of z for v = 1.4. For various values of ¢, curves

z(x,t) = sinh ¢tsin[v log c(x)] (4.26)
are plotted in Fig. 4 for v = 1.4. Note that z(0,¢) = sinh ¢,
lim, . , z(x,t) =0 and hence for fixed ¢, the range of
z(x,t) is (0, sinh ¢] if t >0 and [sinh ¢, 0) if £ <O.

Consider the asymptotic properties of the similarity
curves

z=sinh¢sin[vlogc(x)] =const as t— + co.
From (2.11) and (2.12), along such curves we have
x~ —(t—log[2z/vC ~(v)])
x~e™(t —log[2z/vC *(v)]) if x>0.
Henceas?— + oo thesimilarity curves are asymptotic to the
characteristic curves of the wave equation (1.1) or system
(1.2). For comparison with the similarity curves of Fig. 3,
characteristic curves are plotted in Fig. 5 for v = 1.4.

Next we consider properties of { f(z),g(z) }. First of all
note that f(z) and g(z) are analytic in z. For any o, as

if x<0;

10

-20 0 20 40 B0

FIG. 5. Characteristic curves, defined by dx/dt = + ¢(x), emanating from
the x axis, are plotted for v = 1.4.
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|z| - o0, from (3.20), { f(2),g(z)} satisfy

Zf+f Rg=0, z3f+Rf+g 0. (4.27)
Thus
~(ut RI £],
f(2) ~ (p*/z)cos[R log|z| +p*] (4.28)

g(z) ~ — (u*/z)sin[R logjz| +p* ],
as z— + o for some constants {u*u",0",p"}. Thus
{f(2),g(2)} exhibit oscillatory algebraic decay as |z| - co.
In the Appendix, g* and p* are computed for
{/.(z8).8, (D)}

Now consider properties of (x,¢) defined by Eq. (3.17)
with #(t) =sinh ¢, i.e.,

(4.29)

The range of e(x,t) is ( — #/4v,m/4v) for any ¢. If o
= —5§/2v =0, + io,, then for any ¢ = ¢t * the number of
oscillations with respect to x in a real solution
{u(x,*),0(x, *)} due to the factor e ~*****) is the integer »
such that

n<ilo,| <n+1, (4.30)

and for any x = x* the number of oscillations with respect to
t in a real solution {u(x*1?), v(x*,£)} due to the factor
e~ %% i the integer m such that

€(x,t) = (1/2v)arctan[sech ¢ cot y].

m<}|o,| |} — (v/m)log c(x*) | <m + 1. (4.31)
Furthermore,
1
D) =—|——y|l=—|]|——v]
o= 5] [z vevee]
(4.32)
€(0,t) =0, (4.33)
lim e(x,) =0, (4.34)
- + o
and
lim e(x,t) = F (w/4v). (4.35)
X— + oo
Atr=0,
u(x,0) = e~ =D [c(x)sin[vlog c¢(x)]]"/?
X [Sf(0) +g(0)], (4.36)

v(x,0) = e~ =D [c(x)]~2[sin[v log c(x)]]*/
X[ f(0) —g(0)],

where €(x,0) is given by (4.32). In both the real and imagi-
nary parts of (4.36) the number of oscillations with respect
to x is the integer n given by (4.30).

Atx =0,

u(0,t) = e™*Jcosh ¢ [ f(sinh t) + g(sinh ¢)],

(4.37)
v(0,¢) = e~ "*Jcosh ¢t [ f(sinh £) — g(sinh ¢)].
Thus {2(0,2), v(0,£)} are finite in 2.
Moreover,
lim u(x,2) = lim v(x,)=0. (4.38)
X— + oo X— + o
Let
O(x,t) = R[|t| + log[} sin y]]. (4.39)
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Then as t— + oo, x fixed,
u(x,t) ~2u* [c(x)/sin y]}/%e— 72
Xeos[O(x,t) +1y+p7],

(4.40)
v(x,t) ~2u* [c(x)siny] ~V2e—*
Xcos[O(x,t) —4y+p*].
Ast— — oo, x fixed,
u(x,t) ~2u~ [c(x)/sin y]/%e*’?
Xsin[O(x,£) —4y+p71, “41)

—l/2et/2

v(x,t) ~ — 2u” [e(x)sin y]
Xsin[O(x,t) +1y+p7 ]

More importantly as 7— + o along a similarity curve
z = const, one can show that if x <0, then

u(x,t) =2z "= VIf(2)[1 + (z/v)e~ '+ o(e~ D],

v(x,t) = 2z e7 B VDf(2) [1 — (z/v)e '+ o(e™ ) ];
4.42)

if x > 0, then
u(x,t) —_ JEeW/ZVe—anmn(l/z)
Xg(2)[1— (z/v)e™"+o(e™ "],
v(x,t) — _‘/Ze—ﬂ/ZVe—amtan(l/z)

Xg(2)[1+ (z/v)e~*+o(eH].

(4.43)

V. SUPERPOSITION OF INVARIANT SOLUTIONS;
SOLUTION OF THE INITIAL VALUE PROBLEM

By superposing invariant solutions, general initial value
problems (IVP’s) of the form

u(x,0) =U(x), v(x,0)=¥V(x), — 0o<xX<0o,
(5.1)
for system (1.2), and
u(x,0) =U(x), u,(x,0)=W(x), — o<x<ow,
(5.2)

for Eq. (1.1), can be solved. Solutions u(x,t) of (1.1) and
(1.2) are identical if

W(ix) =cA(x)V'(x). (5.3)

Foro= —2mi,ie,s=4vmi,m =0, + 1, 4 2,...,con-
sider invariant solutions (3.14) and (3.15) of system (1.2)
u= um (x’t;;ZM )’ v= vm (x’t;§2m )’

um (x’t;§2m)
= exp(

X {[cosh t + sinh ¢ cos y]'/%f,,, (2550 )
+ [cosh ¢ — sinh £ cos y]'/%g,,, (z:(5,.) )},

— i2m arctan[cot y sech ¢ ])[c(x)sin y]/?

(5.4)

U (X852 ) = €xp( — i2m arctan[cot y sech ¢ ])» [smy

X {[cosh ¢ + sinh ¢ cos y]'/%f,,, (z:£5)

— [cosh ¢ — sinh £ cos y]%g,,, (z:62) )
(5.5)
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where { £;,, (2:£):82m (z:£) } are defined by (4.7), (4.8), and
(4.16).

Att=0,
Uy (2,065, ) = (— D™ [c(x)sin p1" 2 [fom (052 )

+ 82m (0362, ) ] €™, (5.6)
Uy (6,062, ) = ( — D™ [sin y/c(x) ]'* [ fom (0:62m)

— 8am (0:2m ) ]€2™. (5.7)

For solving an initial value problem it is necessary that
& _am = £om - Note that 0 <2y < 277. We let a superposition
of invariant solutions,

U = 3 At (Blim),

" (5.8)
2 Amvm (x’t;gbn )’

represent the solution of the initial value problem (5.1) for
system (1.2). The constants {4,,,(,,, } are to be determined.
In practice we determine {4,, cos &,,., 4,, sin {,,, } due to
the form of (5.8). Clearly A _,, = A ,, since u(x,t) and
v{x,t) are real.

The initial condition (5.1) and {5.6)~(5.8) lead to the
following Fourier series representations:

U(x)[c(x)siny] "2 = i B, &%,

” 172 Tt (5.9)
V c(x)] - - C ei2my’
) [siny m ; .
where
Bm = ( - I)m{f'Zm (0;§2m) +g2m (0;§2m)}‘4m’
Cm = ( - l)m[ern (O;é‘m) — 82m (0;§2m ) ]Am’ (5~10)
m=0,+1,+2,.,
8, =L [(e-mmuoe— tsinn =
me (5.11)

Co =L ["e=mmpixieising) 12 as,
T Jo

where x and y are related in a 1:1 manner by y = v log ¢(x).
This completes the solution of the IVP (5.1) of system (1.2).
The convergence properties of the Fourier series (5.9) de-
pend on the nature of the functions U(x) [c(x)sin y] /3,
V(x)[e(x)/siny]"2 Kflim,_ , , U(x) =lim,_, _ V(x)
=0, U(x), V(x) bounded on { — w0, ) then the series
(5.9) converge in the mean.

See the Appendix for general expressions for { £,,,, (0;{)
+ 8., (0;£)} and discussion of the algorithm to compute
(5.8).

Now we give the algorithm to find the Green’s functions
(G, (x,£,),K,(x,£,2)), i = 1,2, for the initial value problem
(5.1). Here (u,0) = (G, (x,£,1), K, (x,£,1)), i = 1,2, satisfies
(1.2), and

G](x;é.ro) = 6(X - §), Kl(xyg:o) = 0;
Gz(-",gao) = 0’ K2(xs§’0) = 6(x b §)'
In terms of these Green’s functions, the solution of the IVP

(5.12)

92 J. Math. Phys., Vol. 29, No. 1, January 1988

(5.1) for system (1.2) may be formally represented as

“= f T G (REDUE) + GalxENVE) 1dE,
o (5.13)
b= f (K, (x£D UE) + Ka(x.£1) V(E) 1dE.

In computing the coeflicients for (G,,K;) we set C,,
=Cl,, B, =B, A, =4}, §n =(}%n, i=12. Then
(5.11) gives

cl =0,

B ’1" = __1_ [C(g) ] -3/2[sin[v lOg C(g) ] ]1/2e - l?mvlogc(g‘)’
4 (5.14)
C% =c(&)BL,
B2 =0.
Now from (5.10), (5.14), (5.8), (5.4), and (5.5) it follows
that {G,, K,, G,, K.} are of the form

Gy (x£1) = [e(€)]17>*[sin[vlog ¢(£)]"*]

"o
a:ne—- ﬂmvlogc(g)U’ln (x,t),

m e - oo

K, (x,£8) = [c(&)]1 7 *[sin[v log c(£) 11"/

o0
X S blLemrminc®pl (xr),

mes - oo

G,(x£,1) = [c(£)] 7 ?[sin[v log c(£)]1]1'?

(5.15)

d
% 2 afne-—x'zmvlogc(g)U,z" (x,t),

me= — oo

K, (x,£,t) = [c(&)1V*[sin[v log c(£)]]"?

X i b'Z"e—-nmvlogc(;)V%n (.X,t),
T (5.15)

where the constants {a’,,b !, } and the functions {U%, (x,t),
Vi (x,t)},i= 1,2, are independent of £.

Now consider (5.11) for hump functions (unimodal
functions)

U(x) = (siny)" * V2o p(x) =0, (5.16)

where n = 0,1,2,..., and « is an arbitrary real constant.
Then lim, _ , , U(x) =0, and U(x) has precisely one
extremum (a maximum) located aty = y', 0 <y <7, where

y' = arccot( — a/(2n + 1)). (5.17)
Let
k=a/(2n+ 1), (5.18)

Ulxx,n) = [sinye®/sinyte®’ |7 +12, n=0,1,2,...
(5.19)

For each n, the hump function U(x) = U(xy,n) has

amplitude 1 with its maximum located at y=j'
= arccot( — k).

If y' is fixed and » increases, from (5.19) it follows that
the hump sharpens. It sharpens to a spike as 7n— «. Three
profiles of U(x) are plotted in Figs. 6(a) and 6(b) forn =0
and n = 10, respectively, with v = 1.4.
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FIG. 6. (a) Hump function U(x;x,0); (b) Hump function U(x;x,10).
Three hump functions are plotted for n =0 [Fig. (a)] and n = 10 [Fig.
(b)]. Inboth cases the locations of the peaks areat x = — 15, 11.25, and 45
and the corresponding values of x are about — 2.25%10° 3.73, and

1.62 X 107, respectively. The value of v is 1.4.

Let
A(k,n) = [sin yte”'] —n+ 12,

Corresponding to U(x;k,n),

(5.20)

B, =B, (x,n) = ‘MJ e~ Pgh®my sinn y dy,
T 0

which integrates to

B, =n![A(kn)/7)

% (" + 1)
(@ +n®)@* + (n —2)%) - (® + 1?)
fn=2N—-1 N=1.2,., (5.21)
with
b=>b(x,n) =4[(2n + )x — 1/v], (5.22)
and
a = a{k,mn) = b(x,n) — 2mi. (5.23)
One can show that
' .
B, (k.2N) = 2N A(k,2N) (@ — 1) b2+ 2m12
T b*+4m
Xﬁ b2+ 4k? — 4m> + 4bmi
iy (b2 + 4k 2 — 4m?)? + 16b°m?’
B, (k2N —1) | (5.24)
_ (2N — 1)1 4(x,2N — 1) (e 4 1)

s
N b%2+ (2k — 1)2 — 4m* + 4bmi
XH 2 2 2\2 2.2 °?
k=1 (B + (2k— 1)* — 4m“)* + 16b°m
N=1.2,...
Ifn=0,

Bm (x,0) = (2/m)A(x,0) [e(l/z)(K—l/‘V)ﬂ’_ 1]

(k —1/v) + 4mi

. 5.25
(x — 1/v)% + 16m? ( )
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APPENDIX
1. Computation of {f,,,,(0;5)+9.,,(0;5)}
From (4.16), it follows that

B, =n![A(x,
w = n! [A(«,n)/ar] I:fn+1(0i§) _(i(n+§) R ) £ (0;6)
(" —1) 8.1 0O\ —R  —itn+ 1/ lg,(0D)]°
X 2 2 2 2 2 2
(a* + n*)(a* + (n —2)°) - (a* + 2°) n=0,1.2,.. (A1)
if n=2N, N=1,2,., Hence
]
S 1(0:8) + 8111 (0:6) _( 0 i(n+;_)—R) fn(0;§)+g,.(0;§)] (A2)
foi1(08) —8, 1 (OO Ni(n+ 1) +R 0 £:(06) —g, (0]
n=012,...

It follows that
Sor2(0:6) +8,.2(0:0)]

f;:+2(0;§)_gn+2(0;;) N 0

n=0,12,...
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_((n+g)(n+;)+R2—iR

o (0:8) + 8, (0:5)

£(0:8) — g, (05 ]’
(A3)

0
(n+§)(n+5)+R2+iR)
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Let
4R

Thus [cf. (4.18)]
(| fom () 12 + |82m (0;6) |2)1/2 =818, "S5, /47,

a,, = arctan 5> (A4)
(4m —1)(4m —3) + 4R m=12,... (A9)
5, =([(4m — 1)(4m —3) + 4R?]* + 16R?)'/%,  (A5)
and
6,=a,+a,+ " +a, m=12,... (A6)  2.Computation of {£,(zt), g,(z:t))
Then Consider (4.16). The matrix
m o . _ 1 a(n,z) R
=[(=1)"/4"] (5,8, s, Ye” ""[cos & Fsind ], M(n,z,R)=———-——R—- R 20D (A10)
JrT D+ RZN —
m=12,... (A7) (n+H"+
Note that is a unitary matrix.
Le
Fim (0:8) = [(— D)™/4™] (5,5, *5,) t
X [cos O, cos{ +isin®, sinf ], (A8) B, =arctan[2R/(2n + 1)], n=0,1.2,.., (All)
&2m (0:6) = [ (= )" H1/47] (5,5, +5,,) and
X [cos©,, sinf+isinO,, cos§ ], f=Ref+ilmf.
m=12,... Then
J
Ref, . 1(z6) Ref, (z:0)
Imf, ., (z6) Imf, (z:0)
= —J(n+D*+RINQB,, Al2
Reg, . ,(z¢) (n+97+ B #) Reg, (z;0) (AlD)
Img, . (z6) Img, (z;4)
where ¢ = arccot z, and the 4 X 4 orthogonal matrix
cosB,cos¢d cosfB, sing —sin g, 0
—cosfB,sing cosf, cosd 0 —sin 83,
NB,.¢)= sin 8, 0 cosB,cos¢ —cosf,sing |’ n=012.., (A13)
0 sin 3, cosfB,sing  cospB, cosd
and
Re fo(z:) cos[Rlog(z+VZ+ 1) +¢ ]
Imfo(z) [ __ 1 0 (A1)
Re g4(z;4) JZF1 | —sin[Rlog(z+VZ+1) +¢1]
Im go(2;4) 0
-
3. Asymptotic properties of {7, (Z;(), 9,.(z:6)} can show that as z— + « [cf. (4.28)],
Asz— + oo, from (4.16), fu(2) = (" /) [eos[Rlogz +p," ] ]
Sus1(z8) X [1+0(1/2)], (A16)
S e R U 850 = — (ut /sin[ [Rlogz +p;7]]
(cosB,, —sinﬁ,,) [f,,(z;g‘) X[1+01/2)],
sinf, cosB, /lg.zO]’ where
n=0,12,.. (A15) el =(=D(=P*+R*I[(n—*+R?]

From (A15) and an analysis of the error in (A15), one
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X"'X[(i)2+R2])1/2, (A17)
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n—1

pt =Rlog2+¢— Y B, n=12..;
k=0

{B.} defined by (A11).

(A18)

4, Discussion of the algorithm to compute (5.8)

For n =2m, consider the matrix defined by (4.17),
namely

A(2mz,R B(2m,z,R
Pz,.(z,R)=( Cmzk)  Bmz )). (A19)
- B(2mz,R) A(2m,zR)
Then
.fzm (z;§2m ) ] ﬁ)(z;§2m ) ]
=P R . A20
[me (z:62m) 2m (2R) 8o(Z:6om) ¢ )

Note that the matrix P,,, (z,R) is independent of £,,,, . From
(4.7) and (4.8),

[fo(Z;§zm ) ] _

cos R¥(z) sin R\ll(z))
80(2;82m )

—sin R¥(z) cos R¥(z)

[ c0o8 &5 ]
X _Sin§2m .

Now multiply both sides of (A20) by 4,, and setz = 0. Then

(A21)

f‘Zm(o;;Zm)] [ §2m ]
m =A,P,, (O,R s A22
82m (0:82,) am ( ) in £, ( )
where (A7) gives
_ (—1)7s85 5, (1 l)
P2m (O)R) - 2.4"‘ 1 _ 1
o el 1)
Thus from (A22)
cos;Zm ] f‘2m(0;§2m)]
A, . =[P,,(O,R)] "4,
il B ECEIRN iy
(A24)
with
(=14 (1 1)
[PZm(O;R)] —_-25'12 ”m 1 _1
& 0 )(1 1)
X(O e\t 1) (A25)
J
SISZ"'Sm FZm(Z)
P. R) = . 1
&R = BTG (sz(z)

m

From the initial condition (5.10),

Som (0;§z,,.)] (-Dm (1 1) [Bm]
_ 7 . A26
m [g2m(0;52m> > U —1/lc, ] A

Hence in the superposition (5.8),

f‘zm (z’§2m ]
gzm (Z §2m
B 2s1s2 : Sm\/m
cos R¥(z) sin R‘I’(Z))
X Py, (z,R)( —sin R¥(z) cos R¥Y(z)

1 N(e 0 ) [B,,,]
x(l _ 1) ( A o & (A27)
Note that explicit computations of {4,,,{,,,} are not re-
quired. Thus the problem of determining {4,./;., (Z:{2m )»
A,.85m (z:6,,)} has been reduced to the computation of
P, (z,R).

Algebraically, P,,, (z,R) is determined by using the re-
cursive relation (4.16) or its real version (A12)-(A14).
Next we give a nonrecursive procedure for finding P,,, (z,R)
based on a numerical solution of an initial value problem for

a system of ordinary differential equations.

F,,.(2)
[flz[Gz (i) (A28)
2m

solve the system corresponding to (3.20) and (4.1) for
o= — 2mi, namely

2+ 1)ﬂ+(z—2mi)f—R\/?+1g=o,

(A29)
(z2+1) +(z+2mz)g+RJ?_f 0,
with initial condition
£(0) (—1)"' [ ]
£2(0) 1 -1 (A30)

for any nontrivial ch01ce of constants {b,,,c,, }, m = 1,2,....
Then [Z’z’"((’,’) equals the right-hand side of (A27) with B,,

ms Cm = C,n- Here P, (z,R) is determined in terms of
{Fz,,. (2), G, (2)}

G,,, (2) )
F2m (Z)

X(Fm ?m)(e—ie'" 0 )( cos RY(z) sinR\I!(z))(l 1)
C, -8B, 0 e*®/\—sinR¥(z) cosR¥(z)/\1 —1/"

(A31)

Note that the matrix P,,, (z,R) is independent of the choice of {b,,,c,, }. If b,, = 1, ¢,, =0, then (A31) becomes

F, (z2) —G,,(z ~©m - — e ©Omg; -
P, (zR) = 515, ms,,, 5@ ( 2m (2) 2m (2) (e R <.:os(R‘I’(z) w/4) e R sin(R¥(z) 17'/4)).
4 G (2)  F, (2) ) €°" sin(RY (z) — 7/4) e° cos(RY (z) — 7/4)
(A32)
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Any numerical procedure such as Runge—Kutta can be used
to find {F,,, (), G,,, (2)},m=1,2,....
The following asymptotic expression is useful for com-

puting {A4,,.for. (Z:lom)s Am&am (Z:62m )} for large z: using
(All), (A16)-(A18), (A24)-(A26), one can show that as

Z— + o0,
f;m (z;§2m ) ]
" g2m (Z;§2m )
4"ps,

=§[1+0(§)]5;1;2.—..;

X( € cosw,, (z) —e ©sinw, (z))

0, . ~ 9,
—e "sinw,, (z) —e cos w,, (2)

]
X c. |’

(A33)
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where

2m—1
o, (z) =R 10g22——}— Y B (A34)
k=0

and {©,,,s,, } are given by (A4)—(A6).
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