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Abstract. We prove a generalization of an old conjecture of Pillai (now a

theorem of Stroeker and Tijdeman) to the effect that the Diophantine equation

3x − 2y = c has, for |c| > 13, at most one solution in positive integers x and
y. In fact, we show that if N and c are positive integers with N ≥ 2, then

the equation |(N + 1)x −Ny | = c has at most one solution in positive integers
x and y, unless (N, c) ∈ {(2, 1), (2, 5), (2, 7), (2, 13), (2, 23), (3, 13)}. Our proof

uses the hypergeometric method of Thue and Siegel and avoids application of
lower bounds for linear forms in logarithms of algebraic numbers.

1. Introduction

Let us suppose that a, b and c are fixed nonzero integers and consider the expo-
nential Diophantine equation

(1.1) ax − by = c.

In 1936, Herschfeld [He] showed, if (a, b) = (3, 2) and |c| is sufficiently large, that
equation (1.1) has at most a single solution in positive integers x and y. Later
that year, Pillai [Pi2] (see also [Pi1]) extended this result to general (a, b) with
gcd(a, b) = 1 and a > b ≥ 2, provided |c| > c0(a, b). Since Pillai’s work (and,
for that matter, Herschfeld’s) depends upon Siegel’s sharpening of Thue’s theorem
on rational approximation to algebraic numbers, it is ineffective (in that it is not
possible, from the proof, to compute c0(a, b)). In the special case where a = 3 and
b = 2, Pillai [Pi3], conjectured that c0(3, 2) = 13, noting the equations

3− 2 = 32 − 23 = 1, 3− 23 = 33 − 25 = −5 and 3− 24 = 35 − 28 = −13.

This conjecture remained open until 1982 when Stroeker and Tijdeman [StTi] (see
also de Weger [dW]) proved it using lower bounds for linear forms in logarithms of
algebraic numbers, à la Baker (an earlier claim was made without proof by Chein
[Ch]). Subsequently, Scott [Sc] gave an elementary proof, exploiting properties of
integers in quadratic fields.

Our object in this paper is to prove a generalization of Pillai’s conjecture which
is not amenable to the techniques of [Sc], avoiding the use of linear forms in loga-
rithms. In fact, we will utilize bounds for the fractional parts of powers of rational
numbers, established via the hypergeometric method. Based upon techniques of
Thue and Siegel, using rational function approximation to hypergeometric series,
this approach was, at least in principle, available to Herschfeld and Pillai. We
obtain
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Theorem 1.1. If N and c are positive integers with N ≥ 2, then the equation

|(N + 1)x −Ny| = c

has at most one solution in positive integers x and y, unless

(N, c) ∈ {(2, 1), (2, 5), (2, 7), (2, 13), (2, 23), (3, 13)} .

In the first two of these cases, there are precisely 3 solutions, while the last four
cases have 2 solutions apiece.

These exceptional cases correspond to the equations

3− 2 = 32 − 23 = 22 − 3 = 1
32 − 22 = 23 − 3 = 25 − 33 = 5

32 − 2 = 24 − 32 = 7
24 − 3 = 28 − 35 = 13

33 − 22 = 25 − 32 = 23.

For a good exposition of these and related subjects on exponential Diophantine
equations, the reader is directed to the books of Ribenboim [Ri] and Shorey and
Tijdeman [ShTi].

2. Fractional parts of powers of rationals

If u is a real number, let us denote by ‖u‖, the distance from u to the nearest
integer; i.e.

‖u‖ = min {|u−M | : M ∈ Z} .

In 1981, Beukers [Beu] was the first to apply the hypergeometric method of Thue
and Siegel to the problem of obtaining bounds for the fractional parts of powers
of rational numbers. In particular, he deduced lower bounds for

∥∥∥(N+1
N

)k∥∥∥, for
k ∈ N and N ≥ 2. We note that the case N = 2 has special importance for the
quantity g(k) in Waring’s problem (see e.g. Hardy and Wright [HW], page 337).
For our purposes, we will use a result of the author [Ben] which slightly refines the
corresponding inequality of [Beu]:

Proposition 2.1. If N and k are integers with 4 ≤ N ≤ k · 3k, then∥∥∥∥∥
(

N + 1
N

)k
∥∥∥∥∥ > 3−k.

In case N = 2, by applying the techniques of [Ben] to [Beu] (as done in nonex-
plicit fashion in [Du]), in combination with some (nontrivial) computation, we may
prove

Proposition 2.2. If k ≥ 5 is an integer, then∥∥∥(3/2)k
∥∥∥ > 2−0.8k.

A result of this flavour was obtained by Dubitskas [Du], with the exponent 0.8
replaced by 0.793 . . ., for k ≥ k0, where the last constant is effectively computable.
In our context, we use Propositions 2.1 and 2.2 to show, if

(2.1) (N + 1)x2 −Ny2 = (N + 1)x1 −Ny1 ,

for x1, x2, y1 and y2 positive integers with, say, x2 > x1, that

(2.2) |(N + 1)x2 −Ny2 | > (N/3)x2
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if N ≥ 4, and

(2.3) |3x2 − 2y2 | > 2x2/5,

provided (x2, y2) 6= (2, 3). To see these, first note that necessarily x2 < y2. If not,
we would have

(N + 1)x1 −Ny1 = (N + 1)x2 −Ny2 ≥ (N + 1)x2 −Nx2 ≥ (N + 1)x1+1 −Nx1+1

and so
(N + 1)x1 > (N + 1)x1+1 −Nx1+1.

This implies that (N + 1)x1 < Nx1 , an immediate contradiction. Since

|(N + 1)x2 −Ny2 | =
∣∣(N + 1)x2 −Ny2−x2Nx2

∣∣ ≥ Nx2

∥∥∥∥(N + 1
N

)x2
∥∥∥∥ ,

we easily obtain (2.3) from Proposition 2.2. To derive (2.2), we consider the cases
N ≤ x23x2 and N > x23x2 separately. In the first instance, (2.2) is immediate. If,
on the other hand, N > x23x2 , then, since

(N + 1)x2 −Ny2 < (N + 1)x2 −Nx2+1 = Nx2

((
N + 1

N

)x2

−N

)
,

we have

(N + 1)x2 −Ny2 < Nx2

((
N + 1

N

)N/3

−N

)
.

Since this last quantity is negative, it follows that

|(N + 1)x2 −Ny2 | = Ny2 − (N + 1)x2 > Nx2

(
N − e1/3

)
> (N/3)x2 ,

as desired.
We will apply inequalities (2.2) and (2.3) to show, if (x1, y1, x2, y2) is a solution to

(2.1), then x2−x1 and y2−y1 are relatively small. In the next section, we will derive
lower bounds upon these quantities, leading, in most cases, to a contradiction.

3. A gap principle

If (x1, y1, x2, y2) is a solution to (2.1), with x2 > x1, then we have both

(3.1) (N + 1)x2−x1 ≡ 1 (mod Ny1) and Ny2−y1 ≡ 1 (mod (N + 1)x1).

We will use these congruences to bound x2 − x1 and y2 − y1 from below, via the
following lemma (where we write νp(m) for the p-adic valuation of m) :

Lemma 3.1. Let x, y and N be positive integers with N ≥ 2. If

(3.2) Ny ≡ 1 (mod (N + 1)x),

then y is divisible by
2 (N + 1)x−1 if N is even or x = 1,
22−x (N + 1)x−1 if N ≡ 1 (mod 4) and x ≤ ν2(N − 1) + 1,
21−ν2(N−1) (N + 1)x−1 otherwise.

If, on the other hand, we have

(3.3) (N + 1)x ≡ 1 (mod Ny),



4 MICHAEL A. BENNETT

then x is divisible by
Ny−1 if N is odd, N ≡ 0 (mod 4) or y = 1,
22−yNy−1 if N ≡ 2 (mod 4) and y ≤ ν2(N + 2) + 1,
21−ν2(N+2)Ny−1 otherwise.

Proof. We are grateful to the anonymous referee for suggesting the proof of this
lemma in its current form. Let us begin by supposing that x, y and N satisfy (3.2).
It follows that y is even and, in fact, if p is a prime divisor of N + 1 and z ≥ 1 is
any integer, we have

N2z ≡ 1 (mod p) and N2z ≡ 1 (mod 4) ( if p = 2).

The p-adic valuations of logp

(
N2z

)
and N2z−1 are thus equal. Since logp

(
N2z

)
=

z logp

(
N2
)
, we obtain the desired result, provided N is even. If N is odd, the

necessary conclusion is a consequence of the fact that

ν2

(
log2

(
N2
))

= ν2

(
N2 − 1

)
= ν2 (N + 1) + ν2 (N − 1) .

The analogous statement for x, y and N satisfying (3.3) follows from a similar
argument upon noting that

ν2

(
log2

(
(N + 1)2

))
= ν2

(
(N + 1)2 − 1

)
= ν2 (N) + ν2 (N + 2) .

�

4. Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. Let us first consider the equation

(N + 1)x2 −Ny2 = Ny1 − (N + 1)x1 .

If (x1, y1, x2, y2) is a solution to this, in positive integers, then N divides

(N + 1)x2 + (N + 1)x1 .

Since this latter quantity is congruent to 2 modulo N , it follows that N = 2. By
Theorem II of Pillai [Pi3], the equation

3x2 − 2y2 = 2y1 − 3x1 = c

has only the solutions

(x1, y1, x2, y2, c) = (1, 2, 2, 3, 1), (1, 2, 1, 1, 1), (1, 3, 2, 2, 5),
(3, 5, 2, 2, 5), (2, 4, 2, 1, 7), (2, 5, 3, 2, 23)

(where, without loss of generality, we assume that c > 0). We may thus restrict
attention to equation (2.1) (with, again, x2 > x1). We will combine Lemma 3.1
with inequalities (2.2) and (2.3) to finish the proof of Theorem 1.1.

Let us begin by supposing that N = 2 and

(4.1) 3x2 − 2y2 = 3x1 − 2y1 = c

where x2 > x1. Considering this equation modulo 3, we find that y1 ≡ y2 (mod 2).
Let us suppose first that y1 = 1. Modulo 8, (4.1) implies that x2 is even and x1

odd. If x1 = 1, 32 − 23 = 3 − 2 = 1 and (2.3) implies that there are no additional
solutions to 3x − 2y = 1. Otherwise, from (2.3),

3x1 − 2 = 3x2 − 2y2 > 2x2/5
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and so, since 3x2 − 2y2 > 0 implies that x2 > log 2
log 3 y2, (2.3) and Lemma 3.1 give

3x1 > 2
log 2
5 log 3 (2·3x1−1+1) + 2

and so, since x1 > 1 is odd, x1 = 3. We thus have 3x2 − 2y2 ≡ 0 (mod 5),
contradicting x2 even and y2 odd.

Next suppose that y1 ≥ 2. Considering equation (4.1) modulo 8 implies that
y1 ≥ 3 and that x1 ≡ x2 (mod 2). From (2.3) and Lemma 3.1, we have either

3x1 > 2
log 2
5 log 3 (2·3x1−1+y1) + 2y1

or
2y1 > 2(2y1−2+x1)/5 + 3x1 ,

according to whether c > 0 or c < 0, respectively. In the first instance, since we
have already treated the case c = 1, it is straightforward to show that

(x1, y1) ∈ {(3, 3), (3, 4)}

while, in the second, we necessarily have

(x1, y1) ∈ {(1, 3), (1, 4), (2, 4), (1, 5), (2, 5), (3, 5), (1, 6), (2, 6), (3, 6), (1, 7), (2, 7)} .

It follows that, in every case, |c| ≤ 125 and so, from (2.3), all solutions to 3x−2y = c,
for the values of c under consideration, satisfy y ≤ 34. A routine computation
confirms that the only additional solutions obtained correspond to 3−23 = 33−25 =
−5 and 3 − 24 = 35 − 28 = −13. This completes our treatment of equation (2.1)
for N = 2 (and hence for N = 3 and 8, as well).

Let us next suppose that N ≥ 4 and

(N + 1)x2 −Ny2 = (N + 1)x1 −Ny1 > 0.

From (2.2), we have

(4.2) (N + 1)x1 = (N + 1)x2 −Ny2 + Ny1 > (N/3)x2 + Ny1 ,

and, since (N + 1)x2 > Ny2 , we may conclude that

(4.3) (N + 1)x1 > (N/3)
log(N)

log(N+1) y2 + Ny1 .

Note that (4.2) implies x1 ≥ 2. If N = 4, Lemma 3.1 yields y2 − y1 ≥ 10. If x1 = 2
and y2 = 11, then (4.3) gives y1 = 1 and hence 5x2 = 411 + 21 = 4194325, which
is a tad unlikely. If x1 = 2 and y2 ≥ 12, we have, from 5x2 > 4y2 , that x2 ≥ 11,
whereby (4.2) yields a contradiction. It follows that x1 ≥ 3 and so Lemma 3.1 gives
y2 − y1 ≥ 2 · 5x1−1, whence, from (4.3),

5x1 > (4/3)
log 4
log 5 (5x1−1+y1) + 4y1 .

Since y1 ≥ 1, this is a contradiction. Similarly, if N ≥ 5, we have y2 − y1 ≥ 6. If
7 ≤ y2 ≤ 9, the inequality (N + 1)x2 > Ny2 contradicts x2 < y2 (see the remarks
following (2.3)). We therefore have y2 ≥ 10 and so, again from (N + 1)x2 > Ny2 ,
x2 ≥ 9. From (4.2), we thus have x1 ≥ 3. Applying Lemma 3.1, we deduce the
inequality

y2 − y1 ≥ 2 ((N + 1) /2)x1−1

which in turn, together with (4.3), implies that

(N + 1)x1 > N + (N/3)
log(N)

log(N+1) (2((N+1)/2)x1−1+1) .
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Since it is relatively easy to show that there are no solutions to this inequality with
N ≥ 5 and x1 ≥ 3, we conclude as desired.

Next, suppose that

(N + 1)x2 −Ny2 = (N + 1)x1 −Ny1 < 0,

so that y1 ≥ 2. Arguing as before, (2.2) yields

(4.4) Ny1 > (N/3)x2 + (N + 1)x1 .

Suppose first that N = 4. If y1 = 2, we have x1 = 1 and, from (4.4), since Lemma
3.1 implies x2 ≡ 1 (mod 4), that x2 = 5. Since 4y2 6= 55 + 11 = 3136, we reach a
contradiction. It follows that y1 ≥ 3 and, since Lemma 3.1 gives x2 − x1 ≥ 4y1−1,
(4.4) yields

4y1 > (4/3)4
y1−1+x1 + 5x1 .

Since x1 ≥ 1 and y1 ≥ 3, this is a contradiction. If N ≥ 5, Lemma 3.1 implies that

x2 − x1 ≥ 2 (N/2)y1−1

and so, from (4.4),
Ny1 > (N/3)2(N/2)y1−1+1 + N + 1.

This inequality contradicts y1 ≥ 2 and N ≥ 5, completing the proof of Theorem
1.1.
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