Practice Problems for MATH 226

1. Find and classify as local maximum, local minimum, or saddle point the critical points of

$$
f(x, y)=x^{3}-2 x y+\frac{y^{2}}{2} .
$$

2. Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x y}{\sqrt{x^{2}+y^{2}}}
$$

3. If $z=e^{x} \tan y$, where $x=s^{2}+t^{2}$ and $y=s t$, find $\frac{\partial z}{\partial t}$ when $s=1$ and $t=0$.
4. Let $P=(1,2,3), Q=(1,-1,-2)$ and $R=(0,0,0)$. Find an equation of the plane through P, Q and R. Then find the area of the triangle formed by $P Q R$. Finally, find the equation of the line through P, perpendicular to the plane through P, Q and R.
5. Given $f(x, y)=x^{2}-5 x y$, find $\nabla f(x, y)$, the directional derivative at $(2,1)$ in the direction of $\bar{u}=-\bar{i}+3 \bar{j}$, and the linearization of f at $(2,1)$. Then use the linearization to approximation $f(1.9,0.9)$.
6. Evaluate $\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right) d V$, where D is the solid lying inside the sphere of radius 1 centred at $(0,0,1)$, and inside (i.e. above) the cone $x^{2}+y^{2}=3 z^{2}$.
7. A wire 12 cm long is cut into three or fewer pieces, with each piece bent into a square. What is the minimal total area of the squares? What is the maximal total area of the squares?
8. Evaluate

$$
\iint_{R} \sin \left(\frac{1}{2}(x+y)\right) \cos \left(\frac{1}{2}(x-y)\right) d A
$$

where R is the triangular region whose vertices are $(0,0),(2,0)$ and $(1,1)$.
9. Use Lagrange multipliers to find the maximum and minimum values of the function $2 x^{2}+4 x y-y^{2}$ on the circle. $x^{2}+y^{2}=1$.

