Math 226, 2022 : Solutions for Assignment 2

Section 10.3, Question 13

If we have

$$
\bar{u}+\bar{v}+\bar{w}=\overline{0},
$$

then
$\overline{0}=\overline{0} \times \bar{v}=(\bar{u}+\bar{v}+\bar{w}) \times \bar{v}=\bar{u} \times \bar{v}+\bar{v} \times \bar{v}+\bar{w} \times \bar{v}=\bar{u} \times \bar{v}+\overline{0}+\bar{w} \times \bar{v}=\bar{u} \times \bar{v}+\bar{w} \times \bar{v}$.
It follows that

$$
\bar{u} \times \bar{v}=-\bar{w} \times \bar{v}=\bar{v} \times \bar{w} .
$$

A similar argument, using symmetry, gives that

$$
\bar{v} \times \bar{w}=\bar{w} \times \bar{u} .
$$

Section 10.3, Question 15

It's useful to do exercise 14 first, where one can work out the tetrahedron's volume in terms of the scalar triple product :

$$
V=\frac{1}{6}|\bar{u} \cdot(\bar{v} \times \bar{w})| .
$$

We thus have, since the tetrahedron with vertices $(1,0,0),(1,2,0),(2,2,2)$ and $(0,3,2)$ is spanned by the vectors $\bar{u}=2 \bar{j}, \bar{u}=\bar{i}+2 \bar{j}+2 \bar{k}$ and $\bar{w}=$ $-\bar{i}+3 \bar{j}+2 \bar{k}$,

$$
\left.V=\frac{1}{6}| | \begin{array}{ccc}
0 & 2 & 0 \\
1 & 2 & 2 \\
-1 & 3 & 2
\end{array} \|\left|=\frac{1}{6}\right|-8 \right\rvert\,=\frac{4}{3} \text { cubic units. }
$$

Section 10.3, Question 19

If we have

$$
\bar{x}=\lambda \bar{u}+\mu \bar{v}+\nu \bar{w},
$$

then

$$
\bar{x} \cdot(\bar{v} \times \bar{w})=\lambda \bar{u} \cdot(\bar{v} \times \bar{w})+\mu \bar{v} \cdot(\bar{v} \times \bar{w})+\nu \bar{w} \cdot(\bar{v} \times \bar{w})=\lambda \bar{u} \cdot(\bar{v} \times \bar{w}) .
$$

It follows, since $\bar{u} \cdot(\bar{v} \times \bar{w}) \neq 0$, that

$$
\lambda=\frac{\bar{x} \cdot(\bar{v} \times \bar{w})}{\bar{u} \cdot(\bar{v} \times \bar{w})} .
$$

Using that

$$
\bar{u} \cdot(\bar{v} \times \bar{w})=\bar{v} \cdot(\bar{w} \times \bar{u})=\bar{w} \cdot(\bar{u} \times \bar{v}),
$$

symmetry implies that

$$
\mu=\frac{\bar{x} \cdot(\bar{w} \times \bar{u})}{\bar{u} \cdot(\bar{v} \times \bar{w})} \text { and } \nu=\frac{\bar{x} \cdot(\bar{u} \times \bar{v})}{\bar{u} \cdot(\bar{v} \times \bar{w})} .
$$

Section 10.3, Question 20

Since $\bar{v} \times \bar{w} \neq \overline{0}$, it follows that $(\bar{v} \times \bar{w}) \cdot(\bar{v} \times \bar{w}) \neq 0$. Using exercise 19, there must exist constants λ, μ and ν such that

$$
\bar{u}=\lambda \bar{v}+\mu \bar{w}+\nu(\bar{v} \times \bar{w}) .
$$

Since $\bar{v} \times \bar{w}$ is perpendicular to \bar{v} and \bar{w},

$$
\bar{u} \cdot(\bar{v} \times \bar{w})=0+0+\nu(\bar{v} \times \bar{w}) \cdot(\bar{v} \times \bar{w})
$$

Since $\bar{u} \cdot(\bar{v} \times \bar{w})=0$, it follows that $\nu=0$, so that

$$
\bar{u}=\lambda \bar{v}+\mu \bar{w} .
$$

Section 10.3, Question 27

If we write

$$
\bar{a}=-\bar{i}+2 \bar{j}+3 \bar{k} \text { and } \bar{b}=\bar{i}+5 \bar{j},
$$

the equation becomes $\bar{a} \times \bar{x}=\bar{b}$. If this has a solution \bar{x}, then

$$
\bar{a} \cdot \bar{b}=\bar{a} \cdot(\bar{a} \times \bar{x})=0,
$$

contradicting the fact that $\bar{a} \cdot \bar{b}=-1+10+0=9$.

Section 10.4, Question 5

The plane through the points $(1,1,0),(2,0,2)$, and $(0,3,3)$ has normal vector

$$
(\bar{i}-\bar{j}+2 \bar{k}) \times(\bar{i}-2 \bar{j}-3 \bar{k})=7 \bar{i}+5 \bar{j}-\bar{k}
$$

and hence equation (using the first point)

$$
7(x-1)+5(y-1)-(z-0)=0
$$

or

$$
7 x+5 y-z=12
$$

Section 10.4, Question 9

A plane through the line $x+y=2, y-z=3$ has equation of the form

$$
x+y-2+\lambda(y-z-3)=0 .
$$

To have this plane perpendicular to $2 x+3 y+4 z=5$, we require

$$
2 \cdot 1+(1+\lambda) \cdot 3-\lambda \cdot 4=0
$$

i.e. $\lambda=5$. The equation of the desired plane is thus $x+6 y-5 z=17$.

