Math 226, 2022 : Solutions for Assignment 1

Section 10.1, Question 10

The distance to the origin of the vector (1, 1, ..., 1) in \mathbb{R}^n is

$$\sqrt{1^2 + 1^2 + \dots + 1^2} = \sqrt{n}.$$

Section 10.1, Question 22

 $z \ge \sqrt{x^2 + y^2}$ represents every point whose distance above the xy-plane is not less than its horizontal distance from the z-axis. It therefore consists of all points inside and on a circular cone with axis along the positive z-axis, vertex at the origin, and semi-vertical angle 45 degrees.

Section 10.1, Question 31

The points in \mathbb{R}^3 that satisfy $x^2 + y^2 \leq 1$ and $z \geq y$ are those that are inside or on the vertical. cylinder $x^2 + y^2 = 1$, and are additionally above or on the plane z = y.

Section 10.1, Question 36

If $S = \{(x, y) : |x| + |y| \le 1\}$, then the boundary of S is the set of points on the edge of the square with vertices $(\pm 1, 0)$ and $(0, \pm 1)$. The interior of S is all the points inside this square. S is closed since it contains all its boundary points. It is also bounded since every point in it is at most distance 1 from the origin.

Section 10.2, Question 9

Choose the vector \overline{i} to point East and \overline{j} to point North, and write the wind velocity as

$$\overline{v}_{\text{wind}} = ai + bj.$$

Then

 $\overline{v}_{wind} = \overline{v}_{wind rel car} + \overline{v}_{car}$

When $\overline{v}_{car} = 50\overline{j}$, the wind appears to come from the west, so that

 $\overline{v}_{\text{wind rel car}} = \kappa \overline{i},$

for some real number κ . We thus have

$$a\overline{i} + b\overline{j} = \kappa\overline{i} + 50\overline{j}$$

so that $a = \kappa$ and b = 50. Since we also know that when $\overline{v}_{car} = 100\overline{j}$, the wind appears to come from the the northwest, it follows that

$$\overline{v}_{\text{wind rel car}} = \omega \left(\overline{i} - \overline{j}\right),$$

for some real number ω . We thus have

$$a\overline{i} + b\overline{j} = \omega\left(\overline{i} - \overline{j}\right) + 100\overline{j},$$

whence $a = \omega$ and $b = 100 - \omega$. It follows that

$$\omega = a = b = 50,$$

whereby we can conclude that the wind is from the southwest at $50\sqrt{2}$ km/hr.

Section 10.2, Question 21

If we have

$$\overline{r} \cdot \overline{a} = b$$

then the vector projection of \overline{r} along \overline{a} is given by

$$\frac{\overline{r} \cdot \overline{a}}{|\overline{a}|} \ \frac{\overline{a}}{|\overline{a}|} = \frac{b}{|\overline{a}|^2} \overline{a}.$$

We conclude that the equation $\overline{r} \cdot \overline{a} = b$ is satisfied by all points on the plane through the vector $\frac{b}{|\overline{a}|^2}\overline{a}$, that is normal to \overline{a} .

Section 10.2, Question 25

A unit vector in the direction of \overline{u} is given by $\frac{\overline{u}}{|\overline{u}|}$, while a unit vector in the direction of \overline{v} is given by $\frac{\overline{v}}{|\overline{v}|}$. It follows that $\frac{\overline{u}}{|\overline{u}|} + \frac{\overline{v}}{|\overline{v}|}$ bisects the angle between \overline{u} and \overline{v} . To find a unit vector with this property, normalize to get the vector

$$\frac{\frac{\overline{u}}{|\overline{u}|} + \frac{\overline{v}}{|\overline{v}|}}{\left|\frac{\overline{u}}{|\overline{u}|} + \frac{\overline{v}}{|\overline{v}|}\right|}.$$

Section 10.2, Question 33

Since the vector \overline{a} satisfies $|\overline{a}|^2 > 4rst$, there exists a positive real number κ such that we may write

$$\overline{a}|^2 = 4rst + \kappa^2.$$

Since $r\overline{x} + s\overline{y} = \overline{a}$, we have

$$|\overline{a}|^2 = \overline{a} \cdot \overline{a} = (r\overline{x} + s\overline{y}) \cdot (r\overline{x} + s\overline{y}) = r^2 |\overline{x}|^2 + s^2 |\overline{y}|^2 + 2rs\overline{x} \cdot \overline{y}.$$

From the fact that $\overline{x} \cdot \overline{y} = t$, it follows that

$$\kappa^2 = r^2 |\overline{x}|^2 + s^2 |\overline{y}|^2 - 2rs\overline{x} \cdot \overline{y} = |r\overline{x} - s\overline{y}|^2$$

and so $\kappa = |r\overline{x} - s\overline{y}|$. We thus can write $r\overline{x} - s\overline{y} = \kappa\overline{u}$, where \overline{u} is a **unit** vector. We thus have the simultaneous equations

$$\begin{cases} r\overline{x} + s\overline{y} = \overline{a} \\ r\overline{x} - s\overline{y} = \kappa\overline{u}. \end{cases}$$

Add and subtract these and use the fact that $r \neq 0$ and $s \neq 0$ to conclude that

$$\overline{x} = \frac{\overline{a} + \kappa \overline{u}}{2r}$$
 and $\overline{y} = \frac{\overline{a} - \kappa \overline{u}}{2s}$.

Here, again, $\kappa = \sqrt{|\overline{a}|^2 - 4rst}$ and \overline{u} is (any) unit vector.