Math 226, 2022 : Solutions for Assignment 1

Section 10.1, Question 10

The distance to the origin of the vector $(1,1, \ldots, 1)$ in \mathbb{R}^{n} is

$$
\sqrt{1^{2}+1^{2}+\cdots+1^{2}}=\sqrt{n}
$$

Section 10.1, Question 22

$z \geq \sqrt{x^{2}+y^{2}}$ represents every point whose distance above the xy-plane is not less than its horizontal distance from the z-axis. It therefore consists of all points inside and on a circular cone with axis along the positive z -axis, vertex at the origin, and semi-vertical angle 45 degrees.

Section 10.1, Question 31

The points in \mathbb{R}^{3} that satisfy $x^{2}+y^{2} \leq 1$ and $z \geq y$ are those that are inside or on the vertical. cylinder $x^{2}+y^{2}=1$, and are additionally above or on the plane $z=y$.

Section 10.1, Question 36

If $S=\{(x, y):|x|+|y| \leq 1\}$, then the boundary of S is the set of points on the edge of the square with vertices $(\pm 1,0)$ and $(0, \pm 1)$. The interior of S is all the points inside this square. S is closed since it contains all its boundary points. It is also bounded since every point in it is at most distance 1 from the origin.

Section 10.2, Question 9

Choose the vector \bar{i} to point East and \bar{j} to point North, and write the wind velocity as

$$
\bar{v}_{\text {wind }}=a \bar{i}+b \bar{j}
$$

Then

$$
\bar{v}_{\text {wind }}=\bar{v}_{\text {wind rel car }}+\bar{v}_{\text {car }}
$$

When $\bar{v}_{\text {car }}=50 \bar{j}$, the wind appears to come from the west, so that

$$
\bar{v}_{\text {wind rel car }}=\kappa \bar{i},
$$

for some real number κ. We thus have

$$
a \bar{i}+b \bar{j}=\kappa \bar{i}+50 \bar{j},
$$

so that $a=\kappa$ and $b=50$. Since we also know that when $\bar{v}_{\text {car }}=100 \bar{j}$, the wind appears to come from the the northwest, it follows that

$$
\bar{v}_{\text {wind rel car }}=\omega(\bar{i}-\bar{j})
$$

for some real number ω. We thus have

$$
a \bar{i}+b \bar{j}=\omega(\bar{i}-\bar{j})+100 \bar{j},
$$

whence $a=\omega$ and $b=100-\omega$. It follows that

$$
\omega=a=b=50
$$

whereby we can conclude that the wind is from the southwest at $50 \sqrt{2} \mathrm{~km} / \mathrm{hr}$.

Section 10.2, Question 21

If we have

$$
\bar{r} \cdot \bar{a}=b
$$

then the vector projection of \bar{r} along \bar{a} is given by

$$
\frac{\bar{r} \cdot \bar{a}}{|\bar{a}|} \frac{\bar{a}}{|\bar{a}|}=\frac{b}{|\bar{a}|^{2}} \bar{a} .
$$

We conclude that the equation $\bar{r} \cdot \bar{a}=b$ is satisfied by all points on the plane through the vector $\frac{b}{|\bar{a}|^{2}} \bar{a}$, that is normal to \bar{a}.

Section 10.2, Question 25

A unit vector in the direction of \bar{u} is given by $\frac{\bar{u}}{|\bar{u}|}$, while a unit vector in the direction of \bar{v} is given by $\frac{\bar{v}}{|\bar{v}|}$. It follows that $\frac{\bar{u}}{|\bar{u}|}+\frac{\bar{v}}{|\bar{v}|}$ bisects the angle between \bar{u} and \bar{v}. To find a unit vector with this property, normalize to get the vector

$$
\frac{\frac{\bar{u}}{|\bar{u}|}+\frac{\bar{v}}{|\bar{v}|}}{\left|\frac{\bar{u}}{|\bar{u}|}+\frac{\bar{v}}{|\bar{v}|}\right|} .
$$

Section 10.2, Question 33

Since the vector \bar{a} satisfies $|\bar{a}|^{2}>4 r s t$, there exists a positive real number κ such that we may write

$$
|\bar{a}|^{2}=4 r s t+\kappa^{2} .
$$

Since $r \bar{x}+s \bar{y}=\bar{a}$, we have

$$
|\bar{a}|^{2}=\bar{a} \cdot \bar{a}=(r \bar{x}+s \bar{y}) \cdot(r \bar{x}+s \bar{y})=r^{2}|\bar{x}|^{2}+s^{2}|\bar{y}|^{2}+2 r s \bar{x} \cdot \bar{y}
$$

From the fact that $\bar{x} \cdot \bar{y}=t$, it follows that

$$
\kappa^{2}=r^{2}|\bar{x}|^{2}+s^{2}|\bar{y}|^{2}-2 r s \bar{x} \cdot \bar{y}=|r \bar{x}-s \bar{y}|^{2}
$$

and so $\kappa=|r \bar{x}-s \bar{y}|$. We thus can write $r \bar{x}-s \bar{y}=\kappa \bar{u}$, where \bar{u} is a unit vector. We thus have the simultaneous equations

$$
\left\{\begin{array}{c}
r \bar{x}+s \bar{y}=\bar{a} \\
r \bar{x}-s \bar{y}=\kappa \bar{u} .
\end{array}\right.
$$

Add and subtract these and use the fact that $r \neq 0$ and $s \neq 0$ to conclude that

$$
\bar{x}=\frac{\bar{a}+\kappa \bar{u}}{2 r} \text { and } \bar{y}=\frac{\bar{a}-\kappa \bar{u}}{2 s} .
$$

Here, again, $\kappa=\sqrt{|\bar{a}|^{2}-4 r s t}$ and \bar{u} is (any) unit vector.

