ON A QUESTION OF ERDŐS AND GRAHAM

by Mark BAUER *) and Michael A. BENNETT †)

ABSTRACT. In this note, we sharpen work of Ulas to provide what is, in some sense, the minimal counterexample to a “conjecture” of Erdős and Graham about square values of products of disjoint blocks of consecutive integers.

1. INTRODUCTION

A remarkable paper of Erdős and Selfridge [2] completed a long-standing project of Erdős, showing that the product of consecutive integers cannot be a perfect power (and, in particular, a square). Referencing this problem, in Erdős and Graham [1] we find the following quote:

In the same spirit one could ask when the product of two or more disjoint blocks of consecutive integers can be a power. For example, if A_1, \ldots, A_n are disjoint intervals each consisting of at least 4 integers then perhaps the product $\prod_{k=1}^n \prod_{a \in A_k} a_k$ is a nonzero square in only a finite number of cases.

In making such an assertion, one presumes that Erdős and Graham were guided by density arguments (which do indeed suggest finiteness for the integer points on the corresponding hypersurfaces). As noted in Ulas [5], however, these arguments can fail to hold in this situation; if the A_i’s are taken to be blocks of precisely 4 integers, and if the number of such blocks is large enough, then the products take on square values infinitely often. In fact, Ulas suggests that there are likely infinitely many such blocks, in every case where the number of blocks is suitably large relative to the interval lengths. What seems to occur is that we have integral curves lying on our

*) The first author is supported in part by a grant from NSERC
†) The second author is supported in part by grants from NSERC and the Killam Foundation
hypersurfaces; to predict or guarantee that such curves do in fact exist appears
to be a hard problem.

In this short note, we will search for what might be termed minimal
counterexamples to the proposal of Erdős and Graham (as one can observe
from the quote above, it is probably unfair to characterize this as a conjecture).
Along the way, we will sharpen and generalize the results of [5].

2. Some Results

Let us, fixing a positive integer \(j \) and the \(j \)-tuple \((k_1, k_2, \ldots, k_j)\) of positive
integers, consider the equation

\[
\prod_{i=1}^{j} \prod_{l=0}^{k_i-1} (x_i + l) = y^2,
\]

where the variables \(x_1, x_2, \ldots, x_j \) are positive integers with the property that

\[
x_s < x_t \implies x_s + k_s \leq x_t.
\]

We may clearly suppose, without loss of generality, that \(j > 1 \) (else we may
appeal to the aforementioned theorem of Erdős-Selfridge) and that

\[
2 \leq k_1 \leq k_2 \leq \cdots \leq k_j
\]

(if \(k_1 = 1 \), then (2.1) has, trivially, infinitely many solutions).

Our two results are as follows. The first is a generalization of Theorem 1
of [5]. This result deals with situations omitted from consideration by Erdős
and Graham; we include it for completeness.

Theorem 2.1. If either \(k_1 = 2 \) or \((k_1, k_2) = (3,3)\) then equation (2.1)
has infinitely many solutions with (2.2).

We also prove

Theorem 2.2. If \(j \geq 3 \) and \(k_i = 4 \) for \(1 \leq i \leq j \) then equation (2.1) has
infinitely many solutions with (2.2).

This latter result affirms a conjecture of Ulas (who deduced a like statement
for \(j = 4 \) and \(j \geq 6 \)). The families of examples we construct to show that (2.1)
has infinitely many solutions with (2.2) in case \(j = 3 \) and \((k_1, k_2, k_3) = (4,4,4)\)
are, we believe, minimal in \(j \) amongst counterexamples to the Erdős-Graham
proposal.
3. Proof of Theorem 2.1

Let us begin by supposing that \(k_1 = 2 \). We choose the \(x_i \)'s such that the product

\[
\prod_{i=2}^{j} \prod_{l=0}^{k-1} (x_i + l)
\]

is of the form \(4m_1m_2^2 \), where \(m_1 > 1 \) is squarefree. In particular, if \(j = 2 \),
\(k_2 \in \{2, 3\} \), we take \(x_2 = 3 \), while, otherwise, we may choose the \(x_i \) (\(i \geq 2 \)) such that

\[
\prod_{i=2}^{j} \prod_{l=0}^{k-1} (x_i + l) = m!
\]

where \(m = \sum_{i=3}^{j} k_i \) (note that \(m! \) cannot be equal to a square, by Bertrand's Postulate). We thus find that (2.1) is satisfied precisely when there exists an integer \(y_1 \) for which

\[
x_1(x_1 + 1) = m_1y_1^2
\]

or, equivalently,

\[
(2x_1 + 1)^2 - m_1(2y_1)^2 = 1.
\]

Since this equation has, for each squarefree \(m_1 \), infinitely many solutions in positive integers \(x_1 \) and \(y_1 \), we conclude that, if \(j \geq 2 \) and \(k_1 = 2 \), then (2.1) necessarily has infinitely many solutions.

Next, suppose that \((k_1, k_2) = (3, 3)\). If \(j = 2 \), as noted by K. R. S. Sastry, we may choose \(x_1 = n, \ x_2 = 2n \), where \(n \) and \(m \) are positive integers satisfying

\[
(n + 2)(2n + 1) = m^2
\]

(see Guy [3]). As is well-known, there are infinitely many such solutions. We may therefore suppose that \(j > 2 \) and choose the \(x_i \)'s such that the product

\[
\prod_{i=3}^{j} \prod_{l=0}^{k-1} (x_i + l)
\]

is of the form \(m_1m_2^2 \), where \(m_1 \neq 2 \) is squarefree. To do this, we may take the \(x_i \) such that

\[
\prod_{i=3}^{j} \prod_{l=0}^{k-1} (x_i + l) = m!
\]

with \(m = \sum_{i=3}^{j} k_i \),

\[
x_2 = 2x_1 + 2 \quad \text{and} \quad x_1 = 3x_0.
\]
Having a solution to equation (2.1) is thus equivalent to finding positive integers \(x_1 \) and \(y_1 \) satisfying
\[
x_0(2x_0 + 1) = m!y_1^2
\]
and so
\[
(4x_0 + 1)^2 - 8m!y_1^2 = 1.
\]
Since \(m!/2 \) is not a square (for \(m > 2 \)), it follows that this equation has infinitely many solutions in integers \(x_0 \) and \(y_1 \). This completes our proof.

4. PROOF OF THEOREM 2.2

As noted previously, Ulas derived Theorem 2.2 for \(j = 4 \) or \(j \geq 6 \). He observed a number of solutions in case \(j = 3 \) and strongly conjectured that there are infinitely many if \(j = 5 \). Since there exists a solution to equation (2.1) with
\[
j = 2, \quad k_1 = k_2 = 4, \quad x_1 = 33, \quad x_2 = 1680,
\]
we may conclude as desired by showing that (2.1) has infinitely many solutions with (2.2), if \(j = 3 \). In fact, we will provide three infinite families of solutions in this case.

Let us begin by considering the Diophantine equation
\[
(4.1) \quad u^2 - 3v^2 = -2.
\]
The positive integral values of \(u \) that satisfy this equation are given by the recurrence
\[
u_1 = 1, \quad u_2 = 5, \quad u_{n+1} = 4u_n - u_{n-1} \quad \text{for} \quad n \geq 2.
\]
There are thus infinitely many such solutions with \(u \equiv 1 \mod 4 \). If we additionally assume that \(u \geq 265 \) and set
\[
x_1(x_3 + 2)x_2(x_2 + 3) = \frac{(u^2 - 25)(v^2 - 9)}{32} = \frac{(u^2 - 25)^2}{96}
\]
and
\[
(x_1 + 1)x_3(x_2 + 1)(x_2 + 2) = \frac{(u^2 - 1)(v^2 - 1)}{32} = \frac{(u^2 - 1)^2}{96},
\]
whereby
ON A QUESTION

\[\prod_{i=1}^{3} \prod_{l=0}^{3} (x_i + l) = \left(\frac{(u^2 - 1)(u + 3)(u + 7)(u^2 - 25)}{768} \right)^2. \]

The assumption that \(u \geq 265 \) guarantees that the \(x_i \)'s satisfy (2.2).

Next, we note that (4.1) also has infinitely many solutions with \(u \equiv -1 \mod 4 \). For such a solution with \(u \geq 3691 \), we take

\[(x_1, x_2, x_3) = \left(\frac{u - 7}{4}, \frac{v - 3}{2}, \frac{u - 7}{2} \right). \]

A little work shows that now

\[\prod_{i=1}^{3} \prod_{l=0}^{3} (x_i + l) = \left(\frac{(u^2 - 1)(u - 3)(u - 7)(u^2 - 25)}{768} \right)^2. \]

Our third family is also given by a recurrence. We now consider solutions to the equation

\[u^2 - 5v^2 = 4 \]

in odd integers \(u \) and \(v \) (so that \(u \equiv 3 \mod 4 \)). We then take

\[(x_1, x_2, x_3) = \left(\frac{v - 3}{2}, \frac{u - 7}{4}, \frac{u + 1}{2} \right) \]

and find that

\[\prod_{i=1}^{3} \prod_{l=0}^{3} (x_i + l) = \left(\frac{(u^2 - 9)(u + 1)(u + 5)(u^2 - 49)}{1280} \right)^2. \]

Notice that solutions to equation (4.2) satisfy \((u, v) = (L_{6n+\pm2}, F_{6n+\pm2})\), where \(L_k \) and \(F_k \) denote the \(k \)th Lucas and Fibonacci numbers, respectively.

5. CONCLUDING REMARKS

It is worth noting that the examples in [5] in case \(j = 4 \) (and \(k_i = 4 \) for \(1 \leq i \leq 4 \)) grow polynomially (that is, the number of such examples with \(\max \{x_i\} < X \) exceeds \(X^\theta \) for some \(\theta > 0 \)), while those constructed here, for \(j = 3 \) (and \(k_i = 4 \) with \(\max \{x_i\} < X \), are bounded in number by \(c \log X \) for some constant \(c \). It may be that this represents the true state of affairs for solutions to (2.1) in these instances, but it would appear to be most difficult to prove. More generally, it is possible that the behaviour of solutions to (2.1) is governed in some way by the size of \(\sum_{i=1}^{j} 1/k_i \). There is no obvious heuristic that comes to mind to support this, however.
We suspect that the case \(j = 3, k_1 = k_2 = k_3 = 4 \) is, in some sense, minimal for (2.1) to have infinitely many solutions with (2.2). Indeed, we would guess that if \(j = 2 \) and \(k_1 \geq 4 \) then (2.1) has at most finitely many solutions with (2.2). The hypothesis that \(k_1 \geq 4 \) is certainly necessary here (even when we cannot apply Theorem 2.1) as it is easy to show that (2.1) has infinitely many solutions with \(j = 2 \) and \((k_1, k_2) = (3, 4)\) (as before, one can construct at least two families from recurrence sequences). An argument of P.G. Walsh (private communication) provides reasonable support (via the ABC conjecture) for the belief that the number of solutions to (2.1) with (2.2) if \(j = 2, k_1 = k_2 = 4 \) is finite.

REFERENCES

(Reçu le 6 février 2001)

Mark Bauer
University of Calgary
Calgary, Alberta
Canada
e-mail: mbauer@math.ucalgary.ca

Michael A. Bennett
University of British Columbia
Vancouver, B.C.
Canada
e-mail: bennett@math.ubc.ca