1. Explain the intermediate value theorem using words and pictures. (Exercise 8.)

2. Determine the points at which the following function \(f \) has discontinuities. At each point of discontinuity, state the conditions in the continuity checklist that are violated. (Exercise 10.)

3. Let
\[
f(x) = \begin{cases}
\frac{x^2 - 4x + 3}{x - 3} & \text{if } x \neq 3, \\
2 & \text{if } x = 3.
\end{cases}
\]
Determine whether or not \(f(x) \) is continuous at \(a = 3 \). Use the continuity checklist to justify your answer. (Exercise 18.)

4. Determine the interval(s) on which the function \(f(x) = \frac{x^5 + 6x + 17}{x^2 - 9} \) is continuous (Hint: use theorem 2.10 from the textbook.) (Exercise 23.)

5. Let
\[
f(x) = \begin{cases}
2x & \text{if } x < 1, \\
x^2 + 3x & \text{if } x \geq 1.
\end{cases}
\]
 a. Use the continuity checklist to show that \(f \) is not continuous at 1.
 b. Is \(f \) continuous from the left or from the right at 1?
 c. State the interval(s) of continuity.
 (Exercise 39.)

6. You are shopping for a $150,000, 30-year loan to buy a house. The monthly payment is
\[
m(r) = \frac{150000(r/12)}{1 - (1 + r/12)^{-360}},
\]
where \(r \) is the annual interest rate. Suppose banks are currently offering interest rates between 6% and 8%.
a. Use the intermediate value theorem to show that there is a value of \(r \) in the interval (0.06, 0.08) – i.e., an interest rate between 6% and 8% – that allows you to make monthly payments of $1000 per month.

b. Use a graph to illustrate your explanation to part a. Then determine the interest rate you need for monthly payments of $1000.

(Exercise 58.)

7. Determine whether or not the following statements are true, and provide an explanation or counterexample.

a. If a function is left-continuous and right-continuous at \(a \), then it is continuous at \(a \).

b. If a function is continuous at \(a \), then it is left-continuous and right-continuous at \(a \).

c. If \(a < b \) and \(f(a) \leq L \leq f(b) \), then there is some value of \(c \) in \((a, b)\) for which \(f(c) = L \).

d. Suppose \(f \) is continuous on \([a, b]\). Then there is a point \(c \) in \((a, b)\) such that \(f(c) = \frac{f(a) + f(b)}{2} \).

(Exercise 65.)

8. Determine the value of the constant \(a \) for which the function

\[
 f(x) = \begin{cases}
 x^2 + 3x + 2 & \text{if } x \neq -1, \\
 a & \text{if } x = -1.
\end{cases}
\]

is continuous at \(-1\). (Exercise 84.)

9. Let

\[
 f(x) = \begin{cases}
 x^2 + x & \text{if } x < 1, \\
 a & \text{if } x = 1, \\
 3x + 5 & \text{if } x > 1.
\end{cases}
\]

a. Determine the value of \(a \) for which \(g \) is continuous from the left at 1.

b. Determine the value of \(a \) for which \(g \) is continuous from the right at 1.

c. Is there a value of \(a \) for which \(g \) is continuous at 1? Explain why or why not.

(Exercise 85.)