All questions except number 5 come from the course text.

1. Let \(f(x) = \sqrt{x + 2} \) for \(x \geq -2 \). Find the inverse of \(f(x) \) for \(x \geq -2 \) and write it in the form \(y = f^{-1}(x) \). Then, verify the relationships \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \). (Section 1.3, exercise 27)

2. The unit circle \(x^2 + y^2 = 1 \) consists of four one-to-one functions, \(f_1(x), f_2(x), f_3(x), \) and \(f_4(x) \) (see figure).
 1. Find the domain and a formula for each function.
 2. Find the inverse of each function and write it as \(y = f^{-1}(x) \).

 (Section 1.3, exercise 29)

3. Solve the following equations:
 - \(\log_{10} x = 3 \).
 - \(\log_8 x = \frac{1}{3} \).
 - \(\ln x = -1 \).

 (Section 1.3, exercises 41, 43, 45)

4. Without using a graphing utility, sketch the graph of \(y = 2^x \). Then on the same set of axes, sketch the graphs of \(y = 2^{-x}, y = 2^x - 1, y = 2^x + 1, \) and \(y = 2^{2x} \). (Section 1.3, exercise 72)

5. (*) A particular factory produces organic, artisanal garbage; denote by \(x \) the number of units of garbage the factory produces in a given day.
 1. Suppose the total cost to the factory of producing \(x \) units a day is \(C(x) = 36x + 260 \) dollars, and that the total projected revenue from producing \(x \) units a day is \(R(x) = -2x^2 + 104x - 220 \). Find the projected daily profit from producing \(x \) units per day.
 2. Determine the number of units of artisanal garbage the factory should produce each day to maximize its profit.

6. (*) Prove that, if \(b > 0, c > 0, b \neq 1, c \neq 1 \), then \(\log_b c)(\log_c b) = 1 \). (Section 1.3, exercise 91)
7. Sketch a function that is one-to-one and positive for \(x \geq 0 \). Make a rough sketch of its inverse.
(Section 1.3, exercise 5)

8. Solve the equation \(3^{3x-4} = 15 \) (Exercise 55)

9. Use the graph of \(f \) in the figure below to find the following values or state that they do not exist. If a limit does not exist, explain why.

\[
\begin{align*}
1. & \quad f(1); \\
2. & \quad \lim_{x \to 1^-} f(x); \\
3. & \quad \lim_{x \to 1^+} f(x); \\
4. & \quad \lim_{x \to 1} f(x);
\end{align*}
\]

(Section 2.2, exercise 21)