Lecture Five

Last time we saw with FTC the relationship between integration and differentiation. Specifically, we saw that to compute a definite integral, it is enough to find an anti-derivative.

By the expression $\int f(x)\,dx$, called the indefinite integral of $f(x)$, we will denote an/the anti-derivative of $f(x)$, depending on the context. For instance, $\int x\,dx = \frac{1}{2}x^2$.

"Kind of," as we saw, $\frac{1}{2}x^2 + C$, where $C \in \mathbb{R}$ is any constant, is also an anti-derivative of $f(x) = x$. Thus, we will use the following convention:

$$\int x\,dx = \frac{1}{2}x^2 + C.$$

By this expression, we represent the entire family of anti-derivatives of $f(x) = x$. Observe that, if we are computing a definite integral, it does not matter which constant C we take:

$$\int_a^b x\,dx = \left[\frac{1}{2}x^2 + C\right]_a^b = \left(\frac{1}{2}b^2 + C\right) - \left(\frac{1}{2}a^2 + C\right) = \left[\frac{1}{2}x^2\right]_a^b.$$

It is crucially important to distinguish between the real number $\int_a^b f(x)\,dx$, and the function (or family of functions) $\int f(x)\,dx$; the former has limits of integration, the latter does not.

Example: Suppose $f(x) = \frac{1}{1+x^2}$; since $\frac{d}{dx}\arctan x = \frac{1}{1+x^2} = f(x)$, we know that $\int \frac{dx}{1+x^2}$ is the function $\arctan x + C$.

By FTC II, this implies that

$$\int_0^1 \frac{dy}{1+y^2} = \left[\arctan y\right]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4},$$

a real number.
Asides: One immediate corollary of FTC, which is inexplicably given its own section in Stewart, is the identity
\[\int_a^b F'(x) \, dx = F(b) - F(a), \]
when \(F(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\).

u-Substitution, or the Chain Rule in Reverse

Suppose I want to integrate \(2x e^{x^2} \); it is not obvious just by looking what an anti-derivative might be.

However, if we remember the chain rule, we can say
\[\int 2x e^{x^2} \, dx = \int \frac{d}{dx} (e^{x^2}) \, dx = e^{x^2} + C \quad \text{— don't forget } C! \]

Here we introduce a technique that makes this kind of integration easier to spot—namely, the \textit{u-substitution}.

We follow the same example. First, we're given a freebie integrand like \(2x e^{x^2} \), that we don't know how to integrate. Then we introduce a new variable \(u \) and try to put our original integral solely in terms of \(u \).

How do we know what to make \(u \) equal to? Practice!

We'll have our first guess with \(u = e^{x^2} \), so \(\frac{du}{dx} = 2x e^{x^2} \), by the chain rule. Forgetting for the moment that \(\frac{du}{dx} \) is definitely not a fraction, we can "multiply by \(dx \)" to get the equation \(du = 2x e^{x^2} \, dx \), or even
\[\frac{dx}{2x e^{x^2}} = \frac{du}{u} \]

Next, we replace \(e^{x^2} \) by \(u \) wherever we see it:
\[\int 2x e^{x^2} \, dx = \int 2u \, du \]

Then we replace \(dx \) by \(\frac{du}{2x u} \):
\[\int 2x e^{x^2} \, dx = \int 2u \left(\frac{du}{2x u} \right) = \int du \]

so
\[\int 2x e^{x^2} \, dx = \int du = u + C \]

and putting it back in terms of \(x \) completes the job:
\[\int 2x e^{x^2} \, dx = e^{x^2} + C \]
Make sense? Of course not! Let's do some examples.

Example 1: Find \(\int 4x(1+x^2) \, dx \).

Solution: We try the substitution \(u = 1 + x^2 \). Then \(\frac{du}{dx} = 2x \), so \(du = 2x \, dx \). Thus, \(dx = \frac{du}{2x} \).

Now we can write
\[
\int 4x(1+x^2) \, dx = \int 4x \, u \, dx = \int 4x \cdot u \, (\frac{du}{2x}) = \int 2u \, du.
\]

We know by FTC that \(\int u \, du = u^2 + C \), and putting it back in terms of \(x \), we get
\[
\int 4x(1+x^2) \, dx = (1+x^2)^2 + C.
\]

Example 2: Find \(\int e^y \cos(e^y) \, dy \).

Solution: Let's try \(u = e^y \), so \(\frac{du}{dy} = e^y \) and \(dy = \frac{du}{u} \).

Then
\[
\int e^y \cos(e^y) \, dy = \int \cos u \cdot \frac{du}{u} = \int \cos u \cdot du.
\]

Therefore,
\[
\int e^y \cos(e^y) \, dy = \sin(u) + C.
\]

Notice that our ability to take advantage of the substitution depends entirely on making the right choice of what to substitute.

For instance, if in example 2 we instead substitute \(u = \cos(e^y) \), \(du = -\sin(e^y) \, e^y \) (chain rule), and we get
\[
\int e^y \cos(e^y) \, dy = \int e^y \cos u \cdot \frac{du}{\sin(e^y) \, e^y} = \int \cot(e^y) \, du.
\]

In this case, it's back to the drawing board. The only real guiding principle is that \(u \) should be the "inside function" in ex. 1 we used \(\frac{d}{dx} \) \((1+x^2)^2 \), and \(1+x^2 \) was \(u \), and in ex. 2 we used \(\frac{d}{dy} \) \(\sin(e^y) \), and \(e^y \) was \(u \).
Example 3: Find \(\int \frac{\cos t}{1 + \sin^2 t} \, dt \).

Solution: Here we'll take \(u = \sin t \), so \(du = \cos t \, dt \).

\[
\int \frac{\cos t}{1 + \sin^2 t} \, dt = \int \frac{\cos t}{1 + u^2} \, (du) = \int \frac{du}{1 + u^2} = \arctan u + C.
\]

\(= \arctan (\sin x) + C \)

Additional exercises: Find the indefinite integrals.

(a) \(\int \frac{du}{\ln u} \)

(b) \(\int 2 \tan x \sec^2 x \, dx \)

(c) \(\int 2 \sec^2 t \tan t \, dt \)

(d) \(\int \frac{2y}{\sqrt{1 - y^4}} \, dy \)

(Try to use different substitutions for (b) and (c).)

The short version: if \(u = g(x) \) is a differentiable function whose range lies in \([a, b]\), and \(f(x) \) is continuous on \([a, b]\), then

\[
\int f(g(x)) \, g'(x) \, dx = \int f(u) \, du = F(u) + C.
\]

We saw many examples of this with indefinite integrals — how does it work with definite integrals?

Clearly, we can do the following process:
1. Take the definite integral
2. Find an anti-derivative of integrand
3. Put back in terms of original variables
4. Evaluate at limits of integration

I like to call this the "painful" method, or I like doing unnecessary work.
Example: Find \(\int_1^e \frac{dx}{x(1+\ln^2 x)} \).

Solution: We will substitute \(u = \ln x \), so \(\frac{du}{dx} = \frac{1}{x} \) and \(dx = x \cdot du \). Then

\[
\int \frac{dx}{x(1+\ln^2 x)} = \int \frac{1}{x(1+u^2)} \cdot (x \cdot du) = \int \frac{du}{1+u^2} = \arctan u + C.
\]

So the antiderivative of \(\frac{1}{x(1+\ln^2 x)} \) is \(\arctan(\ln x) + C \).

By the FTC, therefore,

\[
\int_1^e \frac{dx}{x(1+\ln^2 x)} = \left[\arctan(\ln x) \right]_1^e
= \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}.
\]

These are a better way!

Instead of doing everything (apart from the anti-

differentiation) in the “x-universe,” we’ll do everything

in the “u-universe,” in this way: when we substitute

\(u \) in the integrand, we will also substitute the

limits of integration:

\[
\int_1^e \frac{dx}{x(1+\ln^2 x)} = \int_1^e \frac{du}{1+u^2} = \left[\arctan u \right]_1^e = \frac{\pi}{4}.
\]

Same example: if \(u = \ln(x) \), then \(u = 0 \) when \(x = 1 \) and \(u = \infty \) when \(x = e \). So,

\[
\int \frac{dx}{x(1+\ln^2 x)} = \int \frac{1}{x(1+u^2)} \cdot (x \cdot du) = \int_1^e \frac{du}{1+u^2} = \left[\arctan u \right]_1^e = \frac{\pi}{4}.
\]

I hope it is clear which method I prefer.
example 1: Compute \(\int_0^3 2y e^{y^2} \, dy \).

Solution: We try the substitution \(t = 1 + y^2 \). Then \(\frac{dt}{dy} = 2y \), so \(dy = \frac{dt}{2y} \). We have

\[
t(0) = 1 + 0^2 = 1, \quad t(3) = 1 + 3^2 = 10,
\]

and so by our formula

\[
\int_0^3 2y e^{y^2} \, dy = \int_1^{10} e^t \left(\frac{dt}{2y} \right) = \int_1^{10} e^t \, dt = \left[e^t \right]_1^{10} = e(10^2 - 1).
\]

\[= 100e - 2 = e(98) \]

example 2: Compute \(\int_0^{\pi/2} \cos(s \sin x) \cos x \, dx \).

Solution: We substitute \(u = \sin x \), so \(du = \cos x \, dx \). Then \(u(0) = 0 \), \(u(\pi/2) = 1 \), and so

\[
\int_0^{\pi/2} \cos(s \sin x) \cos x \, dx = \int_0^1 \cos(u) (du) = [\sin u]_0^1 = \sin 1.
\]

example 3: Find \(\int_0^4 \sqrt{2x+1} \, dx \).

Solution: We take \(u = 2x + 1 \), \(du = 2 \, dx \). Then

\[
\int_0^4 \sqrt{2x+1} \, dx = \int_u^9 u^{1/2} (du/2) = \frac{1}{2} \int_1^9 u^{1/2} \, du = \frac{1}{2} \left[\frac{2}{3} u^{3/2} \right]_1^9
\]

\[
= \frac{1}{3} (9^{3/2} - 1^{3/2}) = 2(3) = 6.
\]

example 4: Find \(\int_1^e \frac{\ln x}{x} \, dx \).

Solution: Take \(w = \ln x \), \(dw = \frac{1}{x} \, dx \). Then

\[
\int_1^e \frac{\ln x}{x} \, dx = \int_0^1 w \, dw = \left[\frac{1}{2} w^2 \right]_0^1 = \frac{1}{2}.
\]