MATH 422 Assignment 2

Cindy Tan
57195142
2 Oct 2019

1. (a) If \(f(x) = 8x^3 - 6x - 1 \) is reducible in \(\mathbb{Q}[x] \), write \(f = gh \) where \(g, h \in \mathbb{Q}[x] \) and \(\deg g \leq \deg h \leq 2 \). \(\mathbb{Q} \) is a domain so \(\deg g + \deg h = \deg f = 3 \). Then \(\deg g = 1 \) so \(f \) has a rational root \(r = \frac{a}{b} \) where \(a, b \in \mathbb{Z} \) and \(\gcd(a, b) = 1 \). By the rational root test, \(a \mid 1 \) and \(b \mid 8 \), so \(r \in \{ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8} \} \). None of these are roots:

\[
\begin{align*}
 f(1) &= 1, \quad f\left(\frac{1}{2}\right) = -3, \quad f\left(\frac{1}{4}\right) = \frac{1}{8} - \frac{5}{2} < 0, \quad f\left(\frac{1}{8}\right) = \frac{1}{64} - \frac{7}{4} < 0, \\
 f(-1) &= -3, \quad f\left(-\frac{1}{2}\right) = 1, \quad f\left(-\frac{1}{4}\right) = -\frac{9}{8} + \frac{3}{2} > 0, \quad f\left(-\frac{1}{8}\right) = -\frac{65}{64} + \frac{3}{4} < 0
\end{align*}
\]

Thus \(f \) is irreducible in \(\mathbb{Q}[x] \). \(\square \)

(b) It suffices to prove that \(f(x) = x^4 + x + 1 \) is irreducible in \(\mathbb{F}_2[x] \).

Suppose \(f = gh \) where \(g, h \in \mathbb{F}_2[x] \) and \(\deg g \leq \deg h \leq 3 \). Since \(f(0) = 1 \) and \(f(1) = 1 \), \(f \) has no root in \(\mathbb{F}_2 \), so \(\deg g > 1 \). Then \(\deg g = \deg h = 2 \).

Write \(g = x^2 + ax + 1 \) and \(h = x^2 + bx + 1 \) for \(a, b \in \mathbb{F}_2 \). The leading coefficients and constants are necessarily 1 because \(gh = f \). Then

\[
 f(x) = x^4 + x + 1 = (x^2 + ax + 1)(x^2 + bx + 1)
 = x^4 + (a + b)x^3 + (2 + ab)x^2 + (a + b)x + 1
\]

But this is a contradiction because the coefficients in \(f \) for \(x \) and \(x^3 \) are different.

Therefore \(f \) is irreducible in \(\mathbb{F}_2[x] \), and hence irreducible in \(\mathbb{Q}[x] \). \(\square \)

2. Applying the binomial theorem,

\[
(x + 2)^p = \sum_{k=0}^{p} \binom{p}{k} x^k 2^{p-k}
\]

\[
\frac{1}{x} ((x + 2)^p - 2^p) = \sum_{k=1}^{p} \binom{p}{k} x^{k-1} 2^{p-k} = x^{p-1} + 2 \binom{p}{p-1} x^{p-2} + \ldots + 2^{p-1} \binom{p}{1}
\]

Observe that \(p \) divides every coefficient except the leading coefficient, which is 1. Furthermore, \(p^2 \nmid p2^{p-1} \), the constant term. Thus Eisenstein’s criterion applies and the polynomial is irreducible in \(\mathbb{Q}[x] \).

Let \(f(x) = 1 + \prod_{i=1}^{n} (x - i) \in \mathbb{Z}[x] \) for \(n > 4 \). By Gauss’ lemma, it suffices to show that \(f \) is irreducible in \(\mathbb{Z}[x] \).

Suppose \(f = gh \) for \(g, h \in \mathbb{Z}[x] \) where \(\deg g, h \leq n - 1 \). For \(1 \leq j \leq n \) we have that

\[1 = f(j) = g(j)h(j) \] so \(g(j) = h(j) \in \{1, -1\} \). Then the polynomial \(g - h \) has \(n \) roots. Since \(\deg(g - h) \leq \max(\deg g, \deg h) \leq n - 1 \), it must be that \(g - h = 0 \).

Then \(f = g^2 \) for \(g \in \mathbb{Z}[x] \) where \(g(j) = 1 \) for \(1 \leq j \leq n \). Since \(\mathbb{Z} \) is a domain, \(n = \deg f = 2 \deg g \) is even.
Observe that for \(i, j \in \mathbb{Z} \), \(i - j \) divides \(g(i) - g(j) \) since \(g \) is a polynomial and
\(i^k - j^k = (i - j)(i^{k-1} + i^{k-2}j + \cdots + j^k) \). Suppose that \(g(1) = 1 \) (the case where \(g(1) = -1 \) is symmetric). If \(g(j) = -1 \) for some \(2 \leq j \leq n \), then \(1 - j \mid g(1) - g(j) = 2 \), so
\[|1 - j| \leq 2 \implies j \leq 3. \]

Hence \(g(j) = 1 \) for \(j = 1 \) and for all \(4 \leq j \leq n \). Then the polynomial \(g - 1 \) has \(n - 2 \) roots. Since \(n \geq 6 \), we have that \(n - 2 > \frac{n}{2} = \deg g \geq \deg(g - 1) \), so \(g - 1 = 0 \). This is clearly a contradiction because \(g = 1 \implies f = 1 \).

Therefore \(f \) is irreducible in \(\mathbb{Q}[x] \) because it is irreducible in \(\mathbb{Z}[x] \).

3. \(1 \in F^\sigma \) because \(\sigma \) is a field automorphism so \(\sigma(1) = 1 \).

If \(x, y \in F^\sigma \), then \(\sigma(x \pm y) = \sigma(x) \pm \sigma(y) = x \pm y \) and \(\sigma(xy) = \sigma(x)\sigma(y) = xy \), so \(x \pm y, xy \in F^\sigma \).

For multiplicative inverses, note that \(1 = \sigma(xx^{-1}) = \sigma(x)\sigma(x^{-1}) = x\sigma(x^{-1}) \). By uniqueness of inverses, \(\sigma(x^{-1}) = x^{-1} \), so \(x^{-1} \in F^\sigma \).

Therefore \(F^\sigma \) is a subfield of \(F \).

Let \(F_p \subseteq F \) denote the prime field of \(F \). Since \(F_p \) is contained in every subfield of \(F \), in particular \(F_p \subseteq F^\sigma \).

Let \(f(x) = x^p - x \in F[x] \). Then \(F^\sigma \) is precisely the set of all roots of \(f \). Since \(F[x] \) is a Euclidean domain, the number of roots of \(f \) is at most \(\deg f = p \) (evident by applying induction on the Euclidean division algorithm). Therefore \(F^\sigma = F_p \) since \(|F_p| = p \).

4. Let \(\phi : \mathbb{R}[x] \to \mathbb{C} \) be the ring map \(g \mapsto g(i) \). This map is surjective: Given \(a + bi \in \mathbb{C} \) for \(a, b \in \mathbb{R} \), we have \(a + bx \in \mathbb{R}[x] \) and \(\phi(a + bx) = a + bi \).

Let \(f = x^2 + 1 \in \mathbb{R}[x] \). \(f \) is irreducible since it has no roots in \(\mathbb{R} \) and \(\deg f = 2 \). Thus \((f) \) is maximal since \(\mathbb{R}[x] \) is a PID. Evidently \(f = x^2 + 1 \in \ker \phi \) so by maximality, either \(\ker \phi = (f) \) or \(\ker \phi = \mathbb{R}[x] \). Since \(f \) does not map nonzero constant functions to 0, \(\ker \phi \neq \mathbb{R}[x] \). Thus \(\ker \phi = (f) \).

Then \(\phi \) descends to an isomorphism \(\mathbb{R}[x]/(f) \to \mathbb{C} \).