Practice Midterm II

No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (0 points)

(a) Find the general solution in \mathbb{Q}^5 of the system of equations

x_1	—	x_2	—	$3x_3$	+	x_4			=	3
		x_2	+	$2x_3$	+	x_4			=	-1
x_1	+	$2x_2$	+	$3x_3$	+	$4x_4$	+	$2x_5$	=	6
x_1	+	x_2	+	x_3	+	$3x_4$	+	x_5	=	4

(b) Note that the coefficient matrix $A \in M(4 \times 5, \mathbb{Q})$ of this system defines a linear map $A : \mathbb{Q}^5 \to \mathbb{Q}^4$. Find a basis for the image space of this linear transformation. What is the dimension of $\operatorname{im}(A)$?

(c) Find the coordinates of $\begin{pmatrix} 3\\-1\\6\\4 \end{pmatrix}$ with respect to the basis you found in (b).

Problem 2. (0 points)

Find the rank (i.e., the dimension of the image) and the nullity (i.e., the dimension of the kernel, or nullspace) of the orthogonal projection $P : \mathbb{R}^3 \to \mathbb{R}^3$ onto the vector $\begin{pmatrix} 1\\2 \end{pmatrix}$. Try to reason without calculating the matrix of P.

Problem 3. (0 points)

- (a) Verify that $\mathcal{B} = (\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix})$ forms a basis of \mathbb{R}^2 .
- (b) Let $R : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by $\pi/2$ around the origin. Find the matrix of R with respect to the basis \mathcal{B} of (a). In other words, find

$$M^{\mathcal{B}}_{\mathcal{B}}(R)$$
.

Problem 4. (0 points)

For which choices of the constant $k \in \mathbb{Q}$ is the matrix

$$A_k = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & 4 & k^2 \end{pmatrix}$$

invertible?

Problem 5. (0 points)

Here the field is \mathbb{F}_3 , the field with 3 elements. Consider the linear transformation

$$\begin{split} \phi : \mathbb{F}_3^2 &\longrightarrow \mathbb{F}_3^3 \\ (x,y) &\longmapsto (x+y,x-y,x) \,. \end{split}$$

- (i) Find the matrix $M_{\mathcal{S}}^{\mathcal{S}}(\phi)$ of ϕ in standard bases of \mathbb{F}_3^2 , \mathbb{F}_3^3 .
- (ii) Find a basis for the image of ϕ .
- (iii) Find all left inverses of ϕ , i.e., all linear transformations $\psi : \mathbb{F}_3^3 \to \mathbb{F}_3^2$, such that $\psi \circ \phi = \mathrm{id}_{\mathbb{F}_3^2}$.
- (iv) Why does ϕ not have any right inverses?

Problem 6. (0 points) Evaluate the following determinant:

$$\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1+x & 1 & 1 \\ 1 & 1 & 1+x & 1 \\ 1 & 1 & 1 & 1+x \end{vmatrix}$$

Problem 7. (5 points)

In \mathbb{R}^3 with the standard inner product, find a basis for the orthogonal complement of the line spanned by

$$\begin{pmatrix} 2\\ -3\\ 5 \end{pmatrix}$$

Problem 8. (0 points)

Consider the following matrix:

$$A = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ -1 & 2 & -2 \end{pmatrix}$$

The matrix A is orthogonal, and has determinant 1. Therefore, A describes a rotation about an axis through the origin.

- (i) Find the rotation axis.
- (ii) Find the rotation angle θ , where $0 \le \theta \le \pi$.

Problem 9. (0 points)

The standard matrix of a linear transformation T is

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & 2\\ 0 & 2 \end{pmatrix} \,.$$

Find a basis \mathcal{F} of \mathbb{R}^2 , such that

$$[T]_{\mathcal{F}} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \,.$$

Problem 10. (0 points) Find the determinant of the matrix

$$\begin{pmatrix} 3 & 5 & 5 & 1 \\ 4 & 5 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 4 & 4 & 2 & 1 \end{pmatrix} .$$

Problem 11. (0 points) Find all values of x for which the matrix

$$\begin{pmatrix} 3 & 5 & 0 \\ 5 & 0 & x \\ 0 & 3 & 3 \end{pmatrix}$$

is invertible.

Problem 12. (0 points)

Find an invertible 3×3 matrix E, such that EA is in reduced row echelon form, where

$$A = \begin{pmatrix} 1 & 5 & 0 & -2 \\ 2 & 10 & -2 & 0 \\ 3 & 15 & -1 & 1 \end{pmatrix} \,.$$

Problem 13. (0 points)

Consider the \mathbb{R} -vector space P_n of polynomials of degree at most n over \mathbb{R} . Differentiation defines an endomorphism $D: P_n \to P_n$. Find the determinant of D.

Problem 14. (0 points)

Left multiplication by the matrix $A \in M(n \times n, \mathbb{F})$ defines an endomorphism of $M(n \times n, \mathbb{F})$. Find the determinant of this endomorphism.

Problem 15. (0 points)

- (a) Find the standard matrix of the orthogonal projection onto the line $2x_1 + x_2 = 0$ in \mathbb{R}^2 .
- (b) Suppose u_1, \ldots, u_k is an orthonormal system in \mathbb{R}^n , and U the subspace it generates. Let A be the $n \times k$ -matrix whose columns are u_1, \ldots, u_n . Express the standard matrix of the projection onto U in terms of A.

Problem 16. (0 points)

Let V be a Euclidean vector space and $U \subset V$ a subspace. Denote the projection onto U by P_U . The *reflection across* U is the linear map $R_U : V \to V$ defined by the formula $R_U = 2P_U - id_V$. Find a formula for the determinant of R_U in terms of dim V and dim U.

Problem 17. (0 points)

Let Ax = b be an inhomogeneous system of linear equations over \mathbb{R} . Suppose b is orthogonal to the columns of A. Prove that the system has no solutions, unless b = 0.

Problem 18. (0 points)

Let (V, \langle, \rangle) be a finite-dimensional Euclidean vector space. Prove that there is an orthogonal isomorphism $V \to \mathbb{R}^n$, for some *n*. (Here \mathbb{R}^n is endowed with the standard inner product).