Midterm II

No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (8 points)
(i) Define the term linear map.
(ii) Define the term kernel of a linear map.
(iii) Give an example of a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, which is not linear.
(iv) Give an example of a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, whose kernel had dimension 2.
(v) Prove that if $f: V \rightarrow W$ is a linear map, then the kernel of f is a subspace of V.
(vi) Is it possible for a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ to be injective? Justify your answer.

Problem 2. (8 points)
Find the standard matrix of the reflection across the line with equation $3 x-4 y=0$ in \mathbb{R}^{2}.

Problem 3. (8 points)
(i) Define the determinant of an $n \times n$ matrix with coefficients in a field \mathbb{F}.
(ii) Calculate the determinant of

$$
\left(\begin{array}{cccc}
2 & 3 & x & 0 \\
4 & 0 & 0 & y \\
-1 & z & 2 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

where $x, y, z \in \mathbb{F}$.
Problem 4. (8 points)
(i) Define the terms eigenvalue, eigenvector, and eigenspace.
(ii) Prove that if a linear map $P: V \rightarrow V$ satisfies $P^{2}=P$, then every eigenvalue of P is either equal to 0 or equal to 1 .
(iii) Prove that every linear map $P: V \rightarrow V$ which satisfies $P^{2}=P$ is diagonalizable. Hint: write an arbitrary vector $v \in V$ as $v=P(v)+(v-P(v))$.

Problem 5. (8 points)
Find formulas for x_{n}, y_{n}, given that

$$
x_{n+1}=-5 x_{n}+4 y_{n}, \quad y_{n+1}=-12 x_{n}+9 y_{n}
$$

and

$$
x_{0}=1, \quad y_{0}=1
$$

Compute $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}$ and $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}$.

Problem 1.
(i) A map $f: V \rightarrow w(v, w$ vector spaces wee the field $\mathbb{F})$ is linear if $f(\lambda v+w)=\lambda f(v)+f(w) \quad \forall v, w \in V, \lambda \in \mathbb{F}$.
(ii) the kernel of the linear map $f: V \rightarrow W$ is $\operatorname{ker}(f)=\{v \in V \mid f(v)=0\}$.
(iii) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}, f\binom{x}{y}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is not linear.
(iv) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ has kernel of dimension 2.
(v) Let $\delta: V \rightarrow W$ be linear. Claim: $\operatorname{ker}(f) \subset V$ is a subspace.

Pf. (1) kerf $\neq \phi$ because $f(0)=0$ and so $0 \in$ kerf.

$$
\begin{aligned}
v, w \in \operatorname{ker}(f) & \Rightarrow f(v)=0 \& f(w)=0 \\
& \Rightarrow f(v+w)=f(v)+f(w)=0
\end{aligned}
$$

$\Rightarrow v+w \in$ kerf so kerf closed under add.
(3)

$$
\begin{aligned}
v \in \operatorname{ker}(f), \lambda \in \mathbb{F} & \Rightarrow f(v)=0 \\
& \Rightarrow \lambda f(v)=\lambda 0=0 \\
& \Rightarrow f(\lambda v)=0
\end{aligned}
$$

$\Rightarrow \lambda w \in$ kerf) so kerf closed under Scalar milt.
(vi) Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is njective. Then $\operatorname{ker}(f)=\{0\}$.

So $\operatorname{dim}($ kerf $f)=0$. $\operatorname{Dimension~formale:~} \operatorname{dim}(\operatorname{ker} f)+\operatorname{dim}(\operatorname{im} f)=3$.
So $\operatorname{dim}(\lim f)=3$. But $\operatorname{im}(f) \subset \mathbb{R}^{2}$ is a subspace, so $\operatorname{dim}(\inf) \leq 2$ contradiction. f cannot be injective.

Problem 2.
$\binom{4}{3}$ is a vector on the reflection mirror $3 x-4 y=0$.
So (4) is an eigenvector with eigenvalue 1 for the reflection across $3_{x}-y_{y}=0$.
$\binom{3}{-4}$ is orthogonal to the reflection mirror, so
it is an eigenvector wist eigenvalue -1 for this reflection.
So $\binom{4}{3},\binom{3}{-4}$ is a burs consisting of eigenvectors.

$$
A=P D P^{-1}
$$

The reflection is diagonalizable. Use the formula in the box.

P: change of basis matrix: has basis vectors as columns:

$$
P=\left(\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right)
$$

$D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ has the eigenvalues on the diagonal.

$$
\begin{aligned}
& P^{-1}=\frac{1}{-16-9}\left(\begin{array}{cc}
-4 & -3 \\
-3 & 4
\end{array}\right)=\frac{1}{-25}\left(\begin{array}{cc}
-4 & -3 \\
-3 & 4
\end{array}\right)=\frac{1}{25}\left(\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right) . \\
& A=\left(\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{25}\left(\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right) \\
& =\frac{1}{25}\left(\begin{array}{cc}
4 & -3 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right) \\
& =\frac{1}{25}\left(\begin{array}{cc}
16-9 & 12+12 \\
12+12 & 9-16
\end{array}\right)=\frac{1}{25}\left(\begin{array}{cc}
34 & 24 \\
24 & -7
\end{array}\right)=\frac{1}{25}\left(\begin{array}{cc}
7 & 24 \\
24 & -7
\end{array}\right)
\end{aligned}
$$

Problem ${ }^{3}$.
(i) Ret: $M(n \times n, \mathbb{F}) \rightarrow \mathbb{F}$ is the unique function which satisfies: - Let is linear in each row

- Let is zero for matrices of $\notin<n$
- del $I_{n}=1$.
(ii) $\left|\begin{array}{cccc}2 & 3 & x & 0 \\ 4 & 0 & 0 & y \\ -1 & z & 2 & 0 \\ 0 & 1 & 0 & 0\end{array}\right|$ expand $=\left|\begin{array}{ccc}2 & x & \phi \\ 4 & 0 & y \\ -1 & 2 & 0\end{array}\right|=-y\left|\begin{array}{cc}2 & x \\ -1 & 2\end{array}\right|=-y(4+x)$.
expand

Problem 4.
i) Let $f: V \hookrightarrow V$ be an endomorphism of the \mathbb{F}-vechosspace V.
$\lambda \in \mathbb{F}$ is an eigenvalue of f if these exists a non-zeno $V \in V$ sit. $f(v)=\lambda v$, $v \in V$ is an eigenvector of f it $v \neq 0$ and there exists a $\lambda \in \mathbb{F}$ s.t. $f(v)=\lambda v$, eigenspase of eigenrake λ is $\operatorname{ker}\left(\lambda i d_{v}-f\right)=: E_{\lambda}$
(ii) Suppose λ is an eigenvalue of P. Then $P^{2}(v)=P(P v)=P(\lambda v)=\lambda P(v)=\lambda^{2} v$.

Also, $P^{2}(v)=P(v)=\lambda v$.
Hence, $\lambda^{2} v=\lambda v \Rightarrow\left(\lambda^{2}-\lambda\right) v=0 \stackrel{v \neq 0}{\Rightarrow} \quad \lambda^{2}-\lambda=0 \Rightarrow \lambda(\lambda-1)=0$

$$
\Rightarrow \lambda=0 \text { or } \lambda=1 \text {. }
$$

(iii) Write $v \in V$ as $v=P(v)+v-P(v)$.
then $P(v) \in E_{1}$ since $P(P(v))=P(v)$
and $v-P(v) \in E_{0}$ since $P(v-P(v))=P(v)-P^{2}(v)=P(v)-P(v)=0$.
So $V=E_{1}+E_{0}$. Putting a basis of E_{1} together with a basis for E_{2} given a basis is V consisting of eiqumectiors for P.

Pwblem 5.

$$
\begin{align*}
& \binom{x_{n+1}}{y_{n n}}=\left(\begin{array}{cc}
-5 & 4 \\
-12 & 9
\end{array}\right)\binom{x_{n}}{y_{n}} \quad\binom{x_{0}}{y_{0}}=\binom{1}{1} . \\
& \left|\begin{array}{cc}
-5-\lambda & 4 \\
-12 & 9-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda-45+48=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3) . \tag{2}
\end{align*}
$$

$\lambda=3:$

$$
E_{3}=\operatorname{ker}\left(\begin{array}{cc}
-5-3 & 4 \\
-12 & 9-3
\end{array}\right)=\operatorname{ker}\left(\begin{array}{ll}
-8 & 4 \\
-12 & 6
\end{array}\right)=\operatorname{span}\binom{1}{2}
$$

X=1: $\quad E_{1}=\operatorname{ker}\left(\begin{array}{cc}-5-1 & 4 \\ -12 & 9-1\end{array}\right)=\operatorname{ker}\left(\begin{array}{cc}-6 & 4 \\ -12 & 8\end{array}\right)=\operatorname{span}\binom{2}{3}$

General solution.

$$
\binom{x_{n}}{y_{n}}=c_{1} 3^{n}\binom{1}{2}+c_{2} 1^{n}\binom{2}{3}=c_{1}\binom{3^{n}}{2 \cdot 3^{n}}+c_{2}\binom{2}{3} .
$$

Find c_{1}, c_{2} :

$$
\begin{align*}
& \binom{x_{0}}{y_{0}}=c_{1}\binom{1}{2}+c_{2}\binom{2}{3}=\binom{1}{1} \quad\left(\begin{array}{ll|l}
1 & 2 & 1 \\
2 & 3 & 1
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & -1 & -1
\end{array}\right) \\
& \sim\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & -1 \\
0 & 1 & +1
\end{array}\right) \\
& c_{1}=-1, c_{2}=+1 . \\
& \binom{x_{n}}{y_{n}}=-\binom{3^{n}}{2 \cdot 3^{n}}+\binom{2}{3}=\binom{2-3^{n}}{3-2 \cdot 3^{n}} \tag{2}\\
& x_{n}=2-3^{n} \\
& y_{n}=3-2 \cdot 3^{n} \\
& \lim _{n \rightarrow \infty} \frac{x n}{y_{n}}=\lim _{n \rightarrow \infty} \frac{2-3^{n}}{3-2 \cdot 3^{n}}=\lim _{n \rightarrow \infty} \frac{2 / 3^{n}-1}{3 / 3^{n}-2}=\frac{0-1}{0-2}=\frac{1}{2} \text { (sope of } E_{3} \text {) }
\end{align*}
$$

