Midterm II

No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (8 points)

- (i) Define the term **linear map**.
- (ii) Define the term kernel of a linear map.
- (iii) Give an example of a map $f : \mathbb{R}^2 \to \mathbb{R}^3$, which is not linear.
- (iv) Give an example of a linear map $f : \mathbb{R}^3 \to \mathbb{R}^2$, whose kernel had dimension 2.
- (v) Prove that if $f: V \to W$ is a linear map, then the kernel of f is a subspace of V.
- (vi) Is it possible for a linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ to be injective? Justify your answer.

Problem 2. (8 points)

Find the standard matrix of the reflection across the line with equation 3x - 4y = 0in \mathbb{R}^2 .

Problem 3. (8 points)

- (i) Define the determinant of an $n \times n$ matrix with coefficients in a field \mathbb{F} .
- (ii) Calculate the determinant of

$$\begin{pmatrix} 2 & 3 & x & 0 \\ 4 & 0 & 0 & y \\ -1 & z & 2 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

where $x, y, z \in \mathbb{F}$.

Problem 4. (8 points)

(i) Define the terms **eigenvalue**, **eigenvector**, and **eigenspace**.

 x_0

- (ii) Prove that if a linear map $P: V \to V$ satisfies $P^2 = P$, then every eigenvalue of P is either equal to 0 or equal to 1.
- (iii) Prove that every linear map $P: V \to V$ which satisfies $P^2 = P$ is diagonalizable. **Hint:** write an arbitrary vector $v \in V$ as v = P(v) + (v - P(v)).

Problem 5. (8 points)

Find formulas for x_n , y_n , given that

$$x_{n+1} = -5x_n + 4y_n, \qquad y_{n+1} = -12x_n + 9y_n,$$

and

$$= 1, \qquad y_0 = 1.$$

Compute $\lim_{n\to\infty} \frac{x_n}{y_n}$ and $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$.

Problem].
(i) A wap f: V-w (V, w vector spaces over the field F)
is linear if
$$f(xv+w) = \lambda f(v) + f(w)$$
. $\forall v, w \in V_{\lambda} \in F$.
(ii) the kernel of the linear map $f: V \to W$ is
ker(F) = { $v \in V [f(v) = 0$ }.
(iii) $f: \mathbb{R}^{2} \to \mathbb{R}^{3}, f(\mathbb{R}) = (\frac{1}{6})$ is not linear.
(iv) $f: \mathbb{R}^{3} \to \mathbb{R}^{2}$ with matrix $(\frac{1}{2} \circ \circ)$ has keenel of dimension 2.
(v) Let $f: V \to W$ be linear. Claim: ker(f) $\in V$ is a Rebspace.
(v) Let $f: V \to W$ be linear. Claim: ker(f) $\in V$ is a Rebspace.
(i) Keef $\neq \emptyset$ be cause $f(v) = 0$ and so Dekerd.
(i) Hill Keef $\notin \emptyset$ be cause $f(v) = 0$ and so Dekerd.
(iii) $f:\mathbb{R}^{2} \to \mathbb{R}^{2}$ where $f(v) = 0$ and so Dekerd.
(i) Hill Keef $f(v) \to 0$ for $f(v) = 0$
 $\exists v \in kee(f) \exists f(v) = 0$ for $f(v) = 0$
 $\exists x f(v) = \lambda 0 = 0$
 $\exists x f(v) = \lambda 0 = 0$
 $\exists f(\lambda v) = 0$
 $\exists x f(\lambda) = 0$
 $\exists \lambda f(\lambda) = 0$

Problem 2.

(3) is a vector on the reflection minor 3x-4y=0. (3) is an eigenvector with eigenvalue 1 for the reflection across 3x-47=0. 50 (3) is orthogonal to the reflection minor, so it is an eigenvector with eigenvalue - 1 for this reflection. they so (3), (-4) is a basis consisting of eigenvectors. The reflection is diagonalizable. Use the formula in the box. $A = P D P^{-1}$ P: change of basis matrix : has basis vertors as columns : $P = \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$ $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ has the eigenvalues on the diagonal. $P^{-1} = \frac{1}{-16-9} \begin{pmatrix} -4 & -3 \\ -3 & 4 \end{pmatrix} = \frac{1}{-25} \begin{pmatrix} -4 & -3 \\ -3 & 4 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} .$ $A = \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$ $=\frac{1}{25}\begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix}\begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$ $=\frac{1}{25}\begin{pmatrix}16-9 & 12+12\\ 12+12 & 9-16\end{pmatrix} = \frac{1}{25}\begin{pmatrix}77 & 24\\ 24 & 77\end{pmatrix} = \frac{1}{25}\begin{pmatrix}77 & 24\\ 24 & -7\end{pmatrix}$

Problem 3.

(i) det:
$$M(n_{XN}, IF) \longrightarrow IF$$
 is the unique function
with satisfies: • det is linear in each row
• det is zero for matrices of $R < n$
• det $In = 1$.

(ii)
$$\begin{vmatrix} 2 & 3 & 0 \\ 4 & 0 & 0 \\ -1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 1 &$$

Problem Y.
i) let
$$f:V-N$$
 be an endomorphism of the F-verbisspace V.
 $\lambda \in F$ is an eigenvalue of f if there exists a von-zero VeV st. $f(v)=\lambda v$,
 $V \in V$ is an eigenvalue of f if $v \neq 0$ and three exists a $\lambda \in F$ st. $f(v)=\lambda v$,
 $eigenspace of eigenvalue λ is $ker(\lambda : dv - f) =: E_{\lambda}$
(ii) Suppose λ is an eigenvalue of P . Then $P^{2}(v) = P(Pv) = P(\lambda v) = \lambda P(v) = \lambda^{2} v$.
 $Also, P^{2}(v) = P(v) = \lambda v$.
Hence, $\lambda^{2}v = \lambda v \Rightarrow (\lambda^{2}-\lambda)v=0 \Rightarrow \lambda^{2}-\lambda=0 \Rightarrow \lambda(\lambda-1)=0$
 $\Rightarrow \lambda=0 \text{ or } \lambda=1$.
(iii) Write $v \in V$ as $v = P(v) + v - P(v)$.
then $P(v) \in E_{1}$ since $P(P(v)) = P(v) - P^{2}(v) = P(v) - P(v) = 0$.
So $V = E_{1} + E_{0}$. Putting a basis of E_{1} together with a basis for E_{2}
area a basis of V convirting of eigenvectors for P .$

$$\begin{aligned} \frac{1}{2} \frac{$$