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A few challenge problems

Problem 1. (0 points)
Let q : Rn → R be a quadratic form, with associated matrix A ∈ Sym(n × n,R).
Prove that x ∈ Rn is an eigenvector for A if and only if x is a critical point for the
distance from the origin on the hypersurface q(x) = 1. Muse about the connection
between eigenvalues and Lagrange multipliers.

Problem 2. (0 points)
Let R ∈ SO(3). Prove that R is a rotation, as follows.

By considering the characteristic polynomial of R, and what we know about its
constant term, use the intermediate value theorem to prove that 1 is a root of the
characteristic polynomial, and hence R has a line L of fixed points. Prove that
R(L⊥) = L⊥, and hence that R restricted to L⊥ is a 2-dimensional rotation. This
implies that R is a rotation about L.

Problem 3. (0 points)
Prove the SAS congruence theorem: let X be a Euclidean plane, i.e., an affine space
for a 2-dimensional Euclidean vector space. Call two triangles (i.e., non-collinear
triples of points) congruent, if there exists an isometry φ : X → X mapping one
triangle onto the other. Prove that if d(A,B) = d(A′, B′), d(A,C) = d(A′, C ′) and
](BAC) = ](B′A′C ′), then the triangles (A,B,C) and (A′, B′, C ′) are congruent.

Problem 4. (0 points)
Let X be a Euclidean plane associated with the 2-dimensional Euclidean vector
space E. Prove that every isometry φ : X → X is either a translation, a rotation,
or a glide reflection. A rotation of X is an isometry φ : X → X, such that there
exists a point P0, and an angle θ ∈ (0, π], such that for all P ∈ X, P 6= P0, we have
](PP0φ(P )) = θ. A glide reflection of X is an isometry φ : X → X, such that there
exists a line L ⊂ X, such that φ is the composition of a translation parallel to L,
and a reflection across L.

Problem 5. (0 points)
Let f : V → W be an epimorphism of F-vector spaces, and g : V → U an arbitrary
homomorphispm of F-vector spaces. Prove that the dotted arrow exists

V
f //

g
��

W

~~
U

,

making the diagram commute, if and only if g(ker f) = {0}.
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Problem 6. (0 points)
Let V be a vector space over the field F. A linear form on V is a linear map
ψ : V → F. The vector space of linear forms Hom(V,F) is called the dual space of
V , denoted

V ∗ = Hom(V,F) .

(a) If dimV = n < ∞, let B = (v1, . . . , vn) be a basis of V . Define linear forms
(v∗1, . . . , v

∗
n) by the formula

v∗i (vj) = δij .

Prove that B∗ = (v∗1, . . . , v
∗
n) is a basis of V ∗; it is called the dual basis of B.

Deduce that if V is finite-dimensional, dimV = dimV ∗. (If V = Fn, note
that V is the space of column vectors of length n, and V ∗ is the space of row
vectors of length n, because V ∗ is the space of 1× n-matrices.)

(b) Let f : V → W be a linear map. We define the dual of f to be the linear map

f ∗ : W ∗ −→ V ∗

ψ 7−→ ψ ◦ f .

Prove that f ∗ is, indeed, linear. Prove that if B is a basis of V and C is a basis
of W , then

[f ∗]C
∗

B∗ = ([f ]BC )t .

Prove that if V → W is an epimorphism, then W ∗ → V ∗ is a monomorphism.
Prove that if V is finite-dimesional, and if W → V is a monomorphism, then
V ∗ → W ∗ is an epimorphism.

(c) For any vector space V over F, we have a canonical homomorphism (ev stands
for ‘evaluation homomorphism’)

ev : V −→ V ∗∗

v 7−→ [ψ 7→ ψ(v)] .

Prove that ev is injective. Prove that ev is an isomorphism, if V is finite-
dimensional. (This is false if V is infinite-dimensional.) Deduce that if V
and W are finite-dimensional, and f : V → W is a homomorphism, then
rk f = rk f ∗∗.

(d) For a subspace W ⊂ V , we define

W⊥ = ker(V ∗ → W ∗) = {ψ ∈ V ∗ | ∀w ∈ W : ψ(w) = 0} .

Prove that if V is finite-dimensional we have dimW⊥ = dimV − dimW .

(e) Prove that for every homomorphism f : V → U , we have im(f ∗) ⊂ (ker f)⊥.
Deduce that if V is finite-dimensional, we have rk f ∗ ≤ rk f .

(f) Let f : V → U be a homomorphism of finite-dimensional F-vector spaces.
Prove that rk f ∗ = rk f , by using the double dual. (This gives a new proof of
the equality of row and column rank.)
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(g) Deduce that for every homomorphism of finite-dimensional vector spaces we
have

im(f ∗) = (ker f)⊥ .


