A few challenge problems

Problem 1. (0 points)

Let $q : \mathbb{R}^n \to \mathbb{R}$ be a quadratic form, with associated matrix $A \in \text{Sym}(n \times n, \mathbb{R})$. Prove that $x \in \mathbb{R}^n$ is an eigenvector for A if and only if x is a critical point for the distance from the origin on the hypersurface q(x) = 1. Muse about the connection between eigenvalues and Lagrange multipliers.

Problem 2. (0 points)

Let $R \in SO(3)$. Prove that R is a rotation, as follows.

By considering the characteristic polynomial of R, and what we know about its constant term, use the intermediate value theorem to prove that 1 is a root of the characteristic polynomial, and hence R has a line L of fixed points. Prove that $R(L^{\perp}) = L^{\perp}$, and hence that R restricted to L^{\perp} is a 2-dimensional rotation. This implies that R is a rotation about L.

Problem 3. (0 points)

Prove the SAS congruence theorem: let X be a Euclidean plane, i.e., an affine space for a 2-dimensional Euclidean vector space. Call two triangles (i.e., non-collinear triples of points) congruent, if there exists an isometry $\phi : X \to X$ mapping one triangle onto the other. Prove that if d(A, B) = d(A', B'), d(A, C) = d(A', C') and $\measuredangle(BAC) = \measuredangle(B'A'C')$, then the triangles (A, B, C) and (A', B', C') are congruent.

Problem 4. (0 points)

Let X be a Euclidean plane associated with the 2-dimensional Euclidean vector space E. Prove that every isometry $\phi : X \to X$ is either a translation, a rotation, or a glide reflection. A rotation of X is an isometry $\phi : X \to X$, such that there exists a point P_0 , and an angle $\theta \in (0, \pi]$, such that for all $P \in X, P \neq P_0$, we have $\measuredangle(PP_0\phi(P)) = \theta$. A glide reflection of X is an isometry $\phi : X \to X$, such that there exists a line $L \subset X$, such that ϕ is the composition of a translation parallel to L, and a reflection across L.

Problem 5. (0 points)

Let $f: V \to W$ be an epimorphism of \mathbb{F} -vector spaces, and $g: V \to U$ an arbitrary homomorphispm of \mathbb{F} -vector spaces. Prove that the dotted arrow exists

making the diagram commute, if and only if $g(\ker f) = \{0\}$.

Problem 6. (0 points)

Let V be a vector space over the field \mathbb{F} . A *linear form* on V is a linear map $\psi: V \to \mathbb{F}$. The vector space of linear forms $\operatorname{Hom}(V, \mathbb{F})$ is called the *dual space* of V, denoted

$$V^* = \operatorname{Hom}(V, \mathbb{F})$$
.

(a) If dim $V = n < \infty$, let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis of V. Define linear forms (v_1^*, \ldots, v_n^*) by the formula

$$v_i^*(v_j) = \delta_{ij} \, .$$

Prove that $\mathcal{B}^* = (v_1^*, \ldots, v_n^*)$ is a basis of V^* ; it is called the *dual basis* of \mathcal{B} . Deduce that if V is finite-dimensional, dim $V = \dim V^*$. (If $V = \mathbb{F}^n$, note that V is the space of column vectors of length n, and V^* is the space of row vectors of length n, because V^* is the space of $1 \times n$ -matrices.)

(b) Let $f: V \to W$ be a linear map. We define the *dual of* f to be the linear map

$$\begin{split} f^* &: W^* \longrightarrow V^* \\ \psi &\longmapsto \psi \circ f \,. \end{split}$$

Prove that f^* is, indeed, linear. Prove that if \mathcal{B} is a basis of V and \mathcal{C} is a basis of W, then

$$[f^*]^{\mathcal{C}^*}_{\mathcal{B}^*} = ([f]^{\mathcal{B}}_{\mathcal{C}})^t \,.$$

Prove that if $V \to W$ is an epimorphism, then $W^* \to V^*$ is a monomorphism. Prove that if V is finite-dimesional, and if $W \to V$ is a monomorphism, then $V^* \to W^*$ is an epimorphism.

(c) For any vector space V over \mathbb{F} , we have a *canonical* homomorphism (ev stands for 'evaluation homomorphism')

$$\begin{split} \mathrm{ev} &: V \longrightarrow V^{**} \\ v \longmapsto \left[\psi \mapsto \psi(v) \right]. \end{split}$$

Prove that ev is injective. Prove that ev is an isomorphism, if V is finitedimensional. (This is false if V is infinite-dimensional.) Deduce that if V and W are finite-dimensional, and $f: V \to W$ is a homomorphism, then $\operatorname{rk} f = \operatorname{rk} f^{**}$.

(d) For a subspace $W \subset V$, we define

$$W^{\perp} = \ker(V^* \to W^*) = \{ \psi \in V^* \mid \forall w \in W \colon \psi(w) = 0 \}.$$

Prove that if V is finite-dimensional we have dim $W^{\perp} = \dim V - \dim W$.

- (e) Prove that for every homomorphism $f: V \to U$, we have $\operatorname{im}(f^*) \subset (\ker f)^{\perp}$. Deduce that if V is finite-dimensional, we have $\operatorname{rk} f^* \leq \operatorname{rk} f$.
- (f) Let $f : V \to U$ be a homomorphism of finite-dimensional \mathbb{F} -vector spaces. Prove that $\operatorname{rk} f^* = \operatorname{rk} f$, by using the double dual. (This gives a new proof of the equality of row and column rank.)

(g) Deduce that for every homomorphism of finite-dimensional vector spaces we have

	$\operatorname{im}(f^*) = (\mathbf{k}$	$(\operatorname{ker} f)^{\perp}$	•
--	--	----------------------------------	---