A few challenge problems

Problem 1. (0 points)
Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quadratic form, with associated matrix $A \in \operatorname{Sym}(n \times n, \mathbb{R})$. Prove that $x \in \mathbb{R}^{n}$ is an eigenvector for A if and only if x is a critical point for the distance from the origin on the hypersurface $q(x)=1$. Muse about the connection between eigenvalues and Lagrange multipliers.

Problem 2. (0 points)
Let $R \in S O(3)$. Prove that R is a rotation, as follows.
By considering the characteristic polynomial of R, and what we know about its constant term, use the intermediate value theorem to prove that 1 is a root of the characteristic polynomial, and hence R has a line L of fixed points. Prove that $R\left(L^{\perp}\right)=L^{\perp}$, and hence that R restricted to L^{\perp} is a 2 -dimensional rotation. This implies that R is a rotation about L.

Problem 3. (0 points)
Prove the SAS congruence theorem: let X be a Euclidean plane, i.e., an affine space for a 2-dimensional Euclidean vector space. Call two triangles (i.e., non-collinear triples of points) congruent, if there exists an isometry $\phi: X \rightarrow X$ mapping one triangle onto the other. Prove that if $d(A, B)=d\left(A^{\prime}, B^{\prime}\right), d(A, C)=d\left(A^{\prime}, C^{\prime}\right)$ and $\measuredangle(B A C)=\measuredangle\left(B^{\prime} A^{\prime} C^{\prime}\right)$, then the triangles (A, B, C) and $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ are congruent.

Problem 4. (0 points)
Let X be a Euclidean plane associated with the 2-dimensional Euclidean vector space E. Prove that every isometry $\phi: X \rightarrow X$ is either a translation, a rotation, or a glide reflection. A rotation of X is an isometry $\phi: X \rightarrow X$, such that there exists a point P_{0}, and an angle $\theta \in(0, \pi]$, such that for all $P \in X, P \neq P_{0}$, we have $\measuredangle\left(P P_{0} \phi(P)\right)=\theta$. A glide reflection of X is an isometry $\phi: X \rightarrow X$, such that there exists a line $L \subset X$, such that ϕ is the composition of a translation parallel to L, and a reflection across L.

Problem 5. (0 points)
Let $f: V \rightarrow W$ be an epimorphism of \mathbb{F}-vector spaces, and $g: V \rightarrow U$ an arbitrary homomorphispm of \mathbb{F}-vector spaces. Prove that the dotted arrow exists

making the diagram commute, if and only if $g(\operatorname{ker} f)=\{0\}$.

Problem 6. (0 points)
Let V be a vector space over the field \mathbb{F}. A linear form on V is a linear map $\psi: V \rightarrow \mathbb{F}$. The vector space of linear forms $\operatorname{Hom}(V, \mathbb{F})$ is called the dual space of V, denoted

$$
V^{*}=\operatorname{Hom}(V, \mathbb{F})
$$

(a) If $\operatorname{dim} V=n<\infty$, let $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Define linear forms $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ by the formula

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j} .
$$

Prove that $\mathcal{B}^{*}=\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ is a basis of V^{*}; it is called the dual basis of \mathcal{B}. Deduce that if V is finite-dimensional, $\operatorname{dim} V=\operatorname{dim} V^{*}$. (If $V=\mathbb{F}^{n}$, note that V is the space of column vectors of length n, and V^{*} is the space of row vectors of length n, because V^{*} is the space of $1 \times n$-matrices.)
(b) Let $f: V \rightarrow W$ be a linear map. We define the dual of f to be the linear map

$$
\begin{aligned}
f^{*}: W^{*} & \longrightarrow V^{*} \\
\psi & \longmapsto \psi \circ f .
\end{aligned}
$$

Prove that f^{*} is, indeed, linear. Prove that if \mathcal{B} is a basis of V and \mathcal{C} is a basis of W, then

$$
\left[f^{*}\right]_{\mathcal{B}^{*}}^{\mathcal{C}^{*}}=\left([f]_{\mathcal{C}}^{\mathcal{B}}\right)^{t}
$$

Prove that if $V \rightarrow W$ is an epimorphism, then $W^{*} \rightarrow V^{*}$ is a monomorphism. Prove that if V is finite-dimesional, and if $W \rightarrow V$ is a monomorphism, then $V^{*} \rightarrow W^{*}$ is an epimorphism.
(c) For any vector space V over \mathbb{F}, we have a canonical homomorphism (ev stands for 'evaluation homomorphism')

$$
\begin{aligned}
\mathrm{ev}: V & \longrightarrow V^{* *} \\
v & \longmapsto[\psi \mapsto \psi(v)] .
\end{aligned}
$$

Prove that ev is injective. Prove that ev is an isomorphism, if V is finitedimensional. (This is false if V is infinite-dimensional.) Deduce that if V and W are finite-dimensional, and $f: V \rightarrow W$ is a homomorphism, then $\mathrm{rk} f=\mathrm{rk} f^{* *}$.
(d) For a subspace $W \subset V$, we define

$$
W^{\perp}=\operatorname{ker}\left(V^{*} \rightarrow W^{*}\right)=\left\{\psi \in V^{*} \mid \forall w \in W: \psi(w)=0\right\}
$$

Prove that if V is finite-dimensional we have $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W$.
(e) Prove that for every homomorphism $f: V \rightarrow U$, we have $\operatorname{im}\left(f^{*}\right) \subset(\operatorname{ker} f)^{\perp}$. Deduce that if V is finite-dimensional, we have $\operatorname{rk} f^{*} \leq \operatorname{rk} f$.
(f) Let $f: V \rightarrow U$ be a homomorphism of finite-dimensional \mathbb{F}-vector spaces. Prove that rk $f^{*}=\mathrm{rk} f$, by using the double dual. (This gives a new proof of the equality of row and column rank.)
(g) Deduce that for every homomorphism of finite-dimensional vector spaces we have

$$
\operatorname{im}\left(f^{*}\right)=(\operatorname{ker} f)^{\perp} .
$$

