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Abstract. We construct an ℓ-adic formalism of derived categories for algebraic
stacks. Over finite fields we generalize the theory of mixed complexes to a theory
of so called convergent complexes. This leads to a proof of the Lefschetz Trace
Formula for the Frobenius.
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1. Introduction

Motivation. The present paper grew out of the desire to prove the following theorem,
conjectured in [3]

Theorem 1.0.1 (Lefschetz trace formula for stacks). Let X be a smooth algebraic
stack over the finite field Fq. Then

qdim X tr Φq|H∗(X,Qℓ) = #X(Fq). (1)

Here Φq is the (arithmetic) Frobenius acting on the ℓ-adic cohomology of X.

For example, if X = BGm, the classifying stack of the multiplicative group,
then dimBGm = −1 (since dividing the ‘point’ SpecFq of dimension 0 by the 1-
dimensional group Gm gives a quotient of dimension −1), and tr Φq|H2i(BGm,Qℓ) =
1
qi , (since the cohomology of BGm is the cohomology of the infinite-dimensional pro-

jective space). Thus the left hand side of (1) is

1

q

∞∑

i=0

1

qi
=

1

q − 1
.

On the right hand side we get the number of Fq-rational points of the stack X.
For the case of BGm this is the number of principal Gm-bundles over SpecFq (up
to isomorphism), or the number of line bundles over Spec Fq. Since all line bundles
over Spec Fq are trivial, there is only one isomorphism class in BGm(Fq). But the
number of automorphisms of the trivial line bundle is #Gm(Fq) = #F∗q = q− 1, and
to count points in the stack sense, we need to divide each point by the number of
its automorphisms. Thus the right hand side of (1) is 1

q−1 , also.

As so often in mathematics, it turns out the best way to prove Theorem 1.0.1 is to
generalize it. For example, we wish to stratify our stack X and deduce the theorem
for X from the theorem on the strata. This requires that we consider more general
coefficients than Qℓ (for example, the sheaves one gets by pushing forward Qℓ from
the strata). We will also want to perform various base changes, so we consider a
relative version of the theorem (for a morphism X → Y instead of just a stack X).
This all works very well, if one has a sufficiently flexible ℓ-adic formalism at ones
disposal. Constructing such a formalism occupied the main part of this paper.

There is a construction of a derived category of equivariant sheaves due to Bern-
stein and Lunts (see [5]). This is a topological analogue of a special case of our
derived category. (The equivariant case is the case of quotient stacks.) The simi-
larity can be seen from their Appendix B, where a description of their category is
given, which is formally close to our category.

We construct an ℓ-adic derived category for stacks, called D+
c (X,Qℓ), where c

stands for ‘constructible’ (we also have versions where c is replaced by m for
‘mixed’ and a for ‘(absolutely) convergent’). We also construct the beginnings of a
Grothendieck formalism of six operations, but we restrict ourselves to Rf∗, f

∗ and
Rf !, which are the three operations we need to prove the trace formula.

There are two main problems that one faces if one wants to construct such an ℓ-
adic formalism for stacks. First of all, there are the ‘topological’ problems, consisting
in finding the correct site (or topos) with respect to which one defines higher direct
images Rf∗ and pullbacks f∗ and f !. The étale topos is certainly too coarse. The
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second problem is an ℓ-adic problem dealing with defining a well-behaved ℓ-adic
formalism for unbounded complexes.

Let us describe these problems in more detail.

Topological Problems. We need a cohomological formalism for constructible torsion
sheaves. Let A′ be a ring whose characteristic is invertible on all algebraic stacks
in question. Let X be an algebraic stack. Then we have the category Mod(Xét, A

′)
of étale sheaves of A′-modules on X. We wish this category to be the category of
coefficient sheaves. Now for algebraic stacks the étale topology is not fine enough to
compute the correct cohomology groups of such a sheaf F ∈ ob Mod(Xét, A

′). If, for
example, G is a connected algebraic group and X = BG is the classifying stack of
G, then BGét = Sét, where S is the base we are working over (see Corollary 5.2.10).
The stack BGm, for example, should have the cohomology of the infinite dimensional
projective space, but from the étale point of view BGm looks like a point. This leads
us to consider the smooth topology Xsm on the stack X. We use the smooth topology
to compute cohomology of étale coefficient sheaves. Thus we are dealing with a pair
of topoi (or sites) (Xsm,Xét). Since this situation arises in other contexts as well, we
formalize it axiomatically. We call such pairs of topoi c-topoi (see Section 4.4).

Thus we consider the derived category D(Xsm, A
′) of the category of smooth

sheaves of A′-modules and pass to the subcategory Dét(Xsm, A
′), defined by requiring

the cohomology sheaves to be étale. This gives rise to the definition of Rf∗ :
D+

ét (Xsm, A
′) → D+

ét (Ysm, A
′), for a morphism of algebraic stacks f : X → Y. If

X = X is a scheme, then we have D+
ét (Xsm, A

′) = D+(Xét, A
′) (Proposition 4.4.11).

One of the problems with the smooth topology is the correct choice of a site
defining it. Since all the problems arise already for schemes, let X be a scheme.
One possible definition of a smooth site would be to take all smooth X-schemes
with smooth morphisms between them. The problem with this definition is that
products in this category are not what they should be, if they even exist at all.
(For a smooth morphism to have a smooth diagonal it has to be étale.) This means
that it is not clear why a morphism f : X → Y of schemes should even induce a
continuous functor f∗ of these corresponding sites.

On the other hand, there is the big smooth site. None of the ‘topological’ difficul-
ties arise in this context, but unfortunately, the direct image functor is not compat-
ible with the étale direct image. It is easy to construct a morphism f : X → Y of
schemes and an étale sheaf F on X, such that f∗F (with respect to the big smooth
site) is not étale. So using the big smooth site would not generalize the étale theory
for schemes.

So one is forced to use the intermediate notion, where we require objects of
the smooth site to smooth over X, but let morphisms be arbitrary. This has the
unpleasant side effect that this construction does not commute with localization.
For every algebraic stack we get a whole collection of relative smooth sites (see
Section 5.3). A more serious drawback is that, even though f∗ is continuous, it is not
exact. Thus f : X → Y does not induce a morphism of the induced smooth topoi,
only what we call a pseudo-morphism of topoi (see Remark 4.4.1). Typical counter-
examples are closed immersions (see Warning 5.3.12). So the smooth approach does
not give rise to a definition of pullback functors f∗.

This phenomenon necessitates a second approach, the simplicial one. We choose
a presentation X → X of our algebraic stack X which gives rise to a groupoid
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X1 ⇉ X0, where X0 = X and X1 = X ×X X. Setting Xp = X ×X . . .×X X︸ ︷︷ ︸
p+1

defines a simplicial scheme X•, which has a category of étale sheaves top(X• ét)
associated with it. Again, this gives rise to a c-topos (top(X• ét),Xét). As above,
we consider the derived category D(X•ét, A

′) with the corresponding subcategory
Dcart(X• ét, A

′), defined by requiring the cohomology sheaves to be cartesian. (Note
that Xét is the category of cartesian objects of top(X• ét).) The miracle is that
D+

cart(X• ét, A
′) = D+

ét (Xsm, A
′) (see Proposition 4.6.4).

So we can use D+
cart(X• ét, A

′) to define f∗ and D+
ét (Xsm, A

′) to define Rf∗. Another
miracle is that the functors thus obtained are adjoints of each other. This is due
to the fact that there is just enough overlap between the two approaches. The
simplicial approach works also for Rf∗ for representable morphisms, whereas the
smooth approach works for f∗ if f is smooth. These two cases are essentially all
that is needed by a devissage lemma (Proposition 5.1.16).

ℓ-adic Problems. Now let A be a discrete valuation ring (like Zℓ), whose residue
characteristic is invertible on all algebraic stacks we consider. Denote a generator
of the maximal ideal of A by ℓ. Then to define an ℓ-adic derived category of schemes
one defines (see Proposition 2.2.15 of [4]) Db

c(Xét, A) = lim
←−
n

Db
ctf(Xét, A/ℓ

n+1). This

approach depends crucially on the fact that the complexes involved are bounded.
But in dealing with algebraic stacks we cannot make this convenient restriction.
As noted above, the cohomology of BGm is a polynomial ring in one variable, thus
represented by an unbounded complex. This is why we have to use a different
approach.

(Another ℓ-adic formalism is constructed in [11]. But although a triangulated
category of unbounded complexes is defined, boundedness is assumed to prove the
existence of a t-structure on this triangulated category.)

Overview. We describe our ℓ-adic formalism in Section 2. It uses only results from
[13, Exp. V]. The main idea is to construct our derived category Dc(Xsm, A) as an
inductive limit over the categories D(S,L)(Xsm, A). Here the subscript (S,L) denotes
what we call an L-stratification (Definition 3.2.4) of Xét. Here S is a stratification
of Xét and L associates to every stratum V ∈ S a finite set L(V) of locally constant
constructible sheaves of A-modules on Vét. We require objects of D(S,L)(Xsm, A)
to have (S,L)-constructible cohomology sheaves. The key fact is that the category
Mod(S,L)(Xét, A) of (S,L)-constructible sheaves of A-modules on Xét is finite, i.e.
noetherian and artinian. (To be precise, this would be true for S-constructibility,
already. The L-part is introduced to deal with higher direct images.)

Section 3 introduces the formalism needed to deal with L-stratifications. We in-
troduce what we call a d-structure. This just formalizes the situation of a noetherian
topological space X and its locally closed subspaces, where one has the functors i∗,
i∗, i

! and i! between the derived categories on the various locally closed subspaces of
X. A cd-structure gives the additional data required to introduce L-stratifications.

In Section 4 we apply our ℓ-adic formalism to c-topoi. We reach the central Def-
inition 4.4.15 of the category of constructible A-complexes on a c-topos X in Sec-
tion 4.4. An important role is also played by Proposition 4.5.9, where d-structures,
c-topoi and our ℓ-adic formalism come together, giving rise to an ℓ-adic d-structure
on a noetherian c-topos.
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In Section 5 we apply our results to algebraic stacks. Our central object of study,
Dc(Xsm, A), is introduced in Remark 5.3.8. The technical heart of this work is con-
tained in Sections 5.5, 5.6 and 5.7. Our main result is summarized in Remark 5.7.15.
In Section 5.8 we go slightly beyond the two operations f∗ and Rf∗, by defining Rf !

for certain kinds of representable morphisms of algebraic stacks (essentially smooth
morphisms and closed immersions).

Finally, in Section 6, we consider the case of finite ground field Fq. Our goal is

to generalize the triangulated category Db
m(Xét,Qℓ) of bounded mixed complexes

on a scheme X to the case of algebraic stacks. We introduce (Definition 6.3.4) the
category D+

m(Xsm,Qℓ), which is obtained form D+
c (Xsm,Qℓ) by requiring cohomology

objects to be mixed. This concept behaves well with respect to the three operations
f∗, Rf∗ and Rf !.

But to define the trace of Frobenius on mixed objects we need a further restriction.
We pass to D+

a (Xsm,Qℓ), the subcategory of D+
m(Xsm,Qℓ) consisting of absolutely

convergent objects. Roughly speaking, an object M ∈ ob D+
m(Xsm,Qℓ) is absolutely

convergent, if for every finite field Fqn and every morphism x : SpecFqn → X, the

trace of the arithmetic Frobenius
∑

i(−1)i tr Φq|hi(Rx!M) is absolutely convergent,
no matter how we embed Qℓ into C. We show that the triangulated categories
D+

a (Xsm, A) are stable under the two operations Rf∗ and Rf !. The question of
stability under f∗ remains open.

In the final section (Section 6.4) we show that our formalism of convergent com-
plexes is rich enough to prove the general Lefschetz Trace Formula for the arithmetic
Frobenius on algebraic stacks. Our main result is given in Definition 6.4.4 and The-
orem 6.4.9. As Corollary 6.4.10 we get the result we conjectured in [3]. To finish,
we give a rather interesting example, due to P. Deligne. We show how our trace
formula applied to the stack M1 of curves of genus one, may be interpreted as a
type of Selberg Trace Formula. It gives the sum

∑
k

1
pk+1 trTp|Sk+2, where Tp is the

pth Hecke operator on the space of cusp forms of weight k + 2, in terms of elliptic
curves over the finite field Fp.

Notations and Conventions. Our reference for algebraic stacks is [16]. We always
assume all algebraic stacks to be locally noetherian, in particular quasi-separated.
Stacks will usually be denoted by German letters X, Y etc., whereas for spaces we
use Roman letters X, Y etc. A gerbe X/X is called neutral, if it has a section, i.e.
if it is isomorphic to B(G/X), for some relative algebraic space of groups G/X.
For a group scheme G, we denote by G◦ its connected component of the identity.
Presentations X → X of an algebraic stack X are always smooth, and of finite type if
X is of finite type. For an algebraic stack X we denote by |X| the set of isomorphism
classes of points of X. We consider |X| as a topological space with respect to the
Zariski topology.

If I is a category, we denote by ob I the objects, by fl I the arrows in I and by I◦

the dual category. A box in a commutative diagram denotes a cartesian diagram.
The natural numbers start with zero. N = {0, 1, 2, . . . }.

Acknowledgment. I would like to thank Prof. P. Deligne for encouraging me to
undertake this work and for pointing out the example of Section 6.4 to me.
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2. The ℓ-adic Formalism

2.1. Quotients of t-Categories. For the definition of t-categories we refer to [4,
1.3]. Roughly speaking, a t-category is a triangulated category D, having, for every
i ∈ Z, truncation functors τ≤i and τ≥i and cohomology functors hi : D → C, where
C is the heart of D, which is an abelian subcategory of D. We will discuss methods
of constructing sub- and quotient-t-categories of a given t-category D.

Let D be a t-category with heart C. Let hi : D → C denote the associated
cohomology functors.

First, we will construct t-subcategories of D.

Lemma 2.1.1. Let C′ be a full non-empty subcategory of C. Then the following are
equivalent.

i. The category C′ is abelian and closed under extensions in C. The inclusion
functor C′ → C is exact.

ii. The category C′ is closed under kernels cokernels and extensions in C.
iii. If

A1
f−→ A2 −→ A3 −→ A4

g−→ A5

is an exact sequence in C and A1, A2, A4 and A5 are in C′, then so is A3.

Proof. Considering the exact sequence

0 −→ cok f −→ A3 −→ ker g −→ 0

this is immediate. 2

Definition 2.1.2. We call a subcategory C′ of C closed if it is a full non-empty
subcategory satisfying any of the conditions of Lemma 2.1.1.

Now let C′ be a closed subcategory of C. We may define the full subcategory
D′ of D by requiring an object M of D to be in D′, if for every i ∈ Z the object
hiM of C is contained in C′. Then using the above lemma it is an easy exercise to
prove that D′ is a triangulated subcategory of D. One defines a triangle in D′ to be
distinguished if it is distinguished as a triangle in D. It is just as immediate (see
also [4, 1.3.19]) that we get an induced t-structure on D′ as follows. If (D≤0,D≥0)
is the t-structure on D, then (D′ ∩D≤0,D′ ∩D≥0) is the induced t-structure on D′.
The truncation and cohomology functors are obtained by restricting from D to D′.
The heart of D′ is D′ ∩ C, which is equal to C′. So we have proved

Proposition 2.1.3. The category D′ is a t-category with heart C′. The inclusion
functor D′ → D is exact. If D is non-degenerate, then so is D′.

We now consider the case of quotients of D. For this construction we need a thick
subcategory C′ of C. This means that C′ is a non-empty full subcategory satisfying
the following condition. Whenever

0 −→ A′ −→ A −→ A′′ −→ 0

is a short exact sequence in C, then A is in C′ if and only if A′ and A′′ are. Note
that this condition implies that C′ is closed in C. Thus the above construction can
be carried out and we get a t-subcategory D′ of D with heart C′. Note that D′
satisfies the following condition. If M → N is a morphism in D whose cone is in
D′ and which factors through an object of D′, then M and N are in D′. In other
words, D′ is a thick subcategory of D.
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Proposition 2.1.4. The quotient category D/D′ is in a natural way a t-category
with heart C/C′. The quotient functor D → D/D′ is exact. If D is non-degenerate,
then so is D/D′.

Proof. We define a morphism A → B in C to be an isomorphism modulo C′ if its
kernel and cokernel are in C′. The category C/C′ is endowed with a functor C → C/C′
that turns every isomorphism modulo C′ into an isomorphism. Moreover, C/C′ is
universal with this property.

Call a morphism M → N in D a quasi-isomorphism modulo C′ if for every i ∈ Z

the homomorphism hiM → hiN is an isomorphism modulo C′. Note that M → N
is a quasi-isomorphism modulo C′ if and only if the cone of M → N is in D′. This
proves that the quasi-isomorphisms modulo C′ form a multiplicative system and the
category D/D′ is the universal category turning the quasi-isomorphisms modulo C′
into isomorphisms. It is standard (see for example [14]) that D/D′ is a triangulated
category if we call a triangle in D/D′ distinguished if it is isomorphic to the image
of a distinguished triangle in D.

If (D≤0,D≥0) defines the t-structure on D, then the essential images of D≤0

and D≥0 in D/D′ define a t-structure on D/D′ whose associated truncation and
cohomology functors are obtained from the corresponding functors for D through
factorization. It is not difficult to prove that the inclusion C → D factors to give a
functor C/C′ → D/D′ that identifies C/C′ as the heart of the t-structure on D/D′. 2

Remark 2.1.5. Let D1 and D2 be t-categories with hearts C1 and C2, respectively.
Let C′1 and C′2 be thick subcategories of C1 and C2, giving rise to thick subcategories
D′1 and D′2 as above. Let F : D1 → D2 be an exact functor. If F maps D′1 to D′2,
then F induces a functor F̃ : D1/D′1 → D2/D′2. If F has a left adjoint G : D2 → D1

mapping D′2 to D′1, then G̃ : D2/D′2 → D1/D′1 is a left adjoint of F̃ .

Remark 2.1.6. Clearly, the constructions of Propositions 2.1.3 and 2.1.4 commute
with passage to D+, D− or Db.

2.2. ℓ-Adic Derived Categories. Using results from [13, Exp. V] we will develop
an ℓ-adic formalism as follows.

Let A be a discrete valuation ring and l the maximal ideal of A. Let ℓ be a
generator of l. For n ∈ N we denote A/ln+1 by Λn. For an abelian A-category A

we denote by An the category of (Λn,A)-modules. In other words, An is the full

subcategory of A consisting of those objects on which ℓn+1 acts as zero. By Ã we
denote the category of projective systems (Mn)n∈N in A such that Mn ∈ An for

every n ∈ N. The categories Ã and An are abelian. The nth component functor
an : Ã→ An is exact.

By construction, for m ≥ n, the category An is naturally a subcategory of Am.
This inclusion has a left adjoint Am → An, which we denote by M 7→M ⊗ Λn. We
may define M ⊗ Λn = M/ℓn+1M .

We say that an object (Mn)n∈N of Ã is ℓ-adic, if for every m ≥ n the morphism
Mm ⊗ Λn →Mn (which is given by adjunction) is an isomorphism. We denote the

full subcategory of ℓ-adic projective systems in A by Ãℓ.
An object M = (Mn)n∈N of Ã is called AR-null if there exists an integer r such

that Mn+r → Mn is the zero map for every n ∈ N. We say that a homomorphism
φ : M → N in Ã is an AR-isomorphism if ker φ and cokφ are AR-null. An object M
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of Ã is called AR-ℓ-adic, if there exists an ℓ-adic object F and an AR-isomorphism
φ : F →M . The symbol ÃAR-ℓ denotes the category of AR-ℓ-adic objects in Ã.

Some important properties of ℓ-adic objects with respect to AR-isomorphisms
are the following:

Lemma 2.2.1. Let α : M ′ → M be an AR-isomorphism in Ã, where M is ℓ-adic.
Then α has a section.

Lemma 2.2.2. Let α : F → M be an AR-isomorphism in Ã, with F being ℓ-adic.
Then there exists an r ≥ 0 such that Fn is a direct summand of Mn+r ⊗ Λn for
every n.

Proof. This follows from the fact that an AR-isomorphism gives rise to an isomor-
phism in the category of projective systems modulo translation. 2

Now let Ac ⊂ A be a finite subcategory, closed in A. This means (Definition 2.1.2)
that Ac is a full subcategory closed under kernels, cokernels and extensions in A,
such that every object of Ac is noetherian and artinian. For n ∈ N, we let An

c be

the intersection of An and Ac. Moreover, Ãc will denote the full subcategory of Ã

consisting of those projective systems each of whose components is in Ac. It is clear
that Ãc is closed in Ã. The symbols Ãℓ,c and ÃAR-ℓ,c denote the categories of ℓ-adic

and AR-ℓ-adic systems in Ãc, respectively.

Lemma 2.2.3. Let α : F →M be an AR-isomorphism in Ã, where F is ℓ-adic. If
M is in Ãc, then so is F .

Proof. Choose r as in Lemma 2.2.2. Then if Mn+r is in Ac, so is Mn+r ⊗Λn, as the
cokernel of multiplication by ℓn+1. Then Fn is also in Ac as a direct summand. 2

Proposition 2.2.4. The category ÃAR-ℓ,c is closed in Ã. In particular, it is an
abelian category.

Proof. Let α : M → N be a homomorphism in the category ÃAR-ℓ,c. Then kerα and

cokα are in Ãc. We would like to show that they are AR-ℓ-adic. But this follows
from Proposition 5.2.1 of [13, Exp. V] applied to the category C = Ac.

Now let M and N be objects of ÃAR-ℓ,c and let

0 −→M −→ E −→ N −→ 0

be an extension of N by M in Ã. Since E is then also in Ãc, applying Corollaire 5.2.5
of [loc. cit.] to C = Ac, we see that E is in fact AR-l-adic. 2

We may now carry out the construction of Proposition 2.1.3, using the subcate-
gory ÃAR-ℓ,c of Ã. We get a sub-t-category of the derived category D(Ã), which we

shall denote by DAR-ℓ,c(Ã).

We shall now construct a certain quotient of DAR-ℓ,c(Ã).

Proposition 2.2.5. The objects of ÃAR-ℓ,c that are AR-null form a thick subcate-
gory.

Proof. This is clear. See also [13, Exp. V, Proposition 2.2.2]. 2

Thus we may apply Proposition 2.1.4 to our situation. We denote the quotient of
ÃAR-ℓ,c modulo the AR-null sheaves by AR-ÃAR-ℓ,c. Thus AR-ÃAR-ℓ,c is obtained

by inverting the AR-isomorphisms in ÃAR-ℓ,c. We call a morphism M → N in
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DAR-ℓ,c(Ã) a quasi-AR-isomorphism if the induced map hiM → hiN is an AR-

isomorphism for every i ∈ Z. The triangulated category obtained from DAR-ℓ,c(Ã)

by inverting the quasi-AR-isomorphisms will be denoted by AR-DAR-ℓ,c(Ã).

Proposition 2.2.6. The natural functor Ãℓ,c → AR-ÃAR-ℓ,c is an equivalence of
categories.

Proof. This is easily proved using Lemma 2.2.1 and Lemma 2.2.3. 2

We will use the functor of Proposition 2.2.6 to identify the two categories Ãℓ,c

and AR-ÃAR-ℓ,c. For brevity we will denote the t-category AR-DAR-ℓ,c(Ã) by Dc(A).

Thus Dc(A) is an A-t-category with heart Ãℓ,c.
As an example, let us assume that A has finite residue field and let us consider

the category A = Mod(A) of A-modules. Then Mod(A)n is the category of Λn-
modules. As finite subcategory, closed in Mod(A) we take the category Modc(A)

of finite A-modules. By Modℓ,c(A) ˜ we denote the category of ℓ-adic systems of
finite A-modules.

Proposition 2.2.7. Let Â be the ℓ-adic completion of A. There is an equivalence
of categories

Modℓ,c(A) ˜ −→ Modfg(Â),

where Modfg(Â) is the category of finitely generated Â-modules.

Proof. We may define this equivalence by (Mn)n 7→ lim
←−
n

Mn. An inverse is given by

M 7→ (M ⊗ Λn)n. 2

In this situation, we denote the t-category Dc(Mod(A)) by Dc(A). So Dc(A) is a

t-category with heart Modfg(Â).

Proposition 2.2.8. The category Dc(A) is naturally equivalent to Dfg(Â), the sub-

category of the derived category of Mod(Â) consisting of complexes whose cohomol-

ogy is finitely generated over Â.

Proof. This is a straightforward exercise deriving the two functors (Mn)n 7→ lim
←−
n

Mn

and M 7→ (M ⊗ Λn)n between the categories Mod(A) ˜ and Mod(Â). 2

Functoriality. Let A and B be abelian A-categories and let F : A → B be an A-
linear functor. Then for every n ∈ N there is an induced functor Fn : An → Bn and

thus an induced functor F̃ : Ã → B̃. Any exactness properties of F carry over to

Fn and F̃ .
If A has sufficiently many injectives, then so does An, for every n. This is easily

seen by noticing that if I is an injective object of A, then the kernel of the action
of ℓn+1 on I is injective in An.

Lemma 2.2.9. If A has sufficient injectives then so does Ã.

Proof. Choose for every n ∈ N an injective object In of An. Then define Jn =
I1 × . . . × In and Jm → Jn for m ≥ n to be the projection onto the first n factors.
Then (Jn)n∈N is an injective object of Ã, and every object of Ã admits an injection
into an object of this type. 2
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Assume now that A has enough injectives and that F is left exact. Then the
right derived functor RF : D+(A) → D+(B) exists. By the above remarks, we
also have the existence of the right derived functors RFn : D+(An) → D+(Bn)

and RF̃ : D+(Ã) → D+(B̃). Let us assume that RF commutes with restriction of
scalars, i.e. that for every n ∈ N the commutative diagram

An −→ A

F n ↓ ↓ F

Bn −→ B

derives to give a commutative diagram

D+(An) −→ D+(A)
RF n ↓ ↓ RF

D+(Bn) −→ D+(B).

It is easily seen that we then also get commutative diagrams

D+(Ã)
an−→ D+(An)

R eF ↓ RF n ↓
D+(B̃)

bn−→ D+(Bn),

for every n ∈ N.
Now assume furthermore that Ac and Bc are finite closed subcategories of A and

B. The following result is essentially proved in [13, Exp. V].

Lemma 2.2.10. If the derived functors RiF : A → B map Ac into Bc, then RF̃
maps D+

AR-ℓ,c(Ã) into D+
AR-ℓ,c(B̃).

Proof. First note that for any object M of D+(Ã) we have an E2-spectral sequence

RiF̃ (hjM) =⇒ hi+j(RF̃ (M)) (2)

in the abelian category B̃. So it suffices to prove that if M = (Mn)n∈N is an

object of ÃAR-ℓ,c, then the higher direct images RiF̃ M are in B̃AR-ℓ,c. But we

have (RiF̃ M)n = RiF Mn by the above commutative diagrams. By assumption,
RiF Mn is in Bc.

We also have an exact A-linear δ-functor (RiF )i from Ac to Bc. If R is a finitely
generated graded Λ0-algebra then any functor from Ac to Bc takes the category of
graded noetherian (R,Ac)-modules into the category of graded noetherian (R,Bc)-
modules. By this fact Proposition 5.3.1 of [13, Exp. V] applies to the δ-functor
(RiF ) : Ac → Bc. Thus (RiF Mn)n is AR-ℓ-adic. 2

Corollary 2.2.11. Assume that the derived functors RiF : A → B map Ac into
Bc. Then we get an induced left t-exact functor RF : D+

c (A) → D+
c (B). For i ≥ 0

let us denote the induced functor hiRF : Aℓ,c → Bℓ,c by RiF . We have for every i a
commutative diagram

ÃAR-ℓ,c
Ri eF−→ B̃AR-ℓ,c

↓ ↓
Ãℓ,c

RiF−→ B̃ℓ,c.

For every M ∈ ob D+
c (A) there is an E2-spectral sequence

RiF (hjM) =⇒ hi+jRF (M)
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in the abelian category Bℓ,c.

Proof. First we need to show that if M → N is a quasi-AR-isomorphism in

D+
AR-ℓ,c(Ã) then RF̃M → RF̃N is quasi-AR-isomorphism in D+

AR-ℓ,c(B̃). Using

the spectral sequence (2) we reduce to proving that if M is an AR-zero object of Ã,

then RiF̃ (M) is AR-zero, for all i ≥ 0. But this is clear. The other claims are now
also clear. 2

3. Stratifications

The following concepts are introduced in [4], although without giving them names.

3.1. d-Structures. For the basic definitions and constructions concerning fibered
categories see [12, Exp. VI]. Let us fix a ring A. For a topological space X, let lc(X)
denote the set of locally closed subsets of X, considered as a category with respect
to inclusion. For an object of lc(X), we sometimes denote the morphism V → X
by jV .

Definition 3.1.1. Let X be a noetherian topological space. A stratification S of
X is a finite number of locally closed nonempty subsets of X, called the strata, such
that X is the disjoint union of S, and such that the closure of each stratum is the
union of strata.

Note that this definition implies that each stratum is open it its closure. Note
also that every decomposition of X into finitely many locally closed subsets may be
refined to a stratification. The pullback of a stratification by a continuous map is a
stratification.

Definition 3.1.2. Let X be a noetherian topological space. An A-d-structure on
X (or just a d-structure) is a category D, fibered over lc(X), such that

i. For every V ∈ ob lc(X) the fiber D(V ) is an A-t-category and D(∅) = 0. All
pullback functors are exact and A-linear.

ii. If i : V → W is a closed immersion in lc(X), then any pullback functor i∗ :
D(W ) → D(V ) has an exact A-linear right adjoint i∗, which has an exact
A-linear right adjoint i!. The functor i∗ is fully faithful and t-exact.

iii. If j : V → W is an open immersion in lc(X), then any pullback functor j∗ :
D(W )→ D(V ) has an exact A-linear left adjoint j! and an exact A-linear right
adjoint j∗. The functors j! and j∗ are fully faithful and j∗ is t-exact.

iv. If V ∈ ob lc(X) is the disjoint union of U and Z, where j : U → V is an open
immersion and i : Z → V is a closed immersion, then j∗i∗ = 0. For any M ∈
obD(V ) there exist homomorphisms i∗i

∗M → j!j
∗M [1] and j∗j

∗M → i∗i
!M [1]

such that
i∗i
∗M

ւ տ
j!j
∗M −→ M

and
j∗j
∗M

ւ տ
i∗i

!M −→ M

are distinguished triangles in D(V ).
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For some elementary facts implied by these axioms, see Section 1.4 of [4]. Note
that every locally closed subspace of X is naturally endowed with an induced d-
structure. Whenever k : V → W is a morphism in lc(X), we have naturally two
pairs of adjoint functors (k∗, k∗) and (k!, k

!) between D(V ) and D(W ). If k is a
closed immersion we have k∗ = k!, if k is an open immersion we have k∗ = k!.

Remark 3.1.3. Of course, we may also define a d-structure on X as a fibered
category over lc(X)◦, the dual category of lc(X), using the pushforward functors
to define the fibered structure. In this case, we denote for k : V → W in fl lc(X)
the pullback functor by k∗. It is clear how the above axioms can be adapted to this
case.

Reversing all arrows, we return to the category lc(X), but pass to the dual cat-
egory of each fiber D(V )◦. Then the pushforward functors k∗ define a co-fibered
category over lc(X). Then the existence of the left adjoints k∗ (which are now ac-
tually right adjoints) shows that V 7→ D(V )◦ is also fibered over lc(X). In other
words, we have a bi-fibered category V 7→ D(V )◦ over lc(X). Of course, the above
axioms may also be adapted to this viewpoint.

Let f0 : X → Y be a continuous map of noetherian topological spaces with
A-d-structures DX and DY . The map f0 induces a functor f−1

0 : lc(Y ) → lc(X)

preserving open and closed immersions. Via f−1
0 we may pull back the d-structure

DX on X and get a category (f−1
0 )∗DX , fibered over lc(Y ).

Definition 3.1.4. A morphism f : DX → DY of d-structures (covering f0) is a
cartesian lc(Y )-functor f∗ : DY → (f−1

0 )∗DX , such that

i. For every V ∈ ob lc(Y ) the fiber functor f∗ : D(V ) → D(f−1
0 V ) is A-linear,

right t-exact and admits an exact A-linear right adjoint f∗ : D(f−1
0 V )→ D(V ).

ii. If j : V → W is an open immersion in lc(Y ) and M ∈ obD(f−1
0 W ) then the

natural homomorphism j∗f∗M → f∗j
∗M in D(V ) is an isomorphism.

Whenever k : V →W is a morphism in lc(X), then k induces in an obvious way
a morphism of d-structures k : DV → DW , where DV and DW are the d-structures
induced by D on V and W , respectively. Moreover, if f : X → Y is a morphism of
d-structures, and V ∈ ob lc(X) and W ∈ ob lc(Y ) are such that f0(V ) ⊂ W , then
we can construct an induced morphism of d-structures f : V → W , where V and
W are endowed with the induced d-structures.

3.2. cd-Structures.

Definition 3.2.1. Let X be a noetherian topological space. A cd-structure on X
is a d-structure D on X endowed with a full fibered subcategory Dlcc, such that for
every V ∈ ob lc(X) the subcategory Dlcc(V ) of D(V ) satisfies

i. Let C(V ) be the heart of D(V ) and Clcc(V ) = Dlcc ∩ C(V ). Then Clcc(V ) is a
finite closed subcategory of C(V ).

ii. If M ∈ obD(V ) and for all i ∈ Z we have hiM ∈ obClcc(V ), then M ∈
obDlcc(V ).

iii. We have Dlcc(V ) = D+
lcc(V ), i.e. for every M ∈ obDlcc(V ) it holds that hiM =

0, for all i≪ 0.

If X is a noetherian topological space with a cd-structure Dlcc ⊂ D, then every
locally closed subspace of X naturally inherits an induced cd-structure.
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Definition 3.2.2. A pre-L-stratification of X is a pair (S,L), where S is a strat-
ification of X and L assigns to every stratum V ∈ S a finite set L(V ) of simple
objects of Clcc(V ).

An object M ∈ obD(X) is called (S,L)-constructible, if for every V ∈ S and
every i ∈ Z we have that hi(j∗V M) is an object of Clcc(V ), whose Jordan-Hölder
components are isomorphic to elements of L(V ).

An objectM ∈ obD(X) is called constructible, if there exists a pre-L-stratification
(S,L) of X such that M is (S,L)-constructible. In this case we also say that the
pre-L-stratification (S,L) trivializes M .

Let Dc(X) be the full subcategory of D(X) consisting of constructible objects.
Clearly, Dc(X) is an A-t-category.

Definition 3.2.3. The cd-structure Dlcc ⊂ D on X is called tractable, if for any
open immersion j : V → W in lc(X) any pushforward j∗ : D(V ) → D(W ) takes
constructible objects to constructible objects.

Note that for every object V of lc(X) the induced cd-structure on V is tractable,
if the given cd-structure on X is tractable.

Definition 3.2.4. Let Dlcc ⊂ D be a tractable cd-structure on X. We call a pre-
L-stratification (S,L) an L-stratification, if for any V ∈ S and any L ∈ L(V ) the
pushforward jV ∗L is (S,L)-constructible.

For the following considerations, let us fix a tractable cd-structure on X.

Definition 3.2.5. Let (S,L) and (S ′,L′) be pre-L-stratifications ofX. We say that
(S ′,L′) is a refinement of (S,L) if S ′ is a refinement of S and for every stratum
V ∈ S, every L ∈ L(V ) is trivialized by (S ′,L′)|V .

Lemma 3.2.6. Every pre-L-stratification may be refined to an L-stratification.

Proof. Let (S,L) be a pre-L-stratification of X. The set of open subsets U of X
such that (S,L)|U can be refined to an L-stratification is non-empty. This follows
by considering an open stratum. Since X is noetherian, there exists thus a maximal
open subset U of X such that (S,L) can be refined to an L-stratification over U . So
let (S ′,L′) be an L-stratification of U refining (S,L)|U . Let Z = X − U . If Z 6= ∅

there exists a non-empty open subset V ⊂ Z such that

i. jW ∗L|V is lcc for every inclusion jW of a stratum W of S ′ into X and every L
in L′(W ).

ii. If W ⊂ U is a stratum of S ′, then the closure W of W in X either contains V
or does not intersect V .

iii. V is contained in a stratum of S.

Then U ∪ V is an open subset of X over which (S,L) can be refined to an L-
stratification. This contradiction implies that U = X. 2

Lemma 3.2.7. Let (S,L) be an L-stratification. Let k : V →W be a morphism in
lc(X), where both V and W are the union of strata from S. Then k∗, k∗, k

! and k!

preserve (S,L)-constructability.

Proof. Let us first deal with k∗. We easily reduce to the case that W = X. If V
consists of more than one stratum we may write V as a disjoint union V = U ∩ Z,
where i : Z → V is a closed and j : U → V an open immersion. Using induction on
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the number of strata V consists of, we may assume that our claim holds for (ki)∗,
(kj)∗ and j∗. If M ∈ obD(V ) is (S,L)-constructible, then so is j∗j

∗M and hence
i∗i

!M and i∗i∗i
!M = i!M . Thus (ki)∗i

!M and (kj)∗j
∗M are (S,L)-constructible,

which implies that k∗M is (S,L)-constructible, which is what we wanted to prove.
It remains to treat the case that V consists of one stratum. So let M ∈ obD(V )
be (S,L)-constructible. Since hiM = 0 for i ≪ 0 we reduce to the case that
M ∈ obClcc(V ). An easy induction on the length of M finishes the proof.

The case of k! follows from the case of k∗. The cases k! and k∗ are trivial. 2

Lemma 3.2.8. Let (S,L) be an L-stratification. An object M ∈ obD(X) is (S,L)-
constructible, if and only if for every V ∈ S and every i ∈ Z we have that hi(j!VM) is
an object of Clcc(V ), whose Jordan-Hölder components are isomorphic to elements
of L(V ).

Proof. The ‘only if’ part was proved in Lemma 3.2.7. So assume now that hij!VM
has Jordan-Hölder components in L(V ) for all V ∈ S and i ∈ Z. Let us prove that
M is (S,L)-constructible by induction on the number of strata in S. The case of
one stratum being trivial, let us assume that S contains more than one stratum.
Thus we may decompose X into a disjoint union X = U ∪ Z, where U and Z are
unions of strata in S and i : Z → X is a closed and j : U → X an open immersion.
We may assume that the lemma holds for U and Z. Hence i!M and j∗M are (S,L)-
constructible. By Lemma 3.2.7, i∗i

!M and j∗j
∗M are (S,L)-constructible, hence

M is. 2

Definition 3.2.9. Let f : X → Y be a morphism of d-structures DX and DY .
Assume that DX and DY are endowed with cd-structures Dlcc,X and Dlcc,Y . The
morphism f is called a morphism of cd-structures, if the cartesian lc(Y )-functor
f∗ : DY → (f−1

0 )∗DX maps Dlcc,Y to (f−1
0 )∗Dlcc,X .

Definition 3.2.10. Let X and Y be endowed with tractable cd-structures and
let f : X → Y be a morphism of cd-structures. We say that f is tractable, if any
pushforward functor f∗ : D(X)→ D(Y ) maps constructible objects to constructible
objects.

For example, any morphism k : V → W in lc(X), where X is a cd-structure,
gives rise to a morphism of the induced cd-structures in a natural manner. If X is
tractable, then the morphism of cd-structures k : V →W is tractable.

Let f : X → Y be a morphism of cd-structures. If V ∈ ob lc(X) andW ∈ ob lc(Y )
are such that f0(V ) ⊂W , then the induced morphism of d-structures f : V →W is a
morphism of cd-structures. Now assume that f : X → Y is tractable (which implies
by definition thatX and Y are tractable). LetW ∈ ob lc(Y ). Then any pushforward
functor f∗ : D(f−1

0 W )→ D(W ) maps constructible objects to constructible objects.

This is because we may write f∗M = j!W f∗jf−1
0 W ∗

M , for M ∈ obD(f−1
0 W ). In

particular, if we have V ∈ ob lc(X) and W ∈ ob lc(Y ) such that f0(V ) ⊂ W , then
the induced morphism of cd-structures f : V →W is tractable.

Obviously, a composition of tractable morphisms of cd-structures is tractable.

Lemma 3.2.11. Let f : X → Y be a morphism of tractable cd-structures. Let X
be the disjoint union of a closed subset Z and an open subset U . If f |U and f |Z
are tractable, then so is f .
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Proof. Let M ∈ obD(X). We have a distinguished triangle in D(Y )

(f |U)∗j
∗M

ւ տ
(f |Z)∗i

!M −→ f∗M
(3)

which immediately implies the result. 2

Lemma 3.2.12. Let f : X → Y be a tractable morphism of cd-structures. If
(S,L) is an L-stratification of X, then there exists an L-stratification (S ′,L′) of Y
such that whenever M ∈ obD(X) is (S,L)-constructible, the pushforward f∗M is
(S ′,L′)-constructible.

Proof. Consider for every V ∈ S and every L ∈ L(V ) the constructible object
jV ∗L of D(X). Take (S ′,L′) to be an L-stratification of Y trivializing all f∗jV ∗L,
which is possible, since these are finite in number. Now let M ∈ obD(X) be (S,L)-
constructible. We claim that f∗M is (S ′,L′)-constructible. Decomposing X into a
closed Z and an open U , such that S is a refinement of the stratification {U,Z} of
X, we get a distinguished triangle (3) in D(Y ). Using induction on the number of
strata in S, this allows us to reduce to the case that S contains only one stratum.
Using the fact that hiM = 0 for i ≪ 0 we reduce to the case that M ∈ obClcc(X)
and another induction on the length of M finishes the proof. 2

4. Topoi

4.1. Fibered Topoi. Recall the following facts about fibered topoi (see Section 7
of [2, Exp. VI]). Let I be a category. A fibered topos X• over I is a fibered category
X• over I, such that for every n ∈ ob I the fiber category Xn is a topos and for
every α : n→ m in fl(I) any pullback functor α∗ : Xm → Xn is the pullback functor
of a morphism of topoi α : Xn → Xm.

For example, if X is a given topos and φ : I → X is a functor, then we get
a corresponding fibered topos X• by setting Xn = X/φ(n), the induced topos over
φ(n).

If X• is a fibered topos over I, let us denote by top(X•) the associated to-
tal topos (Remarque 7.4.3 of [loc. cit.]). Having chosen pullback functors for
X•, we may describe top(X•) as the category whose objects are families F • =
((Fn)n∈ob I , (θ(α))α∈fl(I)), where Fn ∈ obXn and for α : n → m, θ(α) is a mor-
phism θ(α) : α∗Fm → Fn in Xn. This data is subject to the obvious cocycle
condition, namely that θ(α ◦ β) = θ(β) ◦ β∗θ(α). A morphism g• : F • → G• in X•

is a family g• = (gn)n∈ob I , where gn : Fn → Gn is a morphism in Xn, subject to
the obvious commuting relations, namely that gn ◦ θF (α) = θG(α) ◦ α∗(gm), for any
α : n→ m in fl(I). Composition in top(X•) is defined in the obvious manner.

If no confusion seems likely to arise, we write X• for top(X•).
Denote for n ∈ ob I the functor top(X•)→ Xn, which assigns to F • ∈ ob top(X•)

its component Fn over n, by ι∗n. Then ι∗n has a left adjoint ιn! and a right adjoint
ιn∗, which are fully faithful if n has no non-trivial endomorphisms in fl(I). Thus
we have a morphism of topoi ιn : Xn → top(X•). Explicitly, we have for an object
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F ∈ obXn:

ι∗mιn!F =
∐

α∈Hom(m,n)

α∗F

ι∗mιn∗F =
∏

α∈Hom(n,m)

α∗F.

By the exactness of ι∗n, in top(X•) fibered products, disjoint sums and quotients by
equivalence relations may be calculated componentwise. Also, a family in top(X•)
is covering, if and only if it is covering componentwise.

Let X• be a fibered topos over I. Let X•cart be the category of cartesian sections
of X•. The category X•cart is the subcategory of top(X•) consisting of those sheaves
F •, for which all transition morphisms θ(α) : α∗Fm → Fn are isomorphisms. The
above remarks show that X•cart is, in fact, a topos. Denoting the inclusion functor
into top(X•) by π∗ : X•cart → top(X•), we see that π∗ has a right adjoint π∗ such
that π∗π

∗ = id. So we get a morphism of topoi π : top(X•)→ X•cart.

Example 4.1.1. Let ∆ be the category of standard simplices, whose set of objects
we denote by {∆0,∆1, . . . }. A topos fibered over ∆◦ is called a simplicial topos.

Let X be a topos and U an object of X, covering the final object. Define the
functor φ : ∆◦ → X by φ(∆n) = Un+1 and by taking face maps to projections and
degeneracy maps to diagonals, so as to obtain a simplicial object U• in X, the Čech
nerve of the one-element covering U of X. Denote by U• also the corresponding
fibered topos over ∆◦. Clearly, we have U•cart = X and so we have for every n ∈ N

a commutative diagram of topoi

Un
ιn−→ top(U•)

jn ց ↓ π

X,

where we have written Un for U∆n , and jn : Un → X for the localization morphism.

Lemma 4.1.2. With the notation of Example 4.1.1 we have that every abelian
cartesian sheaf on top(U•) is acyclic for π∗.

Proof. This is Čech cohomology. 2

Example 4.1.3. Consider N as a category,

N = {0→ 1→ 2→ . . . },
and let X be a topos. Consider the fibered topos X• over N given by the constant
functor N→ X mapping to the final object in X. The the corresponding total topos
XN = top(X•) is just the category of projective systems in X. A cartesian object in
XN is a constant projective system. Thus the pullback morphism of the morphism
of topoi π : XN → X is the associated constant projective system functor. Note
that ι0∗ = π∗. Moreover, π∗ = lim

←−
.

More generally, If X• is a fibered topos over I, then we get an induced fibered
topos XN

• over I. We have top(XN
• ) = top(X•)

N and (XN
• )cart = (X•cart)

N.
Given a discrete valuation ring A with parameter ℓ, we consider the projective

system Λ = (Λn)n∈N, where Λn = A/ℓn+1, which is a sheaf of rings on XN. Note
that an object M of Mod(XN,Λ) is just a projective system M = (Mn)n∈N of
sheaves of A-modules on X, satisfying ℓn+1Mn = 0 for every n ∈ N. If we denote
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our A-category Mod(X,A) by A then in the notation of Section 2.2 we have An =

Mod(X,Λn) and Ã = Mod(XN,Λ). We denote the full subcategory of Mod(XN,Λ)
consisting of ℓ-adic objects by Modℓ(X

N,Λ). We call Modℓ(X
N,Λ) the category of

ℓ-adic sheaves on X.

Let X• and Y• be fibered topoi over I. A cartesian morphism of fibered topoi
f• : X• → Y• is a cartesian I-functor f∗• : Y• → X•, such that for every n ∈ ob I
the fiber functor f∗n : Yn → Xn is the pullback functor of a morphism of topoi
fn : Xn → Yn. A cartesian morphism of fibered topoi gives rise to a morphism
f : top(X•)→ top(Y•). The derived functorsRf∗ may be calculated componentwise.
This follows from the fact that a flasque sheaf on top(X•) induces a flasque sheaf
in each component, as is proved in the proof of Lemme 8.7.2 of [2, Exp. VI].

Let f : X• → Y• be a cartesian morphism of fibered topoi. We call f an immersion
(open immersion, closed immersion, locally closed immersion) if fn : Xn → Yn is
one, for all n ∈ ob I. Moreover, we call an immersion f : X• → Y• strict, if for every
α : n→ m in fl I the commutative diagram of topoi

Xn
fn−→ Yn

α ↓ ↓ α

Xm
fm−→ Ym

is 2-cartesian.
Note that if f is an immersion then so is the induced morphism f : top(X•) →

top(Y•). This is easily seen using the descriptions of top(X•) and top(Y•) in terms
of α∗-morphisms.

Definition 4.1.4. Let X• be a fibered topos over I. A fibered subtopos V• of X•

is given by a subtopos Vn of Xn for every n ∈ ob I such that for every α : n→ m of
fl I and any object F of Vn we have that α∗F is contained in Vm. We say that V• is
an open (closed, locally closed) fibered subtopos, if for every n ∈ ob I the subtopos
Vn is open (closed, locally closed) in Xn. Moreover, we call V• a strict subtopos of
X• if for every α : n→ m in fl I we have that α−1(Vm) = Vn. Here α−1(Vm) denotes
the inverse image of Vm in Xn (see Exercice 9.1.6 in [2, Exp. IV]).

Let V• be a fibered subtopos of X•.

Note 4.1.5. Choose functors α∗ for X•. Then we get induced functors α∗ : Vn →
Vm which are direct image functors of morphisms of topoi α : Vn → Vm, by Propo-
sition 9.1.3 in [2, Exp. IV]. In this way, we may make V• into a fibered topos over
I together with an immersion V• → X• of fibered topoi.

Warning 4.1.6. Let α : n → m be in fl I. Then α∗ : Xm → Xn does not, in
general, map Vm to Vn. So we may not think of V• as a fibered subcategory of X•.
Already for open immersions this does not work, although for closed immersions it
does.

Definition 4.1.7. Let V• ⊂ X• be a fibered subtopos. We get an induced immer-
sion top(V•) → top(X•). The essential image of its direct image functor is called
the total subtopos of top(X•) defined by V• ⊂ X•. By abuse of notation, we will also
denote it by top(V•).

Proposition 4.1.8. Let U• be a strict open subtopos of X•. Let us denote for every
n ∈ ob I the closed complement of Un by Zn. Then Z• is a strict closed subtopos of
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X•. Moreover, j : top(U•)→ top(X•) is an open immersion with closed complement
i : top(Z•)→ top(X•).

The functors j!, j
∗, Rj∗ and i∗, i∗, Ri

! between D+(X•,Λ
•), D+(Z•, i

∗Λ•) and
D+(U•, j

∗Λ•) may be calculated componentwise, for any sheaf of rings Λ• = (Λn)n∈ob I

on top(X•).

Proposition 4.1.9. Let f : X• → Y• be a cartesian morphism of fibered topoi and
V• ⊂ Y• a locally closed fibered subtopos. Let Wn = f−1

n (Vn), for every n ∈ ob I.
Then W• is a locally closed fibered subtopos of X•. We write W• = f−1(V•) and call
it the pullback of V•.

If V• ⊂ Y• is a strict locally closed fibered subtopos then W• is a strict locally
closed subtopos of X• and we have top(W•) = f−1(top(V•)).

Corollary 4.1.10. Let X• be a fibered topos and V a locally closed subtopos of
X•cart. Let V• be the (strict) fibered subtopos of X• given by Vn = (π ◦ ιn)−1V , for
every n ∈ ob I. Then top(V•) = π−1V .

4.2. Constructible Sheaves. Let X be a topos. We will always assume that X
has sufficiently many points. By |X| we will denote a conservative set of points,
for example a set of representatives for the collection of all isomorphism classes of
points of X. We will think of |X| as a topological space (see Exercice 7.8(a) in [2,
Exp. IV]). Recall (Exercice 9.7.5 of [2, Exp. IV]) that the locally closed subtopoi of
X are in bijective correspondence to the locally closed subspaces of |X|.

In addition, let us assume that |X| is noetherian. Fix a ring A.

Definition 4.2.1. For any locally closed subtopos V of X we let D(V,A) be the
derived category of Mod(V,A), the category of sheaves of A-modules on V . Then
the collection of the variousD+(V,A) is naturally a d-structure (see Definition 3.1.2)
on |X|. Let us call D+( · , A) the canonical A-d-structure on X.

Note that any morphism of topoi induces a morphism of the associated canonical
A-d-structures.

Definition 4.2.2. A sheaf F on X is called an lcc sheaf if locally F is isomorphic
to the constant sheaf associated to a finite set. A morphism F → G in X is called
an lcc morphism if it makes F into an lcc object of the induced topos X/G.

Proposition 4.2.3. The following are some basic facts about lcc morphisms.

i. Any base change of an lcc morphism is lcc.
ii. The property of being lcc is local on the base.
iii. Let f = g ◦ h be a composition of morphisms in X. If g and h are lcc, then so

is f . If f and g are lcc, then so is h. If h is an epimorphism and f and h are
lcc, then so is g.

iv. Fibered products of lcc sheaves are lcc.
v. Let G be a group sheaf in X and E → B a principal G-bundle in X, such that
B covers X. Then E and B are lcc if and only if E and G are lcc and if and
only if B and G are lcc.

vi. For an lcc sheaf F the function f : |X| → Z;x 7→ #Fx is locally constant.

Definition 4.2.4. A stratification S of X is a finite number of non-empty locally
closed subtopoi of X, called the strata, such that X is the disjoint union of S, and
such that the closure of each stratum is the union of strata.
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Note that stratifications of X can be identified with stratifications of |X|.
Definition 4.2.5. If F is a sheaf on X, then we call F constructible if there exists
a stratification S of X, such that for each V ∈ S we have that F |V is lcc. Such a
stratification is said to trivialize F , or F is said to be S-constructible.

Lemma 4.2.6. Let F be sheaf on X. In case X is noetherian, F is constructible
if and only if it is so locally.

Lemma 4.2.7. Let M be a constant sheaf on X, modeled on a finite set. Let N be
a subsheaf of M . Then N is constructible.

Proof. By noetherian induction it suffices to prove that there is a non-empty open
subtopos U ⊂ X such that N |U is constant. As a sheaf, we have M ∼= X1∐ . . .∐Xn,
where each Xi, for i = 1, . . . , n is a copy of the final object of X. For each i =
1, . . . , n let Ni = N ∩ Xi, which is a subsheaf of Xi and hence isomorphic to an
open subtopos Ui ⊂ X. In other words, we have N ∼= U1∐ . . .∐Un. Without loss of
generality, we may assume that U1 is non-empty. If U1∩Ui = ∅ for every i > 1, then
we may take U = U1. Otherwise, we may assume that U1∩U2 is non-empty. Again,
if U1 ∩ U2 ∩ Ui = ∅ for every i > 2, then we may take U = U1 ∩ U2. Continuing in
this manner, we find a non-empty open subtopos U = U1∩ . . .∩Uk, for some k ≤ n,
over which N is constant. 2

Corollary 4.2.8. If X is noetherian, every subsheaf of a constructible sheaf is con-
structible.

Definition 4.2.9. A sheaf of A-modules on X is called lcc if it is lcc as a sheaf of
sets. The category of lcc sheaves of A-modules on X is denoted by Modlcc(X,A).

Proposition 4.2.10. The category Modlcc(X,A) is a finite closed subcategory (see
Definition 2.1.2) of Mod(X,A).

Proof. The closedness follows easily from Proposition 4.2.3. For the finiteness, let
F be an lcc sheaf on X and let . . . ⊂ Fi−1 ⊂ Fi ⊂ Fi+1 ⊂ . . . be a chain of lcc
subsheaves of F . To prove that this chain becomes stationary we may assume that
|X| is connected. For any i let hi : |X| → Z denote the function hi(P ) = #FiP .
Then hi is continuous and hence constant. This finishes the proof. 2

Definition 4.2.11. A sheaf of A-modules on X is called constructible, if it is con-
structible as a sheaf of sets. The category of constructible sheaves of A-modules on
X is denoted by Modc(X,A).

Proposition 4.2.12. If X is noetherian, the category Modc(X,A) is a noetherian
thick subcategory of Mod(X,A).

Proof. Using Proposition 4.2.10 we easily show that Modc(X,A) is closed under
kernels, cokernels and extensions in Mod(X,A). Then use Corollary 4.2.8 to con-
clude. 2

Let us denote by D+
lcc(X,A) the full subcategory of D(X,A) defined by requiring

an object M of D+
lcc(X,A) to satisfy

i. hiM is lcc for all i ∈ Z.
ii. hiM = 0, for all i≪ 0.

By Proposition 4.2.10 the subcategory D+
lcc( · , A) ⊂ D( · , A) is a cd-structure on

|X|.
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Definition 4.2.13. The cd-structure on |X| thus defined is called the canonical
cd-structure on X, with respect to A.

Note 4.2.14. A sheaf of A-modules is constructible if and only if it us constructible
as an object of the canonical cd-structure (Definition 3.2.2). Our notion of con-
structibility for a sheaf of A-modules differs from both that of 1.9.3 in [2, Exp. VI]
and that of Definition 2.3 in [2, Exp. IX], but is more convenient for our purposes.

4.3. Constructible ℓ-Adic Sheaves. Let X be a noetherian topos.

Proposition 4.3.1. Let R be a noetherian ring. Let E be a constant sheaf of R-
modules modeled on a finitely generated R-module. Then E is a noetherian object
in the category of sheaves of R-modules on X.

Proof. First note that every fiber EP of the sheaf E is canonically isomorphic to
the R-module E. So for every subsheaf of R-modules F ⊂ E we may consider every
fiber FP as a submodule of E. If P → Q is a specialization arrow of points of
X, then for a subsheaf F of E we get an induced homomorphism FQ → FP which
commutes with the embeddings of FQ and FP into E. Thus we get that FQ ⊂ FP

as submodules of E. Note that in particular, the specialization homomorphism
FQ → FP does not depend on the given specialization arrow P → Q.

Let now F0 ⊂ F1 ⊂ . . . be a chain of subsheaves of R-modules of E. To prove
that it is stationary, we may as well assume that X is irreducible. Recall that a
topos X is irreducible, if for any two non-empty objects U and V of X their direct
product U ×V is non-empty. A topos X with sufficiently many points is irreducible
if and only if |X| is irreducible. Using techniques of Section 9 of [2, Exp. VI], it is
possible to prove that now we may choose |X| in such a way that it contains a point
which specializes to every other point of |X|. So let P be such a generic point of
|X|. Since E is noetherian, the chain of submodules F0P , F1P , . . . is stationary and
we may hence assume that F0P = FiP for all i. The R-module F0P is generated by
a finite set of elements, say s1P , . . . , snP ∈ F0P , where s1, . . . , sn are elements of
the R-module E.

Now there exists a non-empty open subtopos U ⊂ X such that every sk : U → E
factors through F0, for example s−1

1 (F0)∩ . . .∩ s−1
n (F0). Replacing X by U we may

thus assume that F0 is generated by the global sections s1, . . . , sn.
Now let Q be a specialization of P . Then for every i ≥ 0 we get the following

commutative diagram
FiQ ⊂ FiP

∪ ‖
F0Q = F0P

of submodules of E. Note that F0Q →֒ F0P is an isomorphism, since the sections
s1, . . . , sn that generate F0P are global sections of F0. It follows that F0Q = FiQ

for all Q ∈ |X| and thus that F0 = Fi. 2

For the next result note that every locally closed subtopos of a noetherian topos
is noetherian (see Proposition 4.6 in [2, Exp. VI]).

Corollary 4.3.2. If F is a locally constant sheaf of R-modules on X, modeled on
a finitely generated R-module E, then F is a noetherian object of Mod(X,R).

Proof. Let U be a noetherian object of X such that F |U is constant. The existence
of such a U is due to the fact that X is noetherian. By the previous proposition F |U
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is a noetherian object in Mod(U,R). This clearly implies that F is a noetherian
object of Mod(X,R). 2

Lemma 4.3.3. Let R =
⊕

p≥0R
p be a graded noetherian ring, such that R0 is

finite and for every p ≥ 0 the R0-modules Rp and R0 are isomorphic. Let M ∈
ob Mod(X,R) be a graded sheaf of R-modules M =

⊕
p≥0M

p such that each Mp

is constructible. Assume that M is a noetherian object of Mod(X,R). Then there
exists a pre-L-stratification (S,L) of X (with respect to R0), trivializing Mp, for
every p ≥ 0.

Proof. We have a canonical epimorphism
⊕

pR⊗R0 Mp →M of graded sheaves of
R-modules on X. Since M is noetherian, a finite number of the R⊗R0 Mp will map
onto, so there exists an n ∈ N such that

⊕n
p=0R⊗R0 Mp →M is onto.

Note that each homogeneous component of
⊕n

p=0R⊗R0Mp is constructible. Note

also (by Corollary 4.3.2) that
⊕n

p=0R⊗R0Mp is a noetherian sheaf of R-modules on

X. These two properties clearly carry over to the kernel of
⊕n

p=0R⊗R0 Mp →M .
So to this kernel we may apply the same reasoning as forM and obtain constructible
sheaves of R0-modules N1, . . . , Nm and an exact sequence of sheaves of R-modules
on X

m⊕

i=0

R⊗R0 Ni −→
n⊕

p=0

R⊗R0 Mp −→M −→ 0.

Now choose (S,L) in such a way as to trivialize N1, . . . , Nm and M0, . . . ,Mn. Then
by Lemma 2.1(ii) of [2, Exp. IX] S trivializes M , and hence Mp for every p ≥ 0. It
is then clear that (S,L) trivializes Mp for every p ≥ 0. 2

We now turn to the study of constructible ℓ-adic sheaves. So let A be a discrete
valuation ring as in Example 4.1.3. Lift for the moment the assumption that S is
noetherian. (Assume only that |X| is noetherian.) We endow the topos X with
the canonical A-cd-structure (Definition 4.2.13). So it makes sense to talk about
pre-L-stratifications.

Definition 4.3.4. We call a sheaf F = (Fn)n∈N of Λ-modules on XN constructible,
if for every n ∈ N the component Fn is constructible. The category of constructible
sheaves of Λ-modules on XN will be denoted by Modc(X

N,Λ).
Let (S,L) be a pre-L-stratification of X. A constructible sheaf F = (Fn)n∈N of

Λ-modules on XN is called (S,L)-constructible or trivialized by (S,L), if for every
n ∈ N the component Fn is trivialized by (S,L). The category of (S,L)-constructible
sheaves of Λ-modules on XN will be denoted by Mod(S,L)(X

N,Λ).
The categories of constructible ℓ-adic sheaves and (S,L)-constructible ℓ-adic

sheaves are denoted by Modℓ,c(X
N,Λ) and Modℓ,(S,L)(X

N,Λ), respectively. Alter-
natively, these categories are called the category of constructible A-sheaves and the
category of (S,L)-construcible A-sheaves on X, respectively, and are denoted by
Modc(X,A) and Mod(S,L)(X,A).

Proposition 4.3.5. Let X be a noetherian topos. Let M = (Mn)n∈N be a con-
structible ℓ-adic sheaf on X. Then there exists a pre-L-stratification (S,L) of X
such that M is (S,L)-constructible, i.e. (S,L) simultaneously trivializes Mn, for
every n ∈ N.
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Proof. For every n ∈ N the sheaf of A-modules Mn is a noetherian object of
C = Mod(X,A), by Proposition 4.2.12. Thus M is a noetherian ℓ-adic projective
system in C, in the sense of Section 5 of [13, Exp. V]. So by Proposition 5.1.6 of
[loc. cit.] the strict graded grs(M) of M is a noetherian object in Mod(X, grA), the
category of sheaves of grA-modules on X.

Here grA =
⊕

p≥0 lp/lp+1 is the graded ring associated to the l-adic filtration of

A, l being the maximal ideal of A. The strict graded grs(M) of M is defined as
follows: Fix an n ∈ N. Then consider the l-adic filtration F •Mn of Mn given by
F pMn = lpMn, for p ≥ 0. By defining (F pM)n = F pMn we get a filtration F •M
on M . The associated graded is given by

(grpM)n = grpMn = F pMn/F
p+1Mn = lpMn/l

p+1Mn.

Note that if m ≥ n > p then the canonical map lpMm/l
p+1Mm → lpMn/l

p+1Mn is
an isomorphism. Thus (grpM)n is essentially constant and its limit is defined to
be grsp(M). So we have grspM = lpMn/l

p+1Mn for any n > p. Finally, grsM =⊕
p≥0 grspM , which is a sheaf of graded grA-modules on X.

By Lemma 4.3.3 there exists a pre-L-stratification (S,L) of X that trivializes
grspM for every p. Now (for a fixed n) the factors of the l-adic filtration F •Mn are
grs0M, . . . , grsn−1M and so Mn is trivialized by (S,L). 2

Corollary 4.3.6. The category Modc(X,A) is the union of the full subcategories
Mod(S,L)(X,A), where (S,L) runs over all pre-L-stratifications of X.

Example 4.3.7. Let us denote by circ the topos of objects (M,f), where M is a
set and f is a permutation of M , such that for every x ∈ M there exists an n > 0
such that fnx = x. Let i∗ : circ → pt denote the underlying set functor, which
forgets the permutation. Then i∗ is the fiber functor of a point i : pt → circ. The
set {i} is a conservative set of points. Thus there are no non-trivial stratifications
of circ. The constructible sheaves are those objects (M,f), for which M is finite.
It is a consequence of Proposition 2.2.7 that there is an equivalence of categories
between Modc(circ, A) and the category of automorphisms of finitely generated Â-
modules. For every n ∈ Z there exists a morphism of topoi ǫn : circ→ circ such that
ǫ∗n(M,f) = (M,fn). The induced morphism ǫ∗n : Modc(circ, A) → Modc(circ, A)
takes an automorphism to its n-th power.

4.4. Topoi with c-Structures and ℓ-Adic Derived Categories.

Remark 4.4.1. Since in the applications we have in mind, we do not always have
morphisms of topoi available, we introduce the notion of pseudo-morphism of topoi.
Let X and Y be topoi. Let f∗ : Y → X and f∗ : X → Y be a pair of adjoint
functors (f∗ being left adjoint of f∗). Then we say that the pair f = (f∗, f∗) is a
pseudo-morphism from the topos X to the topos Y .

If f is a pseudo-morphism from X to Y , then by definition f∗ is continuous. If
γ is a species of algebraic structure defined by finite projective limits, then since f∗
is left exact, it maps γ-objects to γ-objects. Let us denote by fγ

∗ : Xγ → Yγ the
induced functor on the γ-objects. By Proposition 1.7 of [2, Exp. III] fγ

∗ has a left
adjoint f∗γ : Yγ → Xγ . But in general, f∗γ does not commute with the underlying-
sheaf-of-sets functor.

If (X,A) and (Y,B) are ringed, and f : X → Y is a pseudo-morphism of ringed
topoi, i.e. a pseudo-morphism of topoi together with a ring map B → f∗A, then
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f∗ : X → Y maps sheaves of A-modules to sheaves of B-modules, so induces a left
exact functor f∗ : Mod(X,A) → Mod(Y,B). The higher direct image Rqf∗F , for a
sheaf of A-modules F on X, is the sheaf associated to the presheaf

U 7−→ Hq(f∗U,F ),

just as in the case of an earnest morphism of topoi. Thus Rqf∗ commutes with
restriction of scalars.

Definition 4.4.2. Let X be a topos. A c-structure on X is a full subcategory X
of X such that

i. X is a topos,
ii. the inclusion functor π∗ : X → X is exact and has a right adjoint π∗ : X → X

such that π∗π
∗ = idX ,

iii. if P → B is a principal G-bundle in X, then B ∈ obX and G ∈ obX implies
that P ∈ obX .

To abbreviate, we often call a topos with c-structure a c-topos.
A c-topos (X,X, π) is called trivial, if π∗ : X → X, in addition to being continu-

ous, is also co-continuous. We call (X,X) quasi-trivial, if for every abelian sheaf F
on X, π∗F is acyclic for π∗.

A c-structure is called noetherian, if the topos X is noetherian.

Lemma 4.4.3. Let X be a trivial c-topos. Then π∗ has a right adjoint, which we
denote by π!. Thus X is quasi-trivial.

Proof. For the existence of π! see Proposition 2.3 of [2, Exp. III]. 2

Note 4.4.4. Let X be a topos and X a full subcategory such that

i. X contains the final object.
ii. X is closed under fibered products in X.
iii. X is closed under arbitrary disjoint sums in X.
iv. X is closed under quotients of equivalence relations.

Then X is a topos, the inclusion functor X → X is exact and has a right adjoint. So
if X satisfies in addition Condition (iii) of Definition 4.4.2, then it is a c-structure
on X.

In particular, we note that any intersection of c-structures is a c-structure. If X

and X̃ are two c-structures on X such that X ⊂ X̃ , then X is a c-structure on X̃.

If X is a c-structure on X̃ and X̃ is a c-structure on X, then X is a c-structure on
X.

Example 4.4.5. Let X• be a fibered topos. Then (top(X•),X•cart) is a c-topos.
This follows from the fact that any morphism between principal G-bundles is an iso-
morphism. The c-topos of Example 4.1.1 is a quasi-trivial c-topos by Lemma 4.1.2.

Definition 4.4.6. Let I be a category. A fibered c-topos over I is a fibered topos
X• over I together with a full fibered subcategory X•, such that for each n ∈ ob I
the fiber Xn is a c-structure on Xn.

Note 4.4.7. Let (X•,X•) be a fibered c-topos over I. Then (top(X•), top(X•)) is
a c-topos. If (Xn,Xn) is quasi-trivial for every n ∈ ob I, then (top(X•), top(X•)) is
quasi-trivial, too.



24 KAI A. BEHREND

Proposition 4.4.8. Let (X,X) be a c-topos. Let Λ be a sheaf of rings on X,
considered also as a sheaf of rings on X, via π∗. The category Mod(X,Λ) is closed
(see Definition 2.1.2) in the abelian category Mod(X,Λ).

Proof. This follows directly from the definition, noting that a short exact sequence
is just a particular kind of principal bundle. 2

Definition 4.4.9. Let (X,X) be a c-topos. A sheaf F on X is called constructible,
if it is an object of X and is constructible as such (see Definition 4.2.5). A stratifi-
cation of X is a stratification of X .

Corollary 4.4.10. If (S,L) is a pre-L-stratification of X with respect to the ring
A, then Mod(S,L)(X,A) is finite and closed in Mod(X,A).

Proof. This follows immediately from Propositions 4.4.8 and 4.2.10. 2

We denote by Dbar(X,Λ) the full subcategory of the derived category D(X,Λ) of
Mod(X,Λ), defined by requiring the cohomology objects of M ∈ obDbar(X,Λ) to
be in X . By Proposition 2.1.3 the category Dbar(X,Λ) is a t-category with heart
Mod(X,Λ).

Let A be a ring and assume X to be noetherian. Then we denote by Dc(X,A)
the subcategory of Dbar(X,A) defined by requiring the cohomology objects hiM
of M to be constructible sheaves on X , simultaneously trivialized by a common
pre-L-stratification of X . The category Dc(X,A) is an A-t-category with heart
Modc(X,A). If (S,L) is a pre-L-stratification of X, then we denote by D(S,L)(X,A)
the subcategory of Dc(X,A) of (S,L)-contructible objects. By definition, we have

Dc(X,A) =
⋃

(S,L)

D(S,L)(X,A).

Proposition 4.4.11. Let (X,X) be a quasi-trivial c-topos and Λ a sheaf of rings on
X. Then the functor Rπ∗ : D+

bar(X,Λ) → D+(X,Λ) is an equivalence of categories
with quasi-inverse π∗.

As a consequence, we have for any object M ∈ obD+(X,Λ) that H i(X,M) =
H i(X,π∗M), for all i.

Proof. By assumption, the equation π∗ ◦π
∗ = idX derives to give the equation Rπ∗ ◦

π∗ = id of functors between D+(X,Λ) and D+(X,Λ). This proves one direction.
For the other direction, let M ∈ obD+

bar(X,Λ). We need to show that π∗Rπ∗M →
M is a quasi-isomorphism. Consider the spectral sequence Riπ∗h

jM ⇒ hi+jRπ∗M .
Since hjM comes via π∗ from X, by Rπ∗ ◦π

∗ = id this spectral sequence degenerates
and we get π∗h

iM = hiRπ∗M , for all i. Thus

hi(π∗Rπ∗M) = π∗hi(Rπ∗M)

= π∗π∗h
iM

= hiM,

and we are done. 2

Definition 4.4.12. We define three different kinds of morphisms of c-topoi. Let
(X,X, πX) and (Y, Y , πY ) be topoi with c-structure. A morphism of topoi with
c-structures is a pair (f, f), where f : X → Y is a pseudo-morphism of topoi and
f : X → Y is a morphism of topoi such that πY ◦ f = f ◦ πX .
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If f is a morphism of topoi (i.e. if f∗ is exact), then we call (f, f) a morphism of
c-topoi of the first kind.

Now let Λ be a sheaf of rings on Y . If for every sheaf F ∈ ob Mod(X, f
∗
Λ) the

higher direct images Rpf∗F are objects of Y , for all p ≥ 0, then we call (f, f) a
morphism of c-topoi of the second kind (with respect to Λ).

Finally, let X and Y be noetherian. Let A be a ring. We call (f, f) of the third
kind with respect to A, if the morphism induced by f∗

Rf∗ : D+(X,A) −→ D+(Y,A)

has the following property. Whenever (S,L) is a pre-L-stratification of X, then
there exists a pre-L-stratification (S ′,L′) of Y such that if M ∈ obD+

(S,L)(X,A),

then Rf∗M ∈ obD+
(S′,L′)(Y,A).

Now let f : X → Y be a morphism of c-topoi and A a ring. Let Λ be a sheaf of
A-algebras on Y and let us denote also by Λ the pullback to X.

If f is of the first kind we get a functor f∗ : D(Y,Λ)→ D(X,Λ) which induces a
functor f∗ : Dbar(Y,Λ)→ Dbar(X,Λ) which is, of course, A-linear and t-exact.

If f is of the second kind with respect to Λ, then Rf∗ : D+(X,Λ) → D+(Y,Λ)
induces a functor Rf∗ : D+

bar(X,Λ)→ D+
bar(Y,Λ), which is A-linear and left t-exact.

If X and Y are quasi-trivial with respect to Λ then this Rf∗ agrees with Rf∗, via
the identifications given by Proposition 4.4.11. If f is of the first and second kind
(f∗, Rf∗) is a pair of adjoint functors between D+

bar(X,Λ) and D+
bar(Y,Λ).

If f is of the third kind with respect to A, we get an induced functor Rf∗ :
D+

c (X,A) → D+
c (Y,A), which is a right adjoint of f∗, if f is of the first and third

kind.

Note 4.4.13. Let g : Y → Z be another morphism of c-topoi, such that both f and
g are of the second kind with respect to Λ. It is not clear whether g ◦f is also of the
second kind. Even if this is the case, the question whether R(g ◦f)∗M → Rg∗Rf∗M
is an isomorphism in D+

bar(Z,Λ), for an object M of D+
bar(X,Λ), arises. We do

not know if either of these questions can be answered affirmatively without further
assumptions. Similar problems arise for morphisms of the third kind.

We will now define the constructible ℓ-adic derived category of a c-topos. Let
A be a discrete valuation ring as in Example 4.1.3. Let (X,X) be a noetherian
c-topos. By Corollary 4.4.10, the following definition is possible.

Definition 4.4.14. Returning to the notation A = Mod(X,A) and Ac = Mod(S,L)(X,A)
we get as in Section 2.2 a t-category Dc(A), which we will denote D(S,L)(X,A) in
our case, and call (by abuse of language) the derived category of (S,L)-constructible
A-complexes on the c-topos (X,X). By Proposition 2.2.6, the heart of D(S,L)(X,A)

is Mod(S,L)(X,A), the category of (S,L)-constructible A-sheaves on X .

Recall that D(S,L)(X,A) is constructed from D(XN,Λ) by first passing to the
subcategory defined by requiring the cohomology to be (S,L)-constructible and
AR-ℓ-adic and then passing to the quotient category modulo those objects whose
cohomology is AR-null.

Let M denote the set of all pre-L-stratifications of X. The set M is directed if
we call (S,L) ≤ (S ′,L′) if (S ′,L′) is a refinement (see Definition 3.2.5) of (S,L).
In this case we have a natural functor D(S,L)(X,A) → D(S′,L′)(X,A). In general,



26 KAI A. BEHREND

we cannot expect this functor to be fully faithful, but it is clearly t-exact. On the
other hand, the induced functor on the hearts Mod(S,L)(X,A) → Mod(S′,L′)(X,A)
is obviously fully faithful.

Definition 4.4.15. We define the category of constructible A-complexes on the c-
topos X to be the 2-limit

Dc(X,A) = lim
−→

(S,L)∈M

D(S,L)(X,A).

Proposition 4.4.16. The A-category Dc(X,A) is naturally a t-category with heart
Modc(X,A).

Proof. This follows easily from the definitions and Corollary 4.3.6. 2

Remark 4.4.17. Let (X,X) and (Y, Y ) be noetherian c-topoi and f : X → Y a
morphism of c-topoi of the first kind. Let (S,L) be a pre-L-stratification of Y . Let S ′
be the pullback of S to X. For a stratum W ∈ S let L(W ) = {L1, . . . , Ln}. Pulling
back L1, . . . , Ln to V = f∗W gives a collection f∗L1, . . . , f

∗Ln of lcc sheaves of A-
modules on V , which we may decompose into Jordan-Hölder components, arriving
at a collection of simple lcc sheaves on V , which we call L′(V ). Then (S ′,L′) is a
pre-L-stratification of X, which we shall call the pullback of the pre-L-stratification
(S,L) of Y . Clearly, the functor

f∗ : Dbar(Y
N,Λ) −→ Dbar(X

N,Λ)

induces a functor
f∗ : D(S,L)(Y

N,Λ) −→ D(S′,L′)(X
N,Λ),

which induces a functor

f∗ : D(S,L)(Y,A) −→ D(S′,L′)(X,A).

Passing to the limit we get an induced A-linear t-exact functor

f∗ : Dc(Y,A) −→ Dc(X,A).

Remark 4.4.18. Let (X,X) and (Y, Y ) be noetherian c-topoi and f : X → Y a
morphism of c-topoi of the third kind, with respect to A. Let (S,L) be a pre-L-
stratification ofX and (S ′,L′) a pre-L-stratification of Y satisfying Definition 4.4.12.
By Corollary 2.2.11 the derived functor

RfN
∗ : D+

(S,L)(X
N,Λ) −→ D+

(S′,L′)(Y
N,Λ)

induces a left t-exact functor

Rf∗ : D+
(S,L)(X,A) −→ D+

(S′,L′)(Y,A).

Passing to the limit we get an induced left t-exact A-linear functor

Rf∗ : D+
c (X,A) −→ D+

c (Y,A).

We call Rf∗ the ℓ-adic derived functor of f∗ : Modc(X,A)→ Modc(Y,A).

Example 4.4.19. Let X = pt be the punctual topos and assume that A has finite
residue field. Then Mod(X,A) is just the category of A-modules and Modc(X,A) is
the category of finite A-modules. Every constructible sheaf of A-modules is lcc. Up
to isomorphism, the only simple finite A-module is the residue field of A. So there
is only one pre-L-stratification of X and every constructible A-module is trivialized
by it. Thus Dc(pt, A) = Dfg(Â), by Proposition 2.2.8.
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4.5. The d-Structures Defined by c-Topoi. We will now study the way in which
c-topoi give rise to d-structures. Let (X,X) be a c-topos with structure morphism
π : X → X . Let V be a locally closed subtopos of X and V = π−1(V ). Denote by
ρ the induced morphism ρ : V → V .

Proposition 4.5.1. The functor ρ∗ is fully faithful. The essential image of ρ∗ is a
c-structure on V .

Proof. We may assume that V is closed or open in X. Denote by X0 a final object
of X and by U0 a subobject of X0 which is an object of X. Then U0 gives rise
to an open subtopos U of X with closed complement Z. Let U = π−1(U) and
Z = π−1(Z). We have a 2-cartesian diagram of topoi

X/U0

j−→ X
ρ ↓ ↓ π

X/U0

j−→ X,

where ρ∗ is the inclusion functor of the subcategory X/U0
of X/U0

(U and U are

the essential images of j∗ and j∗, respectively). So we need to prove that X/U0
is a

c-structure on X/U0
. But this is clear, after a moments thought.

An object F of X is in Z if and only if F × U0 → U0 is an isomorphism. It is in
Z if and only if it is in Z and in X . The fact that Z is a c-structure on Z follows
from the fact that the exact functor i∗ : X → Z maps X into Z. 2

Definition 4.5.2. We call (V, V ) the induced c-topos over the locally closed subto-
pos V of X .

Warning 4.5.3. The diagram of ‘inclusion’ functors

V
j∗−→ X

ρ∗ ↑ ↑ π∗

V
j∗−→ X

(4)

does not necessarily commute.

Note 4.5.4. The pair (j, j) : (V, V )→ (X,X) is a morphism of c-topoi of the first
kind.

Let X be a topos. Choosing for every pair V ⊂ W of locally closed subtopoi of
X a pullback functor i∗ : W → V defines a fibered topos over lc(X), the ordered
set of locally closed subtopoi of X, whose fiber over V ∈ lc(X) if V itself.

Now let X be a c-structure on X. The morphism π : X → X defines a map
π−1 : lc(X) → lc(X) which preserves inclusions and may thus be considered as a
functor. Pulling our fibered topos V 7→ V back via π−1 defines a fibered topos
over lc(X), which we will denote by V 7→ V . Endow every fiber of V 7→ V with
its induced c-structure according to Definition 4.5.2. This procedure gives rise to a
fibered c-topos over lc(X), denoted by V 7→ (V, V ).

Now let Λ be a sheaf of A-algebras on X . To every object V ∈ lc(X) assign
the A-t-category D+

bar(V,Λ), associated to the c-topos (V, V ). To every inclusion
j : V → W in lc(X) assign the pullback functor j∗ : D+

bar(W,Λ) → D+
bar(V,Λ),

associated to the morphism of c-topoi of the first kind (j, j) : (V, V ) → (W,W ).
This construction defines a category D+

bar( · ,Λ), fibered in A-t-categories over lc(X).
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Now let X0 be a noetherian topological space (for example X0 = |X |, if X is
noetherian) and γ−1 : lcX0 → lcX a functor preserving open and closed immersions
and taking ∅ to ∅. For example, γ−1 may be induced by a continuous map γ : |X | →
X0, if X has sufficiently many points. Then via γ−1, we may pull back D+

bar( · ,Λ)
to get a fibered category over lcX0.

Proposition 4.5.5. Assume that for every open immersion V0 →W0 in lc(X0) the
associated morphism of c-topoi (V, V ) → (W,W ) is of the second kind with respect
to Λ. Then the above procedure gives rise to a d-structure D+

bar( · ,Λ) on X0.

Proof. We have the d-structure D+( · ,Λ) and so we only have to check that
D+

bar( · ,Λ) is preserved by k∗, k∗, k
!, and k!, for k : V0 → W0 a morphism in

lcX0. But this is easily done. 2

Example 4.5.6. We may apply these considerations to the c-topos (XN,X
N
). We

let A be a discrete valuation ring and Λ = (A/ℓn+1)n∈N. We will assume that X

is noetherian and take X0 = |X |. The map γ−1 : lc |X | → lcX
N

is just the one

induced by the morphism of topoi X
N → X. Finally, let us assume that for every

open immersion V ⊂W in lc(X) the induced morphism of c-topoi (V, V )→ (W,W )
is of the second kind with respect to A/ℓn+1, for every n ∈ N. This assumption

implies that (V N, V
N
) → (W N,W

N
) is of the second kind with respect to Λ. So

by Proposition 4.5.5 we get a d-structure on |X |, whose fiber over V ∈ lc(X) is
D+

bar(V
N,Λ).

Proposition 4.5.7. Let X be noetherian and assume that for all open immersions
V ⊂ W in lc(X) the corresponding morphism of c-topoi (V, V )→ (W,W ) is of the
third kind with respect to A. Then V 7→ D+

c (V,A) defines a d-structure on |X |. The
subcategories D+

lcc(V,A) ⊂ D+
c (V,A) define a tractable cd-structure.

Proof. This is proved just like Proposition 4.5.5. Use Proposition 4.2.10. 2

Note 4.5.8. In this proposition it suffices to assume that for every open immersion
j : V → W in lc(X) the corresponding functor Rj∗ : D+(V,A) → D+(W,A) maps
D+

c (V,A) into D+
c (W,A).

Proposition 4.5.9. Assume we are in the situation of Example 4.5.6, with the
additional hypothesis of Proposition 4.5.7 verified. Then the d-structure V 7→
D+

bar(V
N,Λ) induces a d-structure on |X|

V 7−→ D+
c (V,A).

Proof. First let us introduce the following notation. If Y is a noetherian topological
space and S a stratification of Y , then by YS we denote the topology on Y in which
a subset of Y is open if it is open in Y and the union of strata from S.

Fix a stratification S0 of |X| and let (S,L) be an L-stratification of X such that S
refines S0. Then (S,L) induces an L-stratification on every locally closed subtopos
V of X, which is the union of strata in S0 (see Lemma 3.2.7).

We get an induced d-structure on |X |S0 with fiber D+
(S,L)(V

N,Λ), which passes

to a d-structure with fiber D+
(S,L)(V,A) using Remark 4.4.18 and Proposition 4.1.8.

We will call this d-structure by abuse of notation D+
(S,L)(|X |S0 , A).
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If (S ′,L′) is a refinement of (S,L), then we get a cartesian functor between d-
structures on |X|S0

D+
(S,L)(|X |S0 , A) −→ D+

(S′,L′)(|X |S0 , A).

Taking the limit defines a d-structure D+
c (|X |S0 , A) on |X|S0 .

Now let S1 be a refinement of S0. Then D+
c (|X |S0 , A) is just the restriction of

D+
c (|X |S1, A) to lc |X |S0. So taking the limit over all stratifications of |X| we get

the desired d-structure on |X |. 2

4.6. Topoi with e-Structures.

Definition 4.6.1. Let X be a topos. An e-structure on X is a subset E of fl(X)
satisfying

i. All identities are in E.
ii. If

F ′
f ′

−→ G′

↓ ↓ u

F
f−→ G

is a cartesian diagram in X, then f ∈ E implies f ′ ∈ E. If u is an epimorphism,
the converse is true.

iii. If

F
f−→ G

hց ↓ g

H

is a commutative diagram in X, then f, g ∈ E implies h ∈ E, g, h ∈ E implies
f ∈ E and if f is an epimorphism then f, h ∈ E implies g ∈ E.

iv. If Ui → V is a family of E-morphisms, then so is
∐
Ui → V .

Let X be a topos with an e-structure E. For any object U of X, let U be the
category of U -objects whose structure morphism is in E.

Lemma 4.6.2. For any U ∈ obX the pair (U,U ) is a c-topos. Any morphism
U → V in X gives rise to a morphism of c-topoi of the first kind (U,U)→ (V, V ).

Example 4.6.3. Let X be a topos with e-structure E. Call a morphism φ• : F • →
G• in XN an E-morphism if for every n ∈ N the morphism φn : Fn → Gn is an
E-morphism of X. Then the collection of E-morphisms is an e-structure on XN.

Let X be a topos with e-structure E and let us denote by U a set of objects of
X satisfying

i. Every U ∈ U covers the final object of X.
ii. For every U ∈ U the c-topos (U,U ) is quasi-trivial.
iii. U is closed under finite direct products.

Fix U ∈ U . Let U• be the Čech nerve of the covering U → X (see Example 4.1.1).
Then (U•, U •) is a fibered c-topos such that U•cart = X and U •cart = X . The total
topos top(U•) has the c-structures top(U •) and U•cart = X. Both of these are quasi-
trivial. The first one by Note 4.4.7 and the second one by Lemma 4.1.2. Their
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intersection top(U •) ∩ U•cart = X is a third c-structure on top(U•). Let us denote
the structure morphisms by π : top(U•)→ X and σ : top(U•)→ top(U •).

top(U•)
σ−→ top(U •)

π ↓ ↓
X −→ X

Note that both σ∗π
∗ : X → top(U •) and π∗σ

∗ : top(U •) → X induce the identity
on the c-structure X.

Now let Λ be a sheaf of rings on X . Let De(X,Λ) denote the full subcategory of
D(X,Λ) given by the c-structure X and let Dcart(top(U •),Λ) be the subcategory of
D(top(U •),Λ) given by the c-structure U •cart.

Proposition 4.6.4. The derived functor of σ∗π
∗ induces an equivalence of t-categories

R(σ∗π
∗) : D+

e (X,Λ) −→ D+
cart(U •,Λ).

Proof. Let De(U•,Λ), Dcart(U•,Λ) and De,cart(U•,Λ) denote the subcategories of

D(U•,Λ) given by the c-structures topU •, X and X on topU•, respectively. By
Proposition 4.4.11 we have equivalences of categories

D+
e (U•,Λ)

Rσ∗−→←−
σ∗

D+(U •,Λ)

and

D+
cart(U•,Λ)

Rπ∗−→←−
π∗

D+(X,Λ).

These trivially induce equivalences

D+
e,cart(U•,Λ)

Rσ∗−→←−
σ∗

D+
cart(U •,Λ)

and

D+
e,cart(U•,Λ)

Rπ∗−→←−
π∗

D+
e (X,Λ).

Composing these, we get the required equivalence

D+
e (X,Λ)

Rσ∗◦π∗

−→←−
Rπ∗◦σ∗

D+
cart(U •,Λ).

To prove that Rσ∗ ◦ π
∗ is induced by the derived functor of σ∗π

∗, we have to prove
that if F is an injective sheaf of Λ-modules on X, then π∗F is acyclic for σ∗. But
this follows from the fact that Rσ∗ may be computed componentwise and every
component of π∗F is injective.

Note that Rπ∗ ◦σ
∗ is not induced by the derived functor of π∗σ

∗, since an injective
sheaf of Λ-modules on topU • is not necessarily acyclic for π∗. 2

Corollary 4.6.5. We get an induced equivalence of categories

R(σ∗π
∗) : D+

e (XN,Λ) −→ D+
cart(U

N

• ,Λ),

for any sheaf of rings Λ on X
N
. If Λ is as in Example 4.1.3 and X is noetherian,

this equivalence further passes to an equivalence of categories

R(σ∗π
∗) : D+

c (X,A) −→ D+
c (U •, A).
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Proof. Apply the proposition to Example 4.6.3. 2

Now let f : U → V be a morphism in X, where both U and V are elements of U .
Then f gives rise to a morphism of c-topoi (topU •,X) → (top V •,X) of the first
kind. Hence we have an induced morphism f∗ : D+

cart(V •,Λ) → D+
cart(U •,Λ). So

considering U as a full subcategory of X, we get a fibered category

U 7−→ D+
cart(U •,Λ)

over U .

Proposition 4.6.6. There is an equivalence R(σ∗π
∗) of fibered categories over U ,

from D+
e (X,Λ) to U 7→ D+

cart(U •,Λ). Here we think of D+
e (X,Λ) as a constant

fibered category of U .

Proof. Let U, V ∈ U and let f : U → V be a morphism. We need to show that the
diagram

D+
e (X,Λ)

R(σ∗π∗)−→ D+
cart(U •,Λ)

R(σ∗π∗)ց ↑ f∗

D+
cart(V •,Λ)

naturally commutes. But there is a natural morphism θ : f∗ ◦ σ∗ ◦ π
∗ → σ∗ ◦ π

∗. We
wish to see that for M ∈ obD+

e (X,Λ) we get a quasi-isomorphism θ : f∗Rσ∗π
∗M →

Rσ∗π
∗M . This is easily reduced to the case M ∈ ob Mod(X,Λ), for which it is

clear. 2

5. Algebraic Stacks

5.1. Preliminaries on Algebraic Stacks. Throughout this section S will stand
for a noetherian scheme, which we will use as a base for our constructions.

Gerbe-Like morphisms. All relative algebraic group schemes (or spaces) will be as-
sumed to be of finite type. We will sometimes tacitly assume that a relative algebraic
group space is a group scheme. This is justified by the following Proposition.

Proposition 5.1.1. Let G→ S be a relative algebraic space of groups. Then there
exists a stratification S of S such that GV → V is a group scheme for every V ∈ S.
Proof. Without loss of generality G is flat overX and there exists an open subscheme
of G mapping onto S. Then from the homogeneous nature of G it is easily seen
that G is a scheme, using faithfully flat descent. 2

Proposition 5.1.2. Let G be a flat group space of finite presentation over the
scheme S. Then BG is smooth over S.

Proof. It is a result of Artin (see [1, Theorem 6.1]), that BG is an algebraic stack.
So it has a smooth presentation p : X → BG. The morphism p is induced by a
principal G-bundle P over X. The algebraic S-space P is faithfully flat of finite
presentation over X and smooth over S, as is obvious from the cartesian diagram

P −→ S
↓ ↓
X

p−→ BG.

But smoothness is local with respect to the fppf-topology (see [15]), so X is smooth
over S. 2



32 KAI A. BEHREND

Definition 5.1.3. Let f : X → Y be a morphism of algebraic S-stacks. We call f
gerbe-like, if f and ∆f : X → X ×Y X are flat epimorphisms of finite presentation.
Let f be gerbe-like. We call f diagonally connected, if ∆f has connected geometric
fibers.

Note 5.1.4. The property of being gerbe-like (respectively gerbe-like and diago-
nally connected) is local on the base with respect to the fppf-topology.

Proposition 5.1.5. Every gerbe-like morphism is smooth.

Proof. Since the properties of being gerbe-like or smooth are both local with respect
to the fppf-topology on Y we may assume that Y = Y is a scheme and that our
morphism has a section. Then X is a neutral gerbe over Y , hence isomorphic
to B(G/Y ), for a flat group space of finite presentation G over Y . Now we use
Proposition 5.1.2. 2

Definition 5.1.6. Let f : X → Y be a flat representable morphism of finite type
between algebraic S-stacks. We say that f has components (or that X has compo-
nents over Y), if f factors as X → Y′ → Y, where Y′ → Y is representable étale
and X→ Y′ is surjective with geometrically connected fibers.

Note 5.1.7. If f : X → Y has components, the S-stack Y′ in this definition is
uniquely determined by f . The morphism X → Y′ is a flat representable epimor-
phism. The property of having components is stable under base change and local
on the base with respect to the fppf-topology.

Example 5.1.8. Let G be and S-group space of finite type with connected fibers.
Let X be a flat S-space of finite type on which G acts in such a way that the graph
of the action G × X → X × X is an open immersion. Then X has components
(over S). In fact, the factorization X → X/G → S satisfies the requirements of
Definition 5.1.6.

Corollary 5.1.9. Let G be a flat S-group space of finite type. Then G has com-
ponents (over S) if and only if G◦ is representable. Here G◦ is the subsheaf of G
defined by

G◦(T ) = {g ∈ G(T ) | g(t) ∈ G◦t , for all t ∈ T},
for every S-scheme T (see Definition 3.1 in [10, Exp. VIB]).

Example 5.1.10. A smooth S-group scheme G of finite type has components. In
fact, according to Théorème 3.10 in [10, Exp. VIB], G◦ is representable if G is a
smooth group scheme.

Proposition 5.1.11. Let f : X→ Y be a gerbe-like morphism of algebraic S-stacks

such that ∆f has components. Then f factors in a unique fashion as X
g→ XY

h→ Y,
where g and h are gerbe-like, h is étale and g is diagonally connected.

Proof. Without loss of generality Y = Y is a scheme and f has a section. Then there
exists a flat group space of finite presentation G over Y such that X ∼= B(G/Y ).
Then f factors as BG → B(G/G◦) → Y . Now G/G◦ is étale over Y , so B(G/G◦)
is so, too. Moreover, we have a 2-cartesian diagram

BG◦ −→ Y
↓ ↓
BG −→ B(G/G◦)
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and BG◦ → Y is diagonally connected, so the same is true for BG→ B(G/G◦).
Conversely, assume that BG → Y factors as BG → Z → Y . Then Z → Y

has a section, given by the image of the section of BG → Y . Via this section,
Y ∼= B(G′/Y ), for some étale group space of finite presentation G′ over Y . Now
the morphism BG→ BG′ induces a morphism on the automorphism groups of the
canonical objects of BG(Y ) and BG′(Y ), respectively, in other words we get an
induced homomorphism G → G′, giving rise to the given morphism BG → BG′.
Consider the 2-cartesian diagram

G −→ G′

↓ ↓
BG

∆−→ BG×BG′ BG.

It shows that BG → BG′ being gerbe-like and diagonally connected implies that
G → G′ is an epimorphism with connected kernel. Then we have necessarily G′ ∼=
G/G◦. 2

Remark 5.1.12. Let f : X → X be gerbe-like such that ∆f has components and
where X is an algebraic S-space. Then X is the coarse moduli space of X. Let
X → X → X be the factorization given by the proposition. Then we call X the
Deligne-Mumford stack associated to X.

Devissage for Algebraic Stacks.

Remark 5.1.13. For a morphism f : X→ Y of algebraic S-stacks we define AutY X

by the 2-cartesian diagram

AutY X −→ X

↓ ↓ ∆

X
∆−→ X×Y X.

If Y → Y is a base change, then AutY X×Y Y = AutY (X ×Y Y ).
Now assume that AutY X → X is flat. Then f : X → Y factors uniquely as

X → X̃Y → Y, where X → X̃Y is gerbe-like and X̃Y → Y is representable. This is

easily seen by noting that for a presentation Y → Y of Y, the space X̃Y ×Y Y is
necessarily the coarse moduli space of X×Y Y .

Proposition 5.1.14. Let f : X → Y be a finite type morphism of algebraic S-
stacks. If X is non-empty, there exists a non-empty open substack X′ of X such that
AutY X′ is flat and has components over X′.

Proof. Without loss of generality, Y = S and X = BG, for a flat group scheme G
over S. Then AutY X ∼= G, at least locally, and it suffices to prove that there exists
a non-empty open subscheme S′ of S over which G◦ is representable. Without loss
of generality, S has characteristic p > 0. Consider the Frobenius F : G → G(p).
Let G′ be the image of F . Clearly, G◦ is representable if (G′)◦ is. Repeating this
process of passing to the image of Frobenius will eventually lead to a generically
smooth group scheme, as in the proof of the second devissage lemma, below. 2

Lemma 5.1.15. Let f : X → Y be a representable étale morphism of algebraic S-
stacks of finite type. Then there exists a non-empty open substack Y′ of Y such that
the pullback f ′ : X′ → Y′ of f to Y′ is finite étale.
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Proof. Without loss of generality X and Y are schemes. Then use the fact that f
is unramified to reduce to the case that f is separated. Then use Zariski’s Main
Theorem to conclude. 2

For the following two Devissage lemmas let all algebraic stacks considered be of
finite type over S.

Proposition 5.1.16 (First Devissage Lemma). Let P be a property of morphisms
of algebraic S-stacks of finite type. Assume that

i. Given a morphism f : X→ Y of algebraic S-stacks and an open substack U ⊂ X

with closed complement Z, then P holds for f if it holds for f |U : U → Y and
f |Z : Z→ Y.

ii. If two composable morphisms of algebraic S-stacks satisfy P , then so does their
composition.

iii. The property P holds for every representable morphism.
iv. The property P holds for every gerbe-like morphism whose diagonal has compo-

nents.

Then P holds for every morphism of finite type algebraic S-stacks.

Proof. Let f : X→ Y be a morphism of algebraic S-stacks. To prove that P holds
for f , by (i) and noetherian induction we may replace X by some open substack, so
we may assume that AutY X→ X is flat and has components, by Proposition 5.1.14.

Hence we have a factorization X→ X̃Y → Y of f as in Remark 5.1.13. Thus by (ii)

we are done, since X → X̃Y is gerbe-like with a diagonal having components and

X̃Y → Y is representable. 2

Proposition 5.1.17 (Second Devissage Lemma). Let P be a property of morphisms
of algebraic S-stacks of finite type. Assume that

i. Given a 2-cartesian diagram

X′
f ′

−→ Y′

v ↓ 2� ↓ u

X
f−→ Y

of algebraic S-stacks, where u is gerbe-like with ∆u having components, then P
holds for f if it holds for f ′.

ii. Given a morphism f : X→ Y of algebraic S-stacks and an open substack U ⊂ X

with closed complement Z, then P holds for f if it holds for f |U : U → Y and
f |Z : Z→ Y.

iii. If two composable morphisms of algebraic S-stacks satisfy P , then so does their
composition.

iv. The property P holds for every representable morphism.
v. The property P holds for the structure morphism B(G/X)→ X, for any smooth

group X-space G with connected fibers over a connected algebraic S-stack X.

Then P holds for every morphism of finite type algebraic S-stacks.

Proof. By the first Devissage we may assume that f : X → Y is gerbe-like and ∆f

has components. Factoring f as X→ XY → Y, where XY is as in Proposition 5.1.11,
we may consider two cases, firstly that AutY X has connected fibers and secondly
that AutY X is étale. Making the base change to X, which is allowed by (i), we
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may assume that X = B(G/Y), for a flat group space G over Y, such that G◦ is
representable.

Let us consider the first case, where AutY X has connected fibers. In characteristic
zero a flat group space with connected fibers is necessarily smooth (see for example
Corollaire 3.3.1 in [10, Exp. VIIB]). Since smoothness of G→ Y is an open property
in Y (see Proposition 2.5(i) in [10, Exp. VIB]), we may thus assume that Y is an

algebraic stack of characteristic p > 0. Let F : G→ G(p) be the Frobenius of G over
Y, H = kerF and G′ = imF . Then BG → Y factors through BG → BG′. This
morphism is gerbe-like, linked to H, a group scheme of height ≤ 1. (See Section 7
in [10, Exp. VIIA] for the definition of group schemes of height ≤ 1.) So using (i)
and (iii) we reduce to proving that P holds for BH → Y and BG′ → Y. Let us
assume for the moment that BH → Y has been dealt with, so that we may replace
G by G′. Repeating this process of passing to the image of Frobenius, will lead,
after a finite number of steps, to a group space G → Y that is generically smooth
(see Proposition 8.3 in [10, Exp. VIIA]). Again using the fact that smoothness of G
is an open property in Y, we are done, by (ii) and (iii). Let us now deal with the
case where G is a group scheme of height ≤ 1. Since G is finite, we may embed G
locally into an abelian scheme (see Theorem A.6 in Chapter III of [17]) and thus
reduce to (v). This finishes the proof in the first case.

Let us now do the second case, where AutY X is étale. By (ii) and Lemma 5.1.15
we may assume that G is finite étale. Letting π : G→ Y be the structure morphism,
we have that π∗OG is a vector bundle on Y and there is a natural monomorphism
G → GL(π∗OG). Thus BG → Y factors as BG → BGL(π∗OG) → Y. Now
GL(π∗OG) has connected fibers, so P holds for BGL(π∗OG)→ Y by the first case.
On the other hand, BG→ BGL(π∗OG) is representable. We are done by (iv). 2

Universal Homeomorphisms.

Definition 5.1.18. Let f : X → Y be a morphism of algebraic S-stacks which is
locally of finite type. First assume that f is representable. We call f a universal
homeomorphism, if for every scheme Y → Y the pullback fY : XY → Y is a universal
homeomorphism of schemes. Now drop the assumption that f be representable.
Then we say that f is a universal homeomorphism if there exists a commutative
diagram

X′

↓ ց
X

f−→ Y,

where X′ → X and X′ → Y are representable universal homeomorphisms.

Note 5.1.19. A representable universal homeomorphism if finite, radicial and sur-
jective.

Example 5.1.20. Let X be an algebraic S-stack of finite type and G/X a group
space of height ≤ 1. Then G→ X is a representable universal homeomorphism and
thus B(G/X)→ X is a universal homeomorphism.

5.2. The Étale Topos of an Algebraic Stack.
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The Flat Topos. Let S be a noetherian scheme. Let X be an algebraic S-stack.
Consider the site S(Xfl), defined as follows. The objects of S(Xfl) are pairs (U, f),
where U is an affine S-scheme and f : U → X is a morphism of algebraic S-stacks.
For two objects (U, f) and (V, g) a morphism from (U, f) to (V, g) is a pair (φ, θ),
where φ : U → V is a morphism of S-schemes and θ : f → g ◦ φ is a 2-isomorphism
in the 2-category of algebraic S-stacks. The topology on S(Xfl) is defined by calling
a sieve for (U, f) covering if it contains a finite family Ui → U of flat morphisms of
finite presentation such that

∐
Ui → U is surjective. We call the topos of sheaves

on S(Xfl) the fppf-topos associated to X and denote it by Xfl.
Consider the following category, which we shall call the category of X-spaces. The

objects of (X-spaces) are pairs (Y, f), where Y is a (not necessarily algebraic) S-
stack and f : Y → X is a faithful morphism of S-stacks. Recall that a morphism
f : Y → X is called faithful if for every S-scheme U the morphism of groupoids
f(U) : Y(U) → X(U) is a faithful functor. For two objects (Y, f) and (Z, g) of
(X-spaces) a morphism from (Y, f) to (Z, g) is an equivalence class of pairs (φ, θ),
where φ : Y → Z is a morphism of algebraic S-stacks and θ : f → g ◦ φ is a 2-
isomorphism of morphisms of algebraic S-stacks. Here we call two such pairs (φ, θ)
and (ψ, η) equivalent, if there exists an isomorphism ξ : φ→ ψ such that η = g(ξ)◦θ.
The category of X-spaces should be thought of as the category of S-stacks that are
relative sheaves over X.

Proposition 5.2.1. The category of X-spaces is canonically isomorphic to Xfl.

Proof. The site S(Xfl) is naturally a full subcategory of (X-spaces). The category
of X-spaces is a topos. Then conclude using the comparison lemma Théorème 4.1
from [2, Exp. III]. 2

Definition 5.2.2. Let Xalg be the full subcategory of (X-spaces) consisting of ob-
jects (Y, f) such that Y is an algebraic S-stack. We call Xalg the category of algebraic
X-spaces.

The Étale Topos. Fix an algebraic S-stack X. Let Xét be the full subcategory of
Xalg, whose objects are algebraic S-stacks that are étale over X.

Lemma 5.2.3. The category Xét is a topos. The open subtopoi of Xét correspond
bijectively to the open substacks of X. The points of X give rise to a conservative
set of points of Xét. If X is of finite type, then Xét is noetherian. Every morphism
f : X→ Y of algebraic S-stacks induces a morphism f : Xét → Yét of the associated
étale topoi.

Proof. The fact that Xét is a topos is standard, using our requirement that all
algebraic stacks be locally noetherian. The fact that étale morphisms are open
implies the claim concerning open subtopoi of Xét. The claim about points is implied
by the fact that a radicial étale epimorphism is an isomorphism. The finite type
objects of Xét form a generating family consisting of noetherian objects. Thus
Xét is noetherian, if X is of finite type. The claim about morphisms follows from
the fact that pullback commutes with fibered products and takes epimorphisms to
epimorphisms. 2

Lemma 5.2.4. Let i : Z → X be a closed substack of X and j : U → X the open
complement of Z. Consider U as an object of Xét. Then j∗ : Uét → Xét identifies Uét
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with the open subtopos of Xét defined by U. The functor i∗ : Zét → Xét identifies Zét

with the closed complement of this open subtopos of Xét.

Proof. The claim about j∗ is trivial. To prove the claim about i∗ we need to prove
two facts. Firstly, if F is an étale sheaf on Z then i∗i∗F → F is an isomorphism.
Secondly, if G is an étale sheaf on X such that G × U = U, then G → i∗i

∗G is
an isomorphism. Both of these statements are easily seen to be local in X, so we
may assume that X is a scheme. The first is a formal consequence of the fact that
Z×X Z = Z. The second is a formal consequence of the first and the following fact:
Let φ : F → G be a morphism of étale X-sheaves. If φ|U and φ|Z are isomorphisms,
then so is φ. This fact follows from the fact that the points of X form a conservative
family of points for Xét. 2

Note that, in particular, a nilpotent closed immersion induces an isomorphism
on the étale topoi.

Corollary 5.2.5. Let k : V → X be a locally closed immersion of algebraic S-
stacks. Then the induced morphism k : Vét → Xét is a locally closed immersion of
topoi. If k′ : V′ → X′ is a base change of k given by u : X′ → X, then k′∗(V

′
ét) is the

preimage of k∗(Vét) under the morphism of topoi u : X′ét → Xét.

Remark 5.2.6. If f : X → Y is a universal homeomorphism, then f : Xét → Yét

is an isomorphism of topoi. In other words, f∗ : Xét → Yét is an equivalence of
categories with quasi-inverse f∗.

Proposition 5.2.7. Let f : Y→ X be a representable étale morphism of algebraic
stacks. Then f represents an lcc-sheaf on Xét if and only if f is finite.

Proof. If Y is an lcc sheaf then f is finite, since finiteness is local with respect to
the étale topology. Conversely, assume that f is finite. Let n be the degree of f .
Making the base change from X to Y we may assume that f has a section. Then
Y = X

∐
Y′, where Y′ is finite étale of degree n− 1 over X. By induction Y′ is lcc,

thus Y is lcc, too. 2

Proposition 5.2.8. Let X be an algebraic S-stack of finite type. If F is a sheaf on
Xét then F is constructible if and only if F is represented by an étale morphism of
finite type f : Y→ X of algebraic S-stacks.

Proof. If F is represented by a finite type morphism f : Y → X, then F is con-
structible by Proposition 5.2.7 and Lemma 5.1.15. For the converse, let f : Y→ X

be representable, étale such that the induced sheaf on Xét is constructible. To prove
that f is of finite type it suffices to check that Y is quasi compact. But this is
easy. 2

Proposition 5.2.9. Let f : X → Y be a diagonally connected gerbe-like morphism
of algebraic S-stacks of finite type. Then f induces an isomorphism of étale topoi
Xét

∼→ Yét.

Proof. By faithfully flat descent, we may assume without loss of generality that
f admits a section and Y = S is a scheme. Then X is a neutral gerbe over S.
So there is an S-group G with connected fibers such that X = BG. The category
of representable étale BG-stacks is equivalent to the category of étale S-schemes
with G-action. But the only way a connected group can act on an étale scheme is
trivially. 2
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Corollary 5.2.10. Let X be an algebraic S-stack such that AutX → X is flat and
has components. Then the morphism of algebraic S-stacks X → X induces an iso-
morphism of associated étale topoi Xét → Xét. Here X is the associated Deligne-
Mumford stack (see Remark 5.1.12).

Proof. By construction, X→ X satisfies the requirements of the proposition. 2

5.3. The Smooth Topos. Let X continue to denote an algebraic S-stack. Let Y

be another algebraic S-stack and π : X→ Y a fixed morphism, which we assume to
be smooth and representable. We define the smooth site of X relative to Y, denoted
S(XY-sm), as follows.

Definition 5.3.1. The underlying category of S(XY-sm) is the full subcategory of
Xalg consisting of algebraic X-spaces that are smooth over Y. A sieve is called
covering if it contains a finite number of smooth morphisms whose images cover.
We denote by XY-sm the corresponding topos of sheaves and call it the smooth topos
of X relative to Y. If X = Y, then we set Xsm = XX-sm and call it the smooth topos
of X.

Note 5.3.2. The topos XY-sm may be considered as the induced topos (Ysm)/X
,

where X is considered as a (representable) sheaf on S(Ysm).

Remark 5.3.3. The inclusion functor S(XY-sm) → Xfl is clearly continuous. Thus
it induces a pseudo-morphism of topoi v : Xfl → XY-sm, such that v∗ extends the
embedding and v∗ associates to an X-space the induced sheaf on S(XY-sm). Note
that v∗ commutes with fibered products but is not fully faithful. Since S(XY-sm) is
not closed under fibered products, v is not a morphism of topoi.

Definition 5.3.4. A morphism φ : F → G in XY-sm is called étale, if for every
U ∈ ob S(XY-sm) and every s ∈ G(U) we have that F ×G,sU is representable (by an
object of S(XY-sm)) and F ×G,s U → U is an étale morphism of algebraic S-stacks.

Note 5.3.5. For φ : F → G to be étale it suffices that there exists and epimorphism
U → G, such that F ×G,s U → U is étale.

If φ : F → G is an étale epimorphism, then G is representable if and only if F is
representable.

Proposition 5.3.6. The set of étale morphisms is an e-structure (see Definition 4.6.1)
on XY-sm.

Thus for every object U of XY-sm, letting U be the category of sheaves that are
étale over U , we have a c-topos (U,U ). If U is in S(XY-sm), represented by the
algebraic stack U, then we have (U,U ) = (UY-sm,Uét).

Proposition 5.3.7. If X is a Deligne-Mumford stack, then (XY-sm,Xét) is a trivial
c-topos.

Proof. We need to show that π∗ : Xét → XY-sm is cocontinuous. This reduces to
proving that for every smooth representable epimorphism X′ → X there exists an
étale surjection X̃ → X over which X′ → X has a section. This follows from the
corresponding result for schemes using the fact that Deligne-Mumford stacks have
étale presentations. 2
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Remark 5.3.8. Let X be an algebraic S-stack of finite type and A a discrete val-
uation ring. Then the c-topos (Xsm,Xét) is noetherian by Lemma 5.2.3. So as in
Definition 4.4.15 we get the category Dc(Xsm, A) of constructible A-complexes on
Xsm. It is an A-t-category with heart Modc(Xét, A), the category of constructible
A-sheaves on Xét.

Remark 5.3.9. Let us see what happens if we change the topology on X. Consider
a commutative diagram

X
π−→ Y

π′ ց ↓ g

Y′,

where π and π′ are smooth and representable (so that g is smooth, too). We have a
natural embedding S(XY-sm) → S(XY′-sm), which is trivially at the same time time
continuous and cocontinuous. Thus we get an induced morphism of topoi

u : XY-sm → XY′-sm,

such that u∗ has a left adjoint u! : XY-sm → XY′-sm, which extends the embedding
S(XY-sm)→ S(XY′-sm). The functor u∗ restricts a sheaf from S(XY′-sm) to S(XY-sm).

Now consider 2-commutative diagrams of algebraic S-stacks

X
f−→ X′

π ↓ ↓ π′

Y
g−→ Y′

(5)

where π and π′ are smooth and representable. We will study to what extent f
induces a morphism of topoi from XY-sm to X′

Y′-sm.
First, let us consider the case where (5) is 2-cartesian. Pullback via f defines a

functor
f∗ : S(X′Y′-sm) −→ S(XY-sm).

This functor is continuous, in other words induces a functor

f∗ : XY-sm −→ X′Y′-sm,

given by f∗F (U) = F (f∗U), for a sheaf F ∈ ob XY-sm and an object U ∈ ob S(X′Y′-sm).
By Proposition 1.2 in [2, Exp. III] f∗ extends thus to a functor

f∗ : X′Y′-sm −→ XY-sm,

which is a left adjoint of f∗.
Let us now consider the case where in (5) we have Y = Y′. Then f may be

considered as a morphism in S(Ysm) or S(X′Y-sm). (Note that f is representable.)
So f induces a morphism of topoi f : XY-sm → X′Y-sm.

Finally, for treating the general case of (5), we may write f as a composition
of the second case followed by the first. We get a pair of adjoint functors (f∗, f∗)
between XY-sm and X′Y′-sm. In other words, we get a pseudo-morphism of topoi
fsm : XY-sm → X′

Y′-sm (see Remark 4.4.1).

Note 5.3.10. If in Diagram (5) X → Y′ is smooth and representable, then the
pseudo-morphism f : XY-sm → X′

Y′-sm may be factored as XY-sm → XY′-sm → X′
Y′-sm,

where XY-sm → XY′-sm is the morphism defined in Remark 5.3.9. In particular,
f : XY-sm → X′

Y′-sm is a morphism of topoi.
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Proposition 5.3.11. If f : X→ X′ is smooth, then f∗ is exact.

Proof. If f is representable, this follows from Note 5.3.10. For the general case,
let X → X be a presentation of X. Then the morphism u : XY-sm → XY-sm has the
property that if u∗ of a diagram is cartesian, the original diagram was cartesian.
This allows us to replace XY-sm → X′

Y′-sm by XY-sm → X′
Y′-sm. Then we are in the

representable case. 2

Warning 5.3.12. In general, f∗ is not exact. Consider, for example, the case
where X = Y, X′ = Y′ and f : X → X′ is a closed immersion of smooth varieties
over S = Spec k, k an algebraically closed field. Let s 6= 0 be a regular function on
X′, vanishing along X. Consider s as a homomorphism of group schemes s : A1

X′ →
A1

X′ . Then we may, in fact, consider s as a homomorphism of representable abelian
sheaves on S(X′sm). We have ker(s) = 0. Now pulling back to X, the morphism
f∗(s) : A1

X → A1
X is the zero homomorphism, and so ker(f∗(s)) = A1

X.

5.4. The Simplicial Approach. Let X be an algebraic S-stack and X → X a
presentation of X. Then we construct a simplicial algebraic space X• by setting
X∆n = Xn = X ×X X . . . ×X X︸ ︷︷ ︸

n+1

and by assigning projections to the face maps and

diagonals to the degeneracy maps, analogously to the construction of the Čech nerve
of a one-element covering. The simplicial algebraic space X• gives rise to a simplicial
topos X• ét, whose fiber over ∆n is the étale topos of Xn. The associated total topos
(see Section 4.1) is called the étale topos of X•, and is denoted top(X• ét) or by abuse
of notation X•ét, if no confusion is likely to arise.

By descent theory we have that X• ét,cart = Xét and so Xét defines a c-structure on
top(X• ét), which is noetherian if X is of finite type (see Lemma 5.2.3).

As in Example 4.1.3 we also get an associated simplicial topos XN
• ét

, whose fiber
over ∆n is XN

n ét
, the category of projective systems of sheaves on Xn ét. The associ-

ated total topos top(XN
• ét

) is canonically equivalent to top(X• ét)
N. The associated

topos of cartesian objects XN
• ét,cart is canonically equivalent to XN

ét. So we get a

c-topos (top(XN
• ét

),XN
ét) as in Example 4.4.5.

Now let f : X → Y be a morphism of algebraic S-stacks and f0 : X → Y a
morphism of presentations X → X and Y → Y such that the diagram

X
f0−→ Y

↓ ↓
X

f−→ Y

(6)

commutes. We get an induced morphism f• : X• → Y• of simplicial algebraic spaces,
an induced morphism of simplicial topoi f• : X• ét → Y•ét and an induced morphism
of the associated total topoi top(f•) : top(X• ét) → top(Y•ét). Clearly, f• induces a
morphism of the first kind of c-topoi

f• : (top(X• ét),Xét) −→ (top(Y• ét),Yét).

We also get an induced morphism of simplicial topoi fN
• : XN

• ét
→ Y N

• ét
inducing

a morphism of total topoi top(fN
• ) : top(XN

• ét
) → top(Y N

• ét
). Clearly, we have

top(fN
• ) = top(f•)

N, so we may just write fN
• instead. This morphism induces a

morphism of the first kind of c-topoi

fN
• : (top(XN

• ét
),XN

ét) −→ (top(Y N
• ét

),YN
ét).
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Now let f : X→ Y be representable and choose X → X such that the diagram (6)
is 2-cartesian. Let A′ be a ring whose characteristic is invertible on S. Then

f• : (top(X• ét),Xét) −→ (top(Y•ét),Yét)

is of the second kind with respect to A′. This follows immediately from the smooth
base change theorem.

Now let A be a discrete valuation ring whose residue characteristic is invertible
on S.

Remark 5.4.1. Let Λ = (A/ℓn+1)n∈N, which we may consider as a sheaf of A-
algebras on XN

ét and YN
ét. Then

fN
• : (top(XN

• ét
),XN

ét) −→ (top(Y N
• ét

),YN
ét)

is of the second kind with respect to Λ.

Assume now that S is of finite type over a regular noetherian scheme of dimension
zero or one.

Proposition 5.4.2. Let f : X → Y be a representable morphism of finite type
algebraic S-stacks. Then

f• : (top(X• ét),Xét) −→ (top(Y•ét),Yét)

induces a functor Rf•∗ : D+
c (X• ét, A) → D+

c (Y• ét, A) (still assuming that X is the
pullback of Y ).

Proof. Let F be a constructible sheaf of A-modules on Xét. Then there exists an
n such that F is a sheaf of A/ℓn+1-modules. Hence Rqf•∗F

• is a cartesian object
of top(Y•ét). Now F is represented by a representable étale morphism of finite
type F → X of algebraic S-stacks. Fix for the moment a p ≥ 0 and denote by
F p the pullback of F to Xp. There exists a q0 such that for all q ≥ q0 we have
Rqfp∗F

p = 0. By Deligne’s finiteness theorem (Théorème 1.1 of [8, Th. finitude.])
Rqfp∗F

p is constructible for all p,q, and thus represented by an étale Yp-scheme of
finite type. Fix q. Denote by Rqf∗F the finite type stack over Y defined by Rqf•∗F

•.
(N.B. This is not the derived functor of fét∗ : Mod(Xét, A) → Mod(Yét, A).) The
Y-space Rqf∗F is of finite type, hence constructible (see Proposition 5.2.8). The
claim follows. 2

The d-structures defined by the simplicial c-topos. Fix a presentation X → X of
the algebraic S-stack X. For any locally closed substack V of X denote by V → V

the induced presentation. By Corollaries 5.2.5 and 4.1.10 we have the following. If
X = U∪ Z is the disjoint union of an open substack U and a closed substack Z, then

top(U• ét) −→ top(X• ét) ←− top(Z• ét)
↓ 2� ↓ 2� ↓

Uét −→ Xét ←− Zét

are 2-cartesian diagrams. For every locally closed immersion V → X we have a
2-cartesian diagram

top(V•ét) −→ top(X• ét)
↓ ↓

Vét −→ Xét.

So (top(V• ét),Vét) is the induced c-topos (see Definition 4.5.2) over the locally closed
subtopos Vét ⊂ Xét.
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Let A be a discrete valuation ring whose residue characteristic is invertible on
S, which we assume to be of finite type over some noetherian regular scheme of
dimension zero or one. By Propositions 5.4.2 and 4.5.7 (and the note following it)
we get a tractable A-cd-structure

V 7−→ D+
lcc(V• ét, A) ⊂ D+

c (V• ét, A)

over the topological space |X|.

Corollary 5.4.3. In the situation of Proposition 5.4.2 the morphism f• : (top(X• ét),Xét)→
(top(Y• ét),Yét) is a morphism of c-topoi of the third kind with respect to A.

Proof. Proposition 5.4.2 says that f induces a tractable morphism of cd-structures.
Apply Lemma 3.2.12. 2

By Remark 5.4.1 and Example 4.5.6, we get an A-d-structure

V 7−→ D+
cart(V

N
• ét

,Λ)

over the topological space |X|, which induces an A-d-structure

V 7−→ D+
c (V• ét,Λ)

by Proposition 4.5.9.

5.5. The Smooth Approach.

Remark 5.5.1. Let us consider the topos XY-sm endowed with its étale e-structure
(see Proposition 5.3.6). Let U be the set of presentations of X, considered as a family
of objects of S(XY-sm). By Proposition 5.3.7 the family U satisfies the conditions
required of U in Section 4.6. So by Proposition 4.6.4 we get for any presentation
X → X of X that

σ∗π
∗ : D+

ét (XY-sm,Λ) −→ D+
cart(X• ét,Λ)

is an equivalence of categories, where Λ is any sheaf of rings on Xét. Note that σ∗ is
exact, so it is not necessary to derive σ∗π

∗.
We also get from Corollary 4.6.5 that

σ∗π
∗ : D+

c (XY-sm, A) −→ D+
c (X• ét, A)

is an equivalence of categories, for any discrete valuation ring A.

Note 5.5.2. Since we clearly have a morphism u∗ : D+
ét (XY-sm,Λ) → D+

ét (Xsm,Λ),
we get as a Corollary of Remark 5.5.1 that it is an equivalence of categories. So
for the definition of D+

ét (Xsm,Λ) it is immaterial with which smooth topos we work.
This is not the case, however, for the definition of direct image functors. As we
shall see, to define a direct image functor

Rf∗ : D+
ét (Xsm,Λ) −→ D+

ét (X
′
sm,Λ)

associated to a morphism of algebraic S-stacks f : X → X′, it is essential that, at
least over X′, we work with the absolute smooth topos, and not a relative one.

Now fix a ring A′, whose characteristic is invertible on S. Thus the smooth base
change theorem holds for étale sheaves of A′-modules over Deligne-Mumford stacks
over S.
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Lemma 5.5.3. Let f : X → Y be a representable morphism of algebraic S-stacks.
Let U → V be a morphism of smooth Y-schemes. Using notations as in the diagram

Z
h−→ U

v ↓ 2� ↓ u

W
g−→ V

t ↓ 2� ↓
X

f−→ Y

we have for any étale sheaf of A′-modules F on X the base change theorem that

u∗Rigét∗t
∗F
∼−→ Rihét∗v

∗t∗F (7)

is an isomorphism of étale U -sheaves for every i ≥ 0.

Proof. Let Y → Y be a smooth presentation of Y. It suffices to prove that (7) is an
isomorphism after making the base change to Y . Using notations as in the diagram

U ′ −→ V ′ −→ Y
↓ 2� ↓ 2� ↓
U −→ V −→ Y

this is easily proved by applying the smooth base change theorem for the four base
changes U ′ → U , V ′ → V , V ′ → Y and U ′ → Y . 2

Lemma 5.5.4. Let S be a site with topos of sheaves X. Let X be a full subcategory

of S such that (X,X, π) is a trivial c-topos. Let H be a presheaf on S and H̃ the

associated sheaf. Then π∗H̃ is the sheaf associated to π∗H.

Proof. This can be seen using the functor π! : X
∧ → S∧, which is a right adjoint

of π∗ : S∧ → X
∧
, and induces a functor π! : X → X. (Apply Proposition 2.2 of [2,

Exp. III] to X → S.) Here we denote by X
∧

and S∧ the categories of presheaves
on X and S, respectively. 2

Proposition 5.5.5. Let f : X → Y be a representable morphism of algebraic S-
stacks. Let X → X′ be a smooth representable epimorphism such that f factors
through X′. Let Y → Y be a presentation of Y, denote by fY : X → Y the corre-
sponding base change of f , and let F be an étale sheaf of A′-modules on X. Then
for every i ≥ 0 we have

RifX′-sm∗F |YY-sm = RifY ét∗FX

as sheaves on YY-sm. Here fX′-sm∗ denotes the direct image functor

fX′-sm∗ : Mod(XX′-sm, A
′) −→ Mod(Ysm, A

′).

In particular, RifX′-sm∗F is an étale Y-sheaf. (In other words,

f : (XX′-sm,Xét) −→ (Ysm,Yét)

is a morphism of c-topoi of the second kind with respect to A′.)

Proof. Consider the presheaf H on S(Ysm) given by

U 7−→ H i(f∗Uét, F ),

for U ∈ ob S(Ysm). Compare H with the presheaf H ′ given by

U 7−→ H i(f∗UX′-sm, F ).
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There is an obvious map H → H ′, which induces a bijection H(U) → H ′(U)
whenever (f∗UX′-sm, f

∗Uét) is a trivial c-topos, so whenever U is a scheme. Since the
schemes in S(Ysm) form a generating family, H → H ′ induces an isomorphism on

the associated sheaves. This proves that the sheaf H̃ associated to H is RifX′-sm∗F .
Now fix for the moment a U ∈ ob S(Ysm), such that U is a scheme. Since

(UY-sm, Uét) is a trivial c-topos, we have by Lemma 5.5.4 that H̃ restricted to Uét is
the sheaf associated to the presheaf

U ′ 7−→ H i(f∗U ′ét, F ),

which is none other than RifU ét∗F . Evaluating on global sections, we conclude that

H̃(U) = RifU ét∗F (U).

Now assuming we are given a morphism u : U → Y in S(Ysm), then we have by
Lemma 5.5.3 that

RifU ét∗F = u∗RifY ét∗F,

so that

H̃(U) = RifY ét∗F (U).

This is what we needed to prove. 2

Corollary 5.5.6. In the situation of the Proposition we have commutative dia-
grams of functors

D+
ét (XX′-sm, A

′)
RfX′-sm∗−→ D+

ét (Ysm, A
′)

σ∗π∗ ↓ ↓ σ∗π∗

D+
cart(X• ét, A

′)
Rf• ét∗−→ D+

cart(Y•ét, A
′)

and

D+
ét (X

N
X′-sm,Λ)

RfN

X′-sm∗−→ D+
ét (Y

N
sm,Λ)

σ∗π∗ ↓ ↓ σ∗π∗

D+
cart(X

N
• ét
,Λ)

RfN

• ét∗−→ D+
cart(Y

N
• ét

,Λ).

Let us now fix a finite type algebraic S-stack X. Choosing a presentation X of X,
recall that we have a d-structure on |X| assigning to the locally closed substack V of X

the t-category D+
cart(V• ét, A

′), where V• is the simplicial algebraic space defined by the
presentation V of V induced byX. Considering this d-structure as a fibered category
over lc |X|◦ using the direct image functors as in Remark 3.1.3, Corollary 5.5.6 shows
that we may define a fibered category over lc |X|◦ whose fiber over V ∈ ob lc |X|◦
is D+

ét (Vsm, A
′) and whose pullback functors are the direct image functors. This is

then obviously a d-structure on |X|.

Definition 5.5.7. The d-structure thus constructed is called the étale-smooth A′-
d-structure on X. We denote it by

V 7−→ D+
ét (Vsm, A

′)

or simply D+
ét (Xsm, A

′), by heavy abuse of notation.

Clearly, D+
lcc(Xsm, A

′) ⊂ D+
ét (Xsm, A

′) defines a cd-structure on |X|. It is tractable
as we saw in Section 5.4.
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Let A be a discrete valuation ring whose residue characteristic is invertible on S,
where S is of finite type over a regular base of dimension zero or one. In the same
way as above, Corollary 5.5.6 gives rise to an A-d-structure on |X|, given by

V 7−→ D+
ét (V

N
sm,Λ).

It passes to an A-d-structure

V 7−→ D+
c (Vsm, A),

by the results of Section 5.4. (As usual, Λ denotes the projective system Λ =
(A/ℓn+1)n.)

Definition 5.5.8. We call V 7−→ D+
c (Vsm, A) the constructible ℓ-adic d-structure

on X.

5.6. The Étale-Smooth cd-Structure. Let us continue with consequences of
Proposition 5.5.5.

Corollary 5.6.1. Let f : X → Y be an arbitrary morphism of algebraic S-stacks.
Then

(fsm, fét) : (Xsm,Xét) −→ (Ysm,Yét)

is a morphism of c-topoi of the second kind with respect to A′.

Proof. Let F be an étale sheaf of A′-modules on X and X → X a presentation of X.
Let X• be the corresponding simplicial algebraic space. Denote for every p ∈ N the
induced morphism by fp : Xp → Y. Let U ∈ ob S(Ysm). Then we get an induced
simplicial object X• ×X f

∗U in S(Xsm) and whence a spectral sequence

Ep,q
1 = Hq((Xp × f∗U)X-sm, F ) =⇒ Hp+q(f∗UX-sm, F ).

Note that Xp × f∗U = f∗pU , so that our spectral sequence may be written

Ep,q
1 = Hq(f∗pUX-sm, F ) =⇒ Hp+q(f∗UX-sm, F ).

Letting U vary and passing to the associated sheaf on S(Ysm), we get a spectral
sequence

Ep,q
1 = RqfpX-sm∗

F =⇒ Rp+qfsm∗F.

We conclude using Proposition 5.5.5 and the fact that fp is representable, for all
p ≥ 0. 2

Corollary 5.6.2. In the situation of Proposition 5.5.5 we have a commutative di-
agram of functors

D+
ét (XX′-sm, A

′)
RfX′-sm∗−→ D+

ét (Ysm, A
′)

πX∗ρ∗ ↓ ↓ πY ∗τ∗

D+(Xét, A
′)

Rfét∗−→ D+(Yét, A
′).

Here ρ∗ denotes the restriction of a sheaf from XX′-sm to XX′-sm and τ∗ denotes
the restriction of a sheaf from Ysm to YY-sm. Finally, πX : XX′-sm → Xét and
πY : YY-sm → Yét are the structure morphism of these two trivial c-topoi.
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Lemma 5.6.3. Let f : X → Y be a representable morphism of algebraic S-stacks
and g : Y → Z a further morphism of algebraic S-stacks. Let Y be presentation
of Y and X the induced presentation of X, giving rise to the following diagram of
functors

XX-sm

fsm∗−→ YY-sm

a∗ ↑ ↑ b∗ ց gsm∗

Xsm

f̃sm∗−→ Ysm

g̃sm∗−→ Zsm.

Then for every M ∈ obD+
ét (Xsm, A

′) the natural homomorphism

Rgsm∗Rfsm∗a
∗M −→ R(g ◦ f)sm∗a

∗M

is an isomorphism. Here (g ◦ f)sm∗ is the direct image functor from XX-sm to Zsm.

Proof. Letting u : Z → Z be a presentation of Z, it suffices to prove that

u∗Rgsm∗Rfsm∗a
∗M −→ u∗R(g ◦ f)sm∗a

∗M

is an isomorphism. This may be proved by applying Corollary 5.6.2 to the repre-
sentable morphisms Y → Z, X → Z and X→ Y, using notations as in

X ′ −→ Y ′

↓ 2 ↓ ց
X −→ Y 2 Z
↓ 2 ↓ ց ↓
X −→ Y −→ Z.

One reduces to the composition X ′ét → Y ′ét → Zét of honest morphisms of topoi. 2

Proposition 5.6.4. Let f : X→ Y be a morphism of algebraic S-stacks. Then for
every g : Y→ Z and any M ∈ obD+

ét (Xsm, A
′) the canonical morphism

Rgsm∗Rfsm∗M −→ R(g ◦ f)sm∗M

is an isomorphism. Here we endow all three stacks X, Y and Z with their absolute
smooth topoi.

Proof. We will use the first devissage lemma (Proposition 5.1.16). Thus we have to
check four facts.

Let us first prove that the proposition holds when f is smooth. In this case fsm∗

has an exact left adjoint, so it takes injective sheaves of A′-modules to injective
sheaves of A′-modules. So the proposition holds even for M ∈ obD+(Xsm, A

′).
Secondly, let us assume that f is representable. Let Y be a presentation of Y and

X the induced presentation of X. Let X• and Y• be the corresponding simplicial
algebraic spaces and use notations as in the diagram

Xp
fp−→ Yp

↓ ↓ ց gp

X
f−→ Y

g−→ Z,

with hp = gp ◦ fp and h = g ◦ f . For every M ∈ obD+(Ysm, A
′) we have a spectral

sequence

Ep,q
1 = hqRgpY-sm∗

(M |YpY-sm
) =⇒ hp+qRgsm∗M. (8)
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Letting M ∈ obD+(Xsm, A
′), and applying (8) to Rfsm∗M , we get a spectral se-

quence in Mod(Zsm, A
′)

Ep,q
1 = hqRgpY-sm∗

(Rfsm∗M |YpY-sm
) =⇒ hp+qRgsm∗Rfsm∗M.

Now by Lemma 5.6.3 we have

RgpY-sm∗
(Rfsm∗M |YpY-sm

) = RhpX-sm∗
(M |XpX-sm

),

so that our spectral sequence reads

Ep,q
1 = hqRhpX-sm∗

(M |XpX-sm
) =⇒ hp+qRgsm∗Rfsm∗M.

But this sequence abuts to hp+qRhsm∗M which proves our claim.
As third part let us consider a diagram

U

j ↓ ց g

X
f−→ Y

h′

−→ Y′

i ↑ ր h

Z

and assume that the proposition holds for g and h. To prove it for f , let M ∈
obD+

ét (Xsm, A
′). We have a distinguished triangle in D+

ét (Xsm, A
′)

Rj∗j
∗M

ւ տ
i∗Ri

!M −→ M,

using the étale-smooth A′-d-structure on X (see Definition 5.5.7). Since we al-
ready proved the proposition for immersions, we derive a distinguished triangle in
D+

ét (Ysm, A
′)

Rg∗j
∗M

ւ տ
Rh∗Ri

!M −→ Rf∗M,

and one in D+
ét (Y

′
sm, A

′)

R(h′g)∗j
∗M

ւ տ
R(h′h)∗Ri

!M −→ R(h′f)∗M.

Applying Rh′∗ to the first one and comparing with the second one we get the result.
Finally, it is a pure formality that the proposition holds for f ′ ◦ f : X → X′′ if it

holds for f : X→ X′ and f ′ : X′ → X′′. 2

Corollary 5.6.5. Let f : X→ Y and g : Y→ Z be morphisms of algebraic S-stacks.
Then for every M ∈ obD+

ét (X
N
sm,Λ) the canonical morphism

RgN
sm∗Rf

N
sm∗M −→ R(gf)N

sm∗M

in D+
ét (Z

N
sm,Λ) is an isomorphism.
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Let f : X → Y b a morphism of algebraic S-stacks. If we have a commutative
diagram

X
f0−→ Y

↓ ↓
X

f−→ Y,

(9)

where X → X and Y → Y are presentations, then the isomorphism of Remark 5.5.1
allows us to define a functor

f∗ : D+
ét (Ysm, A

′)→ D+
ét (Xsm, A

′),

which arises via transport of structure from

f∗• ét
: D+

cart(Y• ét, A
′)→ D+

cart(X• ét, A
′).

Similarly, the diagram (9) defines a functor

fN∗ : D+
ét (Y

N
sm,Λ)→ D+

ét (X
N
sm,Λ).

Proposition 5.6.6. In this way every diagram (9) gives rise to a left adjoint of

Rf∗ : D+
ét (Xsm, A

′)→ D+
ét (Ysm, A

′)

and of

RfN
∗ : D+

ét (X
N
sm,Λ)→ D+

ét (Y
N
sm,Λ).

Proof. If f is smooth, then fsm : Xsm → Ysm and fN
sm : XN

sm → YN
sm are morphism

of c-topoi of the first kind. Thus f∗sm and fN
sm

∗
give rise to left adjoints as required.

That they are compatible with the pullback functors arising from diagram (9) is
easily proved using similar arguments as in Proposition 4.6.6.

If f is representable, then f•ét : topX•ét → topY•ét and fN
• ét

: top(X• ét)
N →

top(Y•ét)
N are morphisms of c-topoi of the first and second kind. Thus f•ét∗ and

fN
• ét∗ are right adjoints of our pullback functors and so the proposition follows from

Corollary 5.5.6.
Let f : X → Y and g : Y → Z be morphisms of algebraic S-stacks and assume

that the Proposition holds for f and g. That the proposition then holds also for
g ◦ f follows easily from Proposition 5.6.4 and its Corollary 5.6.5.

Now let X be the disjoint union of a closed substack i : Z → X and its open
complement j : U → X. Let us assume that the proposition holds for f ◦ i and
f ◦ j. Let M ∈ obD+

ét (Xsm, A
′). We get distinguished triangles in D+

ét (Xsm, A
′) and

D+
ét (Ysm, A

′)

Rj∗j
∗M

ւ տ
i∗Ri

!M −→ M,

R(fj)∗j
∗M

ւ տ
R(fi)∗Ri

!M −→ Rf∗M.

Apply Hom(f∗N, · ) to the first and Hom(N, · ) to the second to get the required
result.

Finally, the proposition now follows from the first devissage lemma Proposi-
tion 5.1.16. 2

So from now on we denote by f∗ any left adjoint of Rf∗ : D+
ét (Xsm, A

′) →
D+

ét (Ysm, A
′).
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Corollary 5.6.7 (Smooth base change). Consider a 2-cartesian diagram of S-stacks

X′
f ′

−→ Y′

v ↓ ↓ u

X
f−→ Y,

where Y′ → Y is smooth. Then for every M ∈ obD+
ét (Xsm, A

′) we have a canonical
isomorphism

u∗Rf∗M
∼−→ Rf ′∗v

∗M.

A similar statement holds for objects of D+
ét (X

N
sm,Λ).

Proof. First of all, the base change homomorphism exists since we have all the
adjoint and composition properties needed for its definition, by Propositions 5.6.4
and 5.6.6. To prove that it is an isomorphism it suffices to consider the case that
M = F is an étale sheaf of A′ modules on X. Clearly, we may also assume u : Y′ → Y

to be representable.
Let us first consider the case that f is representable. Choose a cartesian diagram

of presentations

Y ′
u′

−→ Y
↓ ↓
Y′

u−→ Y,

and let

X ′
v′−→ X

↓ ↓
X′

v−→ X

be the pullback via f . It suffices to prove that we have an isomorphism after pullback
to Y ′. This is easily reduced to the usual smooth base change theorem by applying
Proposition 5.5.5 to the morphism f : X→ Y and the presentations Y and Y ′ of Y,
respectively.

Now the general case can be proved using the spectral sequence

Ep,q
1 = Rqfp∗F =⇒ Rp+qf∗F,

associated to a presentation X → X, where fp is the induced map Xp → Y. 2

5.7. The ℓ-Adic d-Structure. Let f : X→ Y be a morphism of algebraic S-stacks
of finite type. From Propositions 5.6.4 and 5.6.6 it is now clear that f induces a
morphism of the étale-smooth A′-cd-structures on X and Y. We also get a morphism
from the d-structure V 7→ D+

ét (V
N
sm,Λ) on X to the d-structure W 7→ D+

ét (W
N
sm,Λ) on

Y. Our goal is to prove that it passes to the constructible ℓ-adic d-structures. For
this it will be essential that the morphism of the étale-smooth Λ0-cd-structures is
tractable. To prove this (Theorem 5.7.10) we need some preliminaries.

If not indicated otherwise we think of algebraic S-stacks as endowed with their
étale-smooth A′-cd-structure. For a morphism of algebraic stacks we will denote
the induced morphism of étale-smooth cd-structures by the same letter.
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Closed L-Stratifications. We will need L-stratifications satisfying an additional hy-
pothesis.

Definition 5.7.1. Let X be an algebraic S-stack of finite type and A a ring. We
call a family L of simple lcc sheaves of A-modules on Xét closed, if for every finite
family L1, . . . Ln of elements of L the tensor product L1⊗. . .⊗Ln has Jordan-Hölder
components isomorphic to elements of L.

Clearly, intersections of closed families of simple lcc sheaves of A-modules are
closed.

Lemma 5.7.2. Let f : Y → X be a finite étale morphism of algebraic S-stacks of
finite type. Then the set of isomorphism classes of simple lcc sheaves of A-modules
on Xét that are trivialized by Y is finite.

Proof. We may assume that f is a principal bundle with finite structure group G.
Let k be the residue field of A. Any simple object of Modlcc(Xét, A) is in fact a sheaf
of k-vector spaces. So the simple lcc modules trivialized by Y are equivalent to
simple finite left k[G]-modules. Every simple module over k[G] is cyclic and hence
isomorphic to k[G]/m, where m is a maximal left ideal of k[G]. But these are finite
in number. 2

Corollary 5.7.3. Let L be a finite family of simple lcc sheaves of A-modules on

Xét. Then there exists a finite such family L̃ containing L, which is closed. The

smallest such L̃ is called the closed hull of L.

Proof. Let Y be a finite étale cover of X, trivializing all elements of L. Then let L̃
represent the set of all simple lcc sheaves on X, trivialized by Y. 2

Definition 5.7.4. A pre-L-stratification (S,L) of Xét is called closed, if for every
V ∈ S the set of lcc sheaves L(V) is closed on Vét.

Lemma 5.7.5. Every L-stratification of Xét admits a refinement which is a closed
L-stratification.

Proof. Going through the proof of Lemma 3.2.6, we notice that after we refine
(S,L) to an L-stratification over U ∪ V (in the notation of loc. cit.) we may pass
to the closed hull of L(V ) and thus ensure that all L(V ) become closed. 2

Consider the following setup. Let S be a scheme of finite type over a regular
scheme of dimension zero or one, and k a finite field, whose characteristic is invertible
on S. Let π : G→ X be a smooth group X-space with connected fibers, where X is
an algebraic S-stack of finite type. Assume that the relative dimension d of G over
X is constant.

We know that Rpπ∗k is a constructible sheaf of k-vector spaces on Xét, for q =
0, . . . , 2d and zero for q > 2d (see for example Corollary 5.6.7). Let us in fact assume
that Rqπ∗k is lcc, for every q ≥ 0. Let L0 be a finite set of simple lcc sheaves of
k-vector spaces on Xét such that the Rqπ∗k are trivialized by L, meaning that the
Jordan-Hölder components of Rqπ∗k are isomorphic to elements of L, for all q ≥ 0.
Now let F be an lcc sheaf of k-vector spaces on Xét, and L a finite set of simple
lcc sheaves of k-vector spaces on Xét such that F is trivialized by L. Assume that
L0 ⊂ L and that L is closed.
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We introduce the following notation. Let G0 = X and Gn = Gn−1 ×X G, for
n ≥ 1, and let πn : Gn → X be the structure morphism. The pullback of F via πn

to Gn will be denoted by Fn.

Lemma 5.7.6. For every n ≥ 0 the sheaf of k-vector spaces Rqπn∗(Fn) is lcc and
trivialized by L, for every q ≥ 0.

Proof. We will proceed by induction on n, the case n = 0 being trivial. For n ≥ 1
consider the following cartesian diagram of algebraic S-stacks

Gn
p2−→ Gn−1

p1 ↓ ↓ πn−1

G
π−→ X.

By the smooth base change theorem (Corollary 5.6.7) we have

Rqp1∗Fn = π∗Rqπn−1∗(Fn−1),

for every q ≥ 0. So the E2-term of the Leray spectral sequence of the composition
πn = π ◦ p1 is given by

Ep,q
2 = Rpπ∗R

qp1∗Fn

= Rpπ∗π
∗Rqπn−1∗(Fn−1)

= Rpπ∗k ⊗k R
qπn−1∗(Fn−1)

by the projection formula, which we may apply since Rqπn−1∗(Fn−1) is locally free,
by the induction hypothesis. Since we have assumed Rpπ∗k to be lcc, trivialized by
L, the induction hypothesis implies that Ep,q

2 is also trivialized by L, for all p, q.
Passing through the spectral sequence the claim follows. 2

Now consider the classifying stack BG = B(G/X) of G. Denote the structure
morphism by f : BG→ X.

Corollary 5.7.7. Let L be as above. Let M ∈ obD+
lcc(BGsm, k) be trivialized by L.

Then Rf∗M is an object of D+
lcc(Xsm, k), trivialized by L.

Proof. First note that without loss of generality we may assume M = F to be an
étale sheaf on BG, which comes from X by Proposition 5.2.9. Then we need only
apply the spectral sequence

Ep,q
1 = Rqπp∗Fp =⇒ Rp+qfsm∗(f

∗F ),

which is just the spectral sequence of Čech cohomology associated to the one-object
covering X→ BG of BG, given by the universal G-torsor. 2

Some more auxiliary results.

Lemma 5.7.8. Let f : X→ Y be a universal homeomorphism. Then the functor

Rf∗ : D+
ét (Xsm, A

′) −→ D+
ét (Ysm, A

′)

is an equivalence of categories with quasi-inverse f∗.

Proof. By Remark 5.2.6 this reduces to proving that Rif∗F = 0, for i > 0 and
F an étale sheaf on X. This, on the other hand, reduces by Proposition 5.6.4
to the representable case. But then by Corollary 5.6.7 we may base change to a
presentation of Y and use the étale topology to compute Rif∗F . Then we are done
since f is finite. 2
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Lemma 5.7.9. Let f : X→ Y be gerbe-like such that ∆f has components and A any
ring. Then for any pre-L-stratification (S,L) of X there exists a pre-L-stratification
(S ′,L′) of Y, such that for a sheaf of A-modules F on Yét we have that f∗F being
(S,L)-constructible implies that F is (S ′,L′)-constructible.

Proof. Choose a maximal element V of S. Then V → X is an open immersion and
V → Y is smooth. Let V ′ ⊂ Y be the image of V in Y, which is an open substack
of Y, and let Y′ be a closed complement of V ′ in Y. Then is suffices to prove the
lemma for V → V ′ and the pullback of f via Y′ → Y. So by noetherian induction
we reduce to the case that S contains only one stratum.

Let L(X) = {L1, . . . , Ln}. Let L1, . . . , Ls be those elements of L(X) that come
via f∗ from Y. Choose M1, . . . ,Ms such that f∗Mi = Li, for i = 1, . . . , s. Then
set S ′ = {Y} and L′(Y) = {M1, . . . ,Ms}. Now the claim follows from the fact that
a simple lcc sheaf of A-modules on Yét remains simple after pullback to X. This
follows from the following two facts.

i. f∗ : Mod(Yét, A)→ Mod(Xét, A) is fully faithful.
ii. For every F ∈ ob Mod(Xét, A) the adjunction homomorphism f∗f∗F → F is a

monomorphism.

Fact (i) follows easily using descent theory from the fact that ∆f : X → XYX is
a flat epimorphism. To prove (ii) we may factor X → Y as X → X′ → Y, where
X → X′ is gerbe-like with connected fibers of the diagonal and X′ → Y is étale
(see Proposition 5.1.11). Since X → X′ induces an isomorphism of étale topoi
(Proposition 5.2.9), we are reduced to the étale case. Then it is not very hard to
prove (ii) using (i). 2

The Main Theorem. Let k be a finite field whose characteristic is invertible on S,
which is a scheme of finite type over some noetherian regular base of dimension zero
or one.

Theorem 5.7.10. For every morphism of finite type algebraic S-stacks the in-
duced morphism of étale-smooth k-cd-structures is tractable. (See Definitions 5.5.7
and 3.2.10.)

Proof. We will use the second devissage lemma (Proposition 5.1.17). By Lemma 5.7.9
condition (i) is satisfied by our property. Conditions (ii) and (iii) are satisfied by
general theory of tractable morphisms of cd-structures, in particular Lemma 3.2.11.
The theorem holds for representable morphisms by Proposition 5.4.2.

So let us assume that we are in case (v) and use notation as in Lemma 5.7.6
and Corollary 5.7.7. Note that by Proposition 5.2.9 L-stratifications of X and BG
coincide. Let (S,L) be a closed L-stratification of X such that for every stratum
V ∈ S we have that RiπV∗k is lcc, trivialized by L(V), for all i. We claim that
if M ∈ obD+

(S,L)(BGsm, k), then Rf∗M is (S,L)-constructible. This reduces to

the case M ∈ ob Mod(S,L)(BGét, k), so that we may assume that M = f∗F , for an
(S,L)-constructible sheaf of k-vector spaces on Xét. To prove that Rf∗f

∗F is (S,L)-
constructible, we may pass to the strata of S (using Lemma 3.2.8) and thus assume
that X contains only one stratum. Then we are in the case of Corollary 5.7.7. 2

Now let A be a discrete valuation ring with residue field k and parameter ℓ. Note
that by Nakayama’s lemma every simple lcc sheaf of A-modules is a sheaf of k-vector
spaces. Thus L-stratifications with respect to A and with respect to k coincide.
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Proposition 5.7.11. Let f : X → Y be a morphism of finite type algebraic S-
stacks. Let (S,L) be an L-stratification of Xét and (S ′,L′) an L-stratification of Yét

such that under

Rf∗ : D+
ét (Xsm, k) −→ D+

ét (Ysm, k)

the (S,L)-constructible objects map to (S ′,L′)-constructible objects. (Existence of
(S ′,L′) is guaranteed by Theorem 5.7.10 and Lemma 3.2.12.) Then the functor
Rf∗ : D+(Xsm, A) → D+(Ysm, A) maps (S,L)-constructible objects to (S ′,L′)-
constructible objects.

Proof. Let M ∈ obD+
(S,L)(Xsm, A). To prove that Rf∗M ∈ obD+

(S′,L′)(Ysm, A), we

may assume that M = F is an étale sheaf on X. Induction on the length of the
ℓ-adic filtration of F reduces to the case that F is a sheaf of k-vector spaces. Then
we are done, since the derived functors of f∗ commute with restriction of scalars as
was noted in Remark 4.4.1. 2

Corollary 5.7.12. Let f : X→ Y be a morphism of finite type algebraic S-stacks.
Then f : (Xsm,Xét) −→ (Ysm,Yét) is a morphism of c-topoi of the third kind with
respect to A.

By this corollary the functor

RfN
∗ : D+

ét (X
N
sm,Λ)→ D+

ét (Y
N
sm,Λ)

passes as in Remark 4.4.18 to an ℓ-adic derived functor

Rf∗ : D+
c (Xsm, A) −→ D+

c (Ysm, A)

between the categories of constructible A-complexes on Xsm and Ysm, respectively.

Proposition 5.7.13. Let

fN∗ : D+
ét (Y

N
sm,Λ)→ D+

ét (X
N
sm,Λ)

be a left adjoint of
RfN

∗ : D+
ét (X

N
sm,Λ)→ D+

ét (Y
N
sm,Λ)

constructed as in Proposition 5.6.6. Then the induced functor

f∗ : D+
c (Ysm, A) −→ D+

c (Xsm, A)

is a left adjoint of

Rf∗ : D+
c (Xsm, A) −→ D+

c (Ysm, A).

Proof. This is a straightforward, if tedious, check. (Compare Remark 2.1.5.) 2

Corollary 5.7.14 (Smooth base change). Let f ′ : X′ → Y′ be induced by a smooth
base change u : Y′ → Y. Then we have natural isomorphisms

u∗Rf∗M
∼−→ Rf ′∗v

∗M,

for every M ∈ ob D+
c (Xsm, A). Here v is the morphism v : X′ → X.

Proof. This follows immediately from Corollary 5.6.7. 2

Remark 5.7.15. It is now clear that a morphism of finite type algebraic S-stacks
f : X → Y induces a morphism of the constructible ℓ-adic d-structures on X and
Y, respectively (see Definition 5.5.8). So we have finally achieved our main goal of
constructing an ℓ-adic formalism for algebraic stacks. Additional properties enjoyed
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by our ℓ-adic formalism are smooth base change (Corollary 5.6.7) and the fact that
a universal homeomorphism f : X→ Y induces an equivalence of categories

Rf∗ : D+
c (Xsm, A) −→ D+

c (Ysm, A),

with quasi-inverse f∗. Moreover, if X is a Deligne-Mumford stack, then

D+
c (Xsm, A) = D+

c (Xét, A).

Remark 5.7.16. Another consequence of Corollary 5.7.12 is that we have a com-
mutative diagram

D+
c (Xsm, A) −→ D+

c (Ysm, A)
σ∗π∗ ↓ ↓ σ∗π∗

D+
c (X• ét, A) −→ D+

c (Y•ét, A).

Thus every finite type algebraic S-stack X gives rise to a tractable cd-structure
D+

c (Xsm, A), and every morphism of finite type algebraic S-stacks defines a tractable
morphism of these cd-structures. So we get a theory analogous to the ℓ-adic theory
of Remark 5.7.15.

5.8. Purity and Extraordinary Pullbacks.

Definition 5.8.1. We call an ℓ-adic lcc sheaf M on the topos X torsion free, if for
every n ∈ N the sheaf of Λn-modules Mn on X is locally free.

Let M be a torsion free ℓ-adic lcc sheaf on X. Then the A-linear functor

⊗Λ M : Mod(XN,Λ) −→ Mod(XN,Λ)

is exact and maps AR-null modules to AR-null modules. If (S,L) is a closed L-
stratification of X such that M is (S,L)-constructible, then ⊗ΛM also preserves
(S,L)-constructability. So if (X,X) is a c-topos and M a torsion free ℓ-adic lcc
sheaf on X , then we get an induced functor

⊗Λ M : Dc(X,A) −→ Dc(X,A),

at least if we assume that every L-stratification can be refined to a closed L-
stratification.

Now let S be a scheme and n a natural number, invertible on S. Then µn,
the S-scheme of n-th roots of unity, is finite étale over S, hence is an lcc sheaf of
abelian groups on Sét. Let A be a discrete valuation ring with finite residue field of
characteristic invertible over S and with parameter ℓ. Let l be the rational prime
number that ℓ divides. Let us set

µℓn+1 = A⊗Z µln+1.

Then (µℓn+1)n∈N is a torsion free ℓ-adic lcc sheaf on Sét which we denote by Λ(1).
we will also denote by Λ(1) the pullback to any algebraic S-stack.

Similarly, we define

µ⊗m
ℓn+1 = A×Z µ

⊗m
ln+1,

for any m ∈ Z and denote the ℓ-adic sheaf (µ⊗m
ℓn+1) by Λ(m).

Definition 5.8.2. Let X be an algebraic S-stack. For an object M ∈ ob Dc(Xsm, A)
we write M(1) for M ⊗Λ Λ(1), and call it the Tate twist of M . We define M(n) =
M ⊗Λ Λ(n) and note that M(n)(m) = M(n +m).
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Proposition 5.8.3 (Purity). Let Y be an algebraic S-stack of finite type. Let Z

and X be algebraic S-stacks endowed with smooth finite type morphisms f : Z → Y

and gX→ Y. Let i : Z→ X be a closed immersion over Y. Let c be the codimension
of Z in X, which is a locally constant function on |Z| with values in N. Then for any
object M of D+

lcc(Xsm, A) we have a canonical isomorphism

i∗M(−c)[−2c]
∼−→ Ri!M

in D+
lcc(Zsm, A).

Proof. Choose a presentation Y → Y of Y. Then let X → X×YY be a presentation,
which induces a presentation X → X of X. Let Z → Z be the induced presentation
of Z. Let Z• and X• be the simplicial algebraic spaces given by these presentations of
Z an X, respectively. Note that for every p ∈ N the scheme Zp is a closed subscheme
of Xp and ip : Zp → Xp is a smooth Y -pair of codimension c. Hence we have for
any lcc sheaf F of A′-modules on Xét that

Rqi!p(F |Xp) =

{
0 for q 6= 2c
i∗pF (−c) for q = 2c.

(10)

We will work with fibered topoi over ∆◦ × N.
We have a closed immersion of topoi

i : top(Z• ét)
N −→ top(X• ét)

N

as in Proposition 4.1.8. Hence we have a natural homomorphism

i∗RHom(Λ,M) −→ RHom(Ri!Λ, Ri!M) (11)

for every M ∈ obD+(X•
N
ét,Λ). (This homomorphism is the adjoint of

RHom(Λ,M) −→ i∗RHom(Ri!Λ, Ri!M),

which is the derivative of

Hom(Λ,M) −→ i∗Hom(i!Λ, i!M).)

Now by (10), we have Ri!Λ = Λ(−c)[−2c], so the homomorphism (11) gives rise to

i∗M −→ Ri!M(c)[2c].

Our goal is to prove that this is an isomorphism if hpM is lcc, for all p. But it suffices
to do this after application of hp, so it follows from (10), and the fact that Ri! and
Tate twists may be calculated componentwise over ∆◦ × N (see Proposition 4.1.8).
Note that, in particular, Ri!M is lcc. we get an induced isomorphism

i∗M −→ Ri!M(c)[2c]

in D+
lcc(Z• ét, A) = D+

lcc(Zsm, A). 2

Remark 5.8.4. Consider a 2-cartesian diagram

Z′
i′−→ X′

v ↓ 2� ↓ u

Z
i−→ X

(12)

of finite type algebraic S-stacks, where i is a closed immersion and u is smooth
representable. Then we have

v∗ ◦ Ri! = Ri′
!
◦ u∗
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as functors from D+
c (Xsm, A) to D+

c (Z′sm, A). This is a formal consequence of the
smooth base change theorem for Rj∗, where j : U→ X is the open complement of Z

(see Corollary 5.7.14).

Corollary 5.8.5. In the situation of Proposition 5.8.3 we have for every M ∈
ob D+

c (Ysm, A) that

f∗M(−c)[−2c] = Ri!g∗M.

Proof. Choose an L-stratification (S,L) of Y such that M ∈ ob D+
(S,L)

(Ysm, A). As

in the proof of the proposition we get a canonical homomorphism

f∗M(−c)[−2c] −→ Ri!g∗M.

To prove it is an isomorphism, we may pass to the strata of Y using extraordinary
pullbacks, by Remark 5.8.4. Then we are reduced to the case considered in the
proposition. 2

Definition 5.8.6. We call a morphism f : X→ Y of finite type algebraic S-stacks
an elementary embeddable morphism, if f is a closed immersion, a representable uni-
versal homeomorphism or a smooth representable morphism. We call f embeddable,
if it may be factored into a finite number of elementary embeddable morphisms.

Note that, by definition, embeddable morphisms are representable. Compositions
and base changes of embeddable morphisms are embeddable.

Proposition 5.8.7. Let X be an algebraic S-stack of finite type and x : Speck → X

a finite type point of X. Then x is embeddable.

Proof. Using similar tricks as in the proof of the second devissage lemma (Proposi-
tion 5.1.17) we reduce to the following considerations. If X → Spec k is a scheme,
then any section is a locally closed immersion, hence embeddable. Let G be a
smooth group scheme over k. Then Speck → BG is smooth and representable,
hence embeddable. 2

Definition 5.8.8. Let f : X → Y be an embeddable morphism of algebraic S-
stacks. Then we define

Rf ! : D+
c (Ysm, A) −→ D+

c (Xsm, A)

as follows. If f is a closed immersion, Rf ! is any right adjoint of Rf∗, which exists
by Definition 5.5.8. If f is smooth, then we set Rf ! = f∗(d)[2d], where d is the
relative dimension of f , which is a locally constant N-valued function on |X|. If f
is a universal homeomorphism we set Rf ! = f∗. Finally, in the general case, we
factor f into elementary embeddable morphisms and compose the above definitions
for these.

Proposition 5.8.9. This definition makes sense.

Proof. We need to show that if we factor f in two ways into elementary embeddable
morphisms, we arrive at the same Rf !-functor. We will show that this results from
the following two facts.

i. In the situation of Proposition 5.8.3, where f and g are smooth representable
and i is a closed immersion, we have Ri!Rg! = Rf !.

ii. Consider a 2-cartesian diagram (12) as in Remark 5.8.4. Then Rv!Ri! = Ri′!Ru!.
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Use (i) and (ii) to prove that Claim (ii) remains valid if we replace the 2-cartesian
requirement by mere commutativity of the diagram. Deduce also that we have the
truth of (i), in the case where f is a closed immersion instead of a smooth map.
From this fact we get also that if g ◦ j = f ◦ i, where i and j are closed immersions
and f and g are smooth representable, then Ri!Rf ! = Rj!Rg!.

Now it is easy to prove the following fact. Consider an equation f ◦ i = j, where i
and j are locally closed immersions an f elementary embeddable. Then there exist
factorizations of i and j into closed immersions followed by open immersions such
that for the induced definitions of Ri! and Rj! we have Ri!Rf ! = Rj!. From this
we deduce, using the fact that any section of a representable morphism is a locally
closed immersion, that no matter how we factor idX into elementary embeddable
morphisms, Rid!

X = id. The general case of an embeddable morphism f : X → Y

now follows by applying this to the factorization idX = pr1 ◦∆f , and using (ii).
So it remains to prove (i) and (ii). Note that (ii) is a trivial consequence of

Remark 5.8.4 and (i) follows easily from Corollary 5.8.5. 2

Proposition 5.8.10 (Base Change). Let f : X → Y be a morphism of finite type
algebraic S-stacks. Let j : Y′ → Y be embeddable. Then there is an isomorphism of
functors Ru!Rf∗ → Rg∗Rv

! from D+
c (Xsm, A) to D+

c (Y′sm, A), where the notations are
as in the diagram

X′
g−→ Y′

v ↓ 2� ↓ u

X
f−→ Y.

Proof. Without loss of generality u is elementary embeddable. If u is smooth this
is the smooth base change theorem Corollary 5.7.14. If u is a closed immersion, it
is equivalent to the trivial base change to the open complement of Y′ in Y. 2

Proposition 5.8.11. Assuming that S is the spectrum of a field, let X be smooth
over S of dimension n and let M ∈ ob D+

lcc(X, A). If x : Spec k → X is a finite type

point of X, then we have Rx!M = x∗M(−n)[−2n].

Proof. This works similarly as Proposition 5.8.7. 2

6. Convergent Complexes

6.1. Qℓ-Complexes. Let S be a scheme of finite type over a noetherian regular
scheme of dimension zero or one and let ℓ be a prime number invertible on S. In
the previous section, we constructed for every algebraic S-stack X of finite type
and every discrete valuation ring A with residue characteristic ℓ an A-t-category
Dc(Xsm, A) whose heart is Modc(Xét, A). Let K be the quotient field of A. By
extension of scalars we get a K-t-category Dc(Xsm,K) whose heart is Modc(Xét,K).

Taking the 2-limit over all finite extensions K of Qℓ, we get a Qℓ-t-category
Dc(Xsm,Qℓ) whose heart is Modc(Xét,Qℓ). We call the objects of Dc(Xsm,Qℓ) con-
structible Qℓ-complexes on X and the objects of Modc(Xét,Qℓ) constructible Qℓ-
sheaves on X.

By abuse of notation, we denote by A also the object of Modc(Xét, A) defined by
the sheaf of rigs Λ = (Λn)n∈N on XN, where Λn = A/ln+1 and l is the maximal ideal
of A. The image in Modc(Xét,K) will be denoted by K, the image in Modc(Xét,Qℓ)
by Qℓ or simply Qℓ.
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Definition 6.1.1. We call a constructible Qℓ-sheaf F on X lisse, if it may be rep-
resented by an object of Modlcc(Xét, A), for the ring of integers A in some finite
extension of Qℓ.

Proposition 6.1.2. Every lisse Qℓ-sheaf is torsion-free (see Definition 5.8.1).

Proof. Let A be the ring of integers in a finite extension of Qℓ and let F = (Fn)n∈N

be an object of Modlcc(Xét, A). Without loss of generality we may assume that for
every r ≥ 1 the kernel of multiplication by ℓr on F is AR-null. (We have tacitly
changed notation, to denote by ℓ a parameter of A.) We wish to see that for every
pair of non-negative integers (n, r) such that n+ 1 ≥ r we have an exact sequence

0 −→ ℓn−r+1Fn −→ Fn
ℓr

−→ Fn.

This reduces to a (not very difficult) question of ℓ-adic algebra, since Xét has suffi-
ciently many points. 2

Corollary 6.1.3 (Projection Formula). Let f : X → Y be a smooth morphism of
finite type algebraic S-stacks and F a lisse Qℓ-sheaf on Y. Then for every M ∈
ob Modc(Xét,Qℓ) we have

Rnf∗(f
∗F ⊗M) = F ⊗ Rnf∗M,

for all n ≥ 0.

Proof. This follows from the general projection formula for morphisms of ringed
topoi noting that a torsion free object of Modlcc(Yét, A) gives rise to a locally free
sheaf of Λ-modules on YN

ét. 2

For the remainder of this section, let us assume for simplicity that S is the spec-
trum of a field k. For a finite type algebraic k-stack f : X→ S and a constructible
Qℓ-complex M on X we abbreviate Rnf∗M by Hn(X,M), for all n ≥ 0. We may
consider Hn(X,M) as a Qℓ-vector space with Gal(k)-action.

Let G be a smooth connected group scheme over S. Let X be an S-scheme of
finite type on which G acts. Let f : X→ Y be a fiber bundle with structure group
G and fiber X. This means that there exists a Y-space P, which is a principal
homogeneous G-bundle over Y, such that P ×G X ∼= X as Y-spaces. Use notation
as in the diagram

X
f−→ Y

τ ց ↓ ρ

S.

Lemma 6.1.4. We have Rnf∗Qℓ
∼= ρ∗Hn(X,Qℓ), for all n ≥ 0.

Proof. We need to show that Rnf∗Z/ℓ
ν+1 = ρ∗Hn(X,Z/ℓν+1), for all ν. By

Lemma 1.4.1 of [3] we have

Rnf∗Z/ℓ
ν+1 = P×G ρ

∗Hn(X,Z/ℓν+1)

= ρ∗Hn(X,Z/ℓν+1)

since G is connected. 2

Proposition 6.1.5. We have for every lisse Qℓ-sheaf F on Y a spectral sequence

Hp(Y, F )⊗Hq(X,Qℓ) =⇒ Hp+q(X, f∗F ).
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Proof. This is the Leray spectral sequence of the composition τ = ρ ◦ f . Let us
check the form of the E2-term. Indeed, we have

Hp(Y,Rqf∗f
∗F ) = Hp(Y, F ⊗ Rqf∗Qℓ)

= Hp(Y, F ⊗ ρ∗Hq(X,Qℓ))

= Hp(Y, F )⊗Hq(X,Qℓ)),

by the lemma and the projection formula. 2

A Theorem of Borel. We need to translate the main theorem from [6] into our
context.

Theorem 6.1.6. Let k be a field and G/k a connected group variety. consider the
spectral Qℓ-algebra given by the universal fibration Spec k → BG,

Ep,q
2 = Hp(BG,Qℓ)⊗Qℓ

Hq(G,Qℓ) =⇒ Qℓ. (13)

For every q ≥ 0 the Qℓ-vector space E0,q
r is a subspace of Hq(G,Qℓ), for all r ≥ 2.

In particular, we have the transgressive subspace

Np = E0,q
q+1 ⊂ Hp(G,Qℓ),

for q ≥ 1. Consider the graded Qℓ-vector space N =
⊕

q≥1N
q. We have

i. N q = 0 if q is even.
ii. The canonical map ΛN → H∗(G,Qℓ) is an isomorphism of graded Qℓ-algebras.
iii. The spectral sequence (13) induces an epimorphism of graded Qℓ-vector spaces

H∗(BG,Qℓ) → N [−1]. Any section induces an isomorphism S(N [−1])
∼→

H∗(BG,Qℓ).

Proof. This is Théorème 13.1 from [6]. 2

Remark 6.1.7. If the transgressionN is homogeneous, thenH∗(BG,Qℓ) = S(N [−1]),
canonically. So in this case the theorem holds over an arbitrary base S. For exam-
ple, let f : E→ X be a family of elliptic curves over the finite type algebraic S-stack
X and consider the morphism π : B(E/X)→ X. If we denote R1f∗Qℓ by H1(E), then
we have R2nπ∗Qℓ = SnH1(E) and R2n+1π∗Qℓ = 0, for all n ∈ N.

6.2. Frobenius. Let circ denote the topos we already encountered in Example 4.3.7.
The t-category Dc(circ,Qℓ) has heart Modc(circ,Qℓ), which is the category of auto-
morphisms of finite dimensional Qℓ-vector spaces whose eigenvalues are ℓ-adic units.
We will denote objects of Modc(circ,Qℓ) by (M,f).

Let q ∈ R>0. Recall from Définition 1.2.1 in [9] that a number is called pure of
weight n ∈ Z relative q, if its absolute value is

√
qn, no matter how it is embedded

in C.

Definition 6.2.1. We call an object (M,f) ∈ ob Modc(circ,Qℓ) pure of weight n ∈
Z relative q, if every eigenvalue of f on M is pure of weight n relative q. We call
(M,f) mixed relative q, if every eigenvalue of f on M is pure of some integer weight
relative q. Finally, an object M ∈ ob Dc(circ,Qℓ) is called mixed relative q, if for
every i ∈ Z the object hi(M) is mixed relative q.

Note 6.2.2. Let us denote by Modmq(circ,Qℓ) the full subcategory of Modc(circ Qℓ)

of mixed objects relative q. Then this is a closed subcategory. Thus Dmq(circ,Qℓ),



60 KAI A. BEHREND

the full subcategory of Dc(circ,Qℓ) consisting of mixed objects relative q, is a t-
category with heart Modmq(circ,Qℓ). Note that for any n ∈ Z we have Modmqn (circ,Qℓ) ⊂
Modmq(circ,Qℓ) and thus Dmqn (circ,Qℓ) ⊂ Dmq(circ,Qℓ).

Let M ∈ ob Modmq(circ,Qℓ) be a mixed automorphism of a finite dimensional

Qℓ-vector space. Let

M =
⊕

p∈Z

grw(q)
p M

be the decomposition into pure factors, gr
w(q)
p M being pure of weight p relative q.

Definition 6.2.3. We call the object M ∈ ob D+
mq

(circ,Qℓ) absolutely convergent

(or simply convergent), if

wq(M)(z) =
∑

p

∑

i

dim(grw(q)
p hiM)zp

converges uniformly on compact subsets of the punctured unit disc 0 < |z| < 1,
and has at worst a pole at the origin z = 0. Let us denote the full subcategory of
D+

mq
(circ,Qℓ) consisting of absolutely convergent objects by D+

aq
(circ,Qℓ).

Proposition 6.2.4. The category D+
aq

(circ,Qℓ) is a triangulated subcategory of D+
mq

(circ,Qℓ).

It is a Qℓ-t-category with heart Modmq(circ,Qℓ). Moreover, we have

D+
mqn (circ,Qℓ) ∩ D+

aq
(circ,Qℓ) = D+

aqn (circ,Qℓ),

as subcategories of D+
mq

(circ,Qℓ), if n > 0.

Consider the automorphism ǫn : circ→ circ. Recall that ǫ∗n(M,f) = (M,fn), for
an object (M,f) of circ or Modc(circ,Qℓ). So ǫ∗n multiplies weights relative q by n.
Thus we have that M ∈ ob Modc(circ,Qℓ) is mixed relative q if and only if ǫ∗nM is
mixed relative qn. The same is true for objects of D+

c (circ,Qℓ). In particular, we
have

ǫ∗n : D+
mq

(circ,Qℓ) −→ D+
mqn (circ,Qℓ) ⊂ D+

mq
(circ,Qℓ).

Now assume that n > 0. Let M ∈ ob D+
mq

(circ,Qℓ). We have wqn(ǫ∗nM)(z) =

wq(M)(z). So M is convergent if and only if ǫ∗nM is. In particular, we get

ǫ∗n : D+
aq

(circ,Qℓ) −→ D+
aqn (circ,Qℓ) ⊂ D+

aq
(circ,Qℓ).

Let N be an object of Modc(circ,Qℓ). Assume that N is mixed relative q. Then
the functor

⊗Qℓ
N : D+

c (circ,Qℓ) −→ D+
c (circ,Qℓ)

preserves mixedness relative q. Let M ∈ ob D+
mq

(circ,Qℓ). We have wq(M ⊗N) =

wq(M)wq(N), and since wq(N) is polynomial, ⊗Qℓ
N preserves convergence.

Now let Fq be a finite field such that ℓ ∤ q. The choice of an algebraic closure Fq

of Fq determines an equivalence

(Spec Fq)ét −→ circ (14)

X 7−→ (X(Fq), φ),

where φ : X(Fq)→ X(Fq) is the map given by φ(x) = x ◦Spec(φq), where φq : Fq →
Fq is the Frobenius φq(α) = αq. A different choice of algebraic closure of Fq gives
rise to an isomorphic equivalence of topoi.
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The equivalence (14) induces an equivalence D+
c (Spec Fq,Qℓ) → D+

c (circ,Qℓ).
Again, a different choice of algebraic closure gives rise to an isomorphic equiva-
lence.

Definition 6.2.5. We call an object M of D+
c (Spec Fq,Qℓ) mixed (convergent) rel-

ative q0 ∈ R>0, if any corresponding object of D+
c (circ,Qℓ) is mixed (convergent)

relative 1/q0. We say M is mixed (convergent), if M is mixed (convergent) relative
q.

Thus we get categories D+
mq0

(Spec Fq,Qℓ) and D+
aq0

(Spec Fq,Qℓ), for any q0 ∈ R>0.

We set D+
m(Spec Fq,Qℓ) = D+

mq
(Spec Fq,Qℓ) and D+

a (Spec Fq,Qℓ) = D+
aq

(Spec Fq,Qℓ).

Finally, we call an ℓ-adic sheaf F ∈ ob Modm(Spec Fq,Qℓ) pure of weight n, if any
corresponding ℓ-adic sheaf on circ is pure of weight n relative 1/q.

If M ∈ ob D+
a (Spec Fq,Qℓ), then the function

w(M)(z) =
∑

p

∑

i

dim(grw
p h

iM)zp

is meromorphic on the unit disc in C.
Let Fq → Fqn be a homomorphism of finite fields. Let f : Spec Fqn → Spec Fq

denote the corresponding morphism of schemes. We get an induced morphism
(SpecFqn)ét → (Spec Fq)ét of topoi, which induces via (14) (choosing a common
algebraic closure of Fq and Fqn) the morphism ǫn : circ → circ. So the functor f :∗

D+
c (SpecFq,Qℓ) → D+

c (Spec Fqn ,Qℓ) has the property that M ∈ ob D+
c (Spec Fq,Qℓ)

is mixed relative q0 if and only if f∗M is mixed relative qn
0 . In particular, M is

mixed if and only if f∗M is. Moreover, M ∈ ob D+
m(Spec Fq,Qℓ) is convergent if and

only if f∗M is convergent. Finally, F ∈ ob Modc(Spec Fq,Qℓ) is pure of weight n if
and only if f∗F is.

We also have M ∈ ob D+
c (Spec Fq,Qℓ) is mixed if and only if M(n) is mixed and

M ∈ ob D+
m(Spec Fq,Qℓ) is convergent if and only if M(n) is convergent.

6.3. Mixed and Convergent Complexes. Let ℓ be a prime number, S a scheme
of finite type over Z[1/ℓ] and X a finite type algebraic S-stack.

Definition 6.3.1. We call an ℓ-adic sheaf F ∈ ob Modc(X,Qℓ) punctually pure of
weight n ∈ Z, if for every finite field Fq and every S-morphism x : Spec Fq → X, the
pullback x∗F is pure of weight n.

Note 6.3.2. For X = Fq the notion of punctual purity coincides with purity. This
definition is equivalent to demanding that for every finite type point x of X, choosing
a representative x : SpecFq → X of x, the pullback x∗F is pure of weight n. If
f : X → Y is a finite type morphism of algebraic S-stacks and F is a punctually
pure ℓ-adic sheaf on Y, then f∗F is punctually pure of the same weight.

If X is a scheme, this definition coincides with Definition 1.2.2 in [9]. We work
with the arithmetic Frobenius whereas Deligne uses the geometric Frobenius in [loc.
cit.].This discrepancy is made up for by the switch from q0 to 1/q0 in Definition 6.2.5.

Proposition 6.3.3. Let f : X → X be a finite type presentation of X. Then an
ℓ-adic sheaf F ∈ ob Modc(X,Qℓ) is punctually pure of weight n if and only if f∗F
is.
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Proof. This follows from the fact that if x : SpecFq → X is a given morphism, then
there exists a finite extension Fqn of Fq such that the induced morphism Spec Fqn →
X lifts to X. 2

Definition 6.3.4. We call a constructible Qℓ-complex M ∈ ob D+
c (X,Qℓ) on X

mixed, if for every i ∈ Z, the ℓ-adic sheaf hiM has a filtration whose factors are
punctually pure. Denote by D+

m(X,Qℓ) the full subcategory of D+
c (X,Qℓ) consisting

of mixed objects and let Modm(X,Qℓ) = Modc(X,Qℓ) ∩ D+
m(X,Qℓ).

Proposition 6.3.5. Let f : X → X be a finite type presentation of X. An object
M ∈ ob D+

c (X,Qℓ) is mixed if and only if f∗M is.

Proof. This follows from descent for ℓ-adic sheaves and Théorème 3.4.1(ii) in [9],
which says that the weight filtration is canonical and so it descends. 2

Proposition 6.3.6. The category Modm(X,Qℓ) is a closed subcategory of Modc(X,Qℓ)
and D+

m(X,Qℓ) is a sub-t-category of D+
c (X,Qℓ) whose heart is Modm(X,Qℓ).

Proof. We need to show that the kernel and cokernel of a homomorphism of mixed
sheaves are mixed. by Proposition 6.3.5 we may assume that X is a scheme. Then
this follows from the fact that every homomorphism respects the weight filtration. 2

Proposition 6.3.7. Assume that S lies over a field. Let f : X→ Y be a finite type
morphism of algebraic S-stacks. If M ∈ ob D+

c (X,Qℓ) is mixed, then so is Rf∗M . If
f is embeddable and M ∈ ob D+

c (Y,Qℓ) is mixed, then so is Rf !M .

Proof. Let us first assume that f : X → Y is a morphism of schemes. Let M ∈
ob D+

m(X,Qℓ). To prove that Rf∗M is mixed, we may assume that M is a mixed
Qℓ-sheaf. Then M is a mixed Qℓ-sheaf in the sense of [9] and Rif∗M is the Rif∗M
considered in [loc. cit.]. Thus by Théorème 6.1.2 of [loc. cit.] Rf∗M is indeed mixed.

By Proposition 6.3.5 and smooth base change we have thus proved that if f is
an open immersion, then Rf∗ preserves mixedness. This immediately implies that
Rf ! preserves mixedness if f is a closed immersion. Consequently, Rf ! preserves
mixedness for any embeddable morphism f . This in turn implies that the property
‘Rf∗ preserves mixedness’ satisfies Condition (ii) of the second devissage lemma
(Proposition 5.1.17). Thus by obvious amplifications of the second devissage lemma,
we reduce to considering the case that Y = Y is a scheme and X = B(G/Y ), where
G is a smooth group scheme over Y . Then using the spectral sequence of the
covering Y → X, we reduce to the case of schemes. 2

Corollary 6.3.8. Assume that S lies over a field and that X is a finite type algebraic
S-stack. Then V 7→ D+

m(V,Qℓ), where V runs over the locally closed substacks of X,
is as d-structure on |X|.

Every morphism of finite type algebraic S-stacks induces a morphism of d-structures.

Convergence. Let S be a scheme of finite type over Fq, where ℓ ∤ q.

Definition 6.3.9. A mixed Qℓ-complex M ∈ ob D+
m(X,Qℓ) is called absolutely con-

vergent (or simply convergent), if for every extension Fqn of Fq and every S-

morphism x : Spec Fqn → X, the extraordinary pullback Rx!M is absolutely conver-
gent.

Note 6.3.10. This definition does not conflict with the earlier definition for X =
SpecFq. It is equivalent to demanding that for every finite type point x of X,
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choosing a representative x : SpecFq → X of x, the extraordinary pullback Rx!M
is convergent. If f : X → Y is an embeddable morphism of finite type algebraic S-
stacks, then for any convergent object M ∈ ob D+

m(X,Qℓ) the extraordinary pullback
Rf !M is convergent. If f : X → Y is a smooth representable epimorphism and
M ∈ ob D+

m(Y,Qℓ), then M is convergent if and only if Rf !M is convergent and if
and only if f∗M is convergent.

Remark 6.3.11. There is of course another definition of convergence suggesting
itself, namely the definition using ordinary pullbacks. It is not obvious that the two
definitions should be equivalent. A related problem is the question to what extent
convergence is stable under ordinary pullbacks.

Definition 6.3.12. Let us denote the full subcategory of D+
m(X,Qℓ) consisting of

absolutely convergent complexes by D+
a (X,Qℓ).

Note 6.3.13. The category D+
a (X,Qℓ) is a triangulated subcategory of D+

m(X,Qℓ).
Every mixed Qℓ-sheaf is convergent (as is any bounded mixed complex). So D+

a (X,Qℓ)
is a Qℓ-t-category with heart Modm(X,Qℓ).

Before we can prove our main theorem, we need one more auxiliary result.

Lemma 6.3.14. Let X be an algebraic variety over the algebraically closed field k,
and let A be a discrete valuation ring with finite residue field of characteristic invert-
ible in k. Let L = (L1, . . . , Ln) be a finite family of simple lcc sheaves of A-modules
on Xét. Then there is a number N such that for every ({X},L)-constructible sheaf
of A-modules F on Xét we have

#H i(Xét, F ) ≤ #F (η)N ,

for all i ≥ 0. Here η denotes the generic point of X and F (η) the geometric generic
fiber of F .

Proof. Take N such that

#H i(Xét, Lj) ≤ #Lj(η)
N ,

for all i ≥ 0 and all j = 1, . . . n. 2

Lemma 6.3.15. Let A be a complete discrete valuation ring with finite residue field
and field of fractions K. Let (Mn)n∈N be an AR-ℓ-adic system of finite A-modules.
Assume there exists an N such that for all n ∈ N we have

#Mn ≤ #κ(A)(n+1)N .

Then
dimK K ⊗A lim

←−
n

Mn ≤ N.

Proof. Let (Fn)n∈N be an ℓ-adic system of finite A-modules with an AR-isomorphism

(Fn) → (Mn). Then letting F = lim
←−

Fn and M = lim
←−

Mn, we have F
∼→ M .

Therefore we have dimK K ⊗A M = rkA F . Since (Fn) is ℓ-adic, we have for every
n ∈ N that Fn = F ⊗ Λn, and hence that #(Λn)rkA F ≤ #Fn. Let r be as in
Lemma 2.2.2. Then for every n the module Fn is a direct summand of Mn+r ⊗ Λn

and hence #Fn ≤ #Mn+r. Thus we have #(Λn)rkA F ≤ #(Λ0)
(n+r+1)N , which

implies (n+ 1) rkA F ≤ (n+ r + 1)N , for all n ≥ 0. 2
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Corollary 6.3.16. Let X, A and L be as in Lemma 6.3.14, but let us drop the
assumption that k be algebraically closed. Let K be the quotient field of A. Then
there exists an N such that for every ({X},L)-constructible K-sheaf F on X we
have

dimK H i(X,F ) ≤ N rkF,

for all i ≥ 0. Here H i(X,F ) is used in the sense of Section 6.1.

Proof. Let F be represented by the torsion free system (Fn)n∈N. Then for every

n ∈ N we have #Fn(η) = #κ(A)(n+1) rk F . This implies the result. 2

Theorem 6.3.17. Let f : X → Y be a morphism of finite type algebraic S-stacks.
If M ∈ ob D+

m(X,Qℓ) is convergent, then so is Rf∗M .

Proof. By the base change theorem Proposition 5.8.10, we may assume that Y =
SpecFq is the spectrum of a finite field. Then by the second devissage lemma we
reduce to the following two cases.

i. X = X is a smooth variety of dimension d and M is lisse.
ii. X = BG, where G is a smooth connected group variety.

In both cases we need to prove that H∗(X,M) is convergent.
Consider Case (i). There exists a finite extension K of Qℓ with ring of integers

A, such that M ∈ ob D+
({X},L)(Xét, A), for some finite family L of simple lcc sheaves

of A-modules on Xét. We have
∑

p

∑

n

dimgrw
p H

n(X,M) |z|p

≤
∑

p

∑

n

2d∑

ν=0

dim grw
p H

ν(X,hn−νM) |z|p

by the spectral sequence H i(X,hjM)⇒ H i+j(X,M)

≤
∑

p

∑

n

2d∑

ν=0

∑

p′

dim grw
p H

ν(X, grw
p′ h

n−νM) |z|p

≤
2d∑

ν=0

∑

p′

∑

n

∑

p

dim grw
p H

ν(X, grw
p′ h

n−νM) |z|p′+ν

since we only get a contribution if p ≥ p′ + ν, by Corollaire 3.3.5 in [9]

=
2d∑

ν=0

∑

p′

∑

n

dimHν(X, grw
p′ h

n−νM) |z|p′+ν

≤ N

2d∑

ν=0

∑

p′

∑

n

rk grw
p′ h

n−νM |z|p′+ν

where we choose N as in Corollary 6.3.16

= N

2d∑

ν=0




∑

p′

∑

n

rk grw
p′ h

nM |z|p′

 |z|ν . (15)

Since M is convergent, the term in the parentheses converges, which implies the
result.
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Now consider Case (ii). We have
∑

p

∑

n

dim grw
p H

n(BG,M) |z|p

≤
∑

p

∑

n

∑

µ+ν=n

dim grw
p H

µ(BG,hνM) |z|p

=
∑

p

∑

n

∑

µ+ν=n

dim grw
p

(
Hµ(BG,Qℓ)⊗ hνM

)
|z|p

=
∑

p

∑

n

∑

µ+ν=n

∑

p1+p2=p

dimgrw
p1
Hµ(BG,Qℓ) dim grw

p2
hνM |z|p

=
∑

p

∑

n

dim grw
p H

n(BG,Qℓ) |z|p
∑

p

∑

n

dimgrw
p h

nM |z|p. (16)

Thus we are reduced to the case M = Qℓ.
If F ∈ ob Modc(Spec Fq,Qℓ) is pure of weight n then the i-th symmetric power

SiF is pure of weight ni. So

w(SF )(z) =
∑

p

∑

i

dim grw
p S

iF zp

=
∑

i

dimSiF zni

=

(
1

1− zn

)dimF

,

which is holomorphic in the unit disc if n > 0. More generally, if we have pure
objects F1, . . . , Fn of Modc(Spec Fq,Qℓ), then we have

w(S(F1 ⊕ . . . ⊕ Fn))(z) =
n∏

i=1

w(SFi)(z)

=

n∏

i=1

(
1

1− zwt Fi

)dimFi

.

This describes the structure of w(SF ) for every object F of Modc(Spec Fq,Qℓ), since
over Spec Fq the weight filtration always splits.

Now if G is a connected group variety over Fq, then by Theorem 6.1.6 there
exists an object N = N1 ⊕ . . . ⊕ Nn of Modc(Spec Fq,Qℓ), where N1, . . . , Nn are
pure of positive weights, such that H∗(G,Qℓ) = ΛN . (That the weights are positive
follows for example from Corollaire 3.3.5 of [9].) Then by Theorem 6.1.6 we have
H∗(BG,Qℓ) = SN , which is convergent by the above considerations. 2

6.4. The Trace Formula.

More about Frobenius. Let X be an algebraic Fq-stack. The stack X is naturally
endowed with an endomorphism FX, the em absolute Frobenius of X. For an Fq-
scheme S, interpreting objects of X(S) as morphisms S → X, the Frobenius FX(S)
takes an object x : S → X to x ◦ FS , where FS : S → S is the absolute Frobenius of
S (which is the spectrum of the q-th power map if S is affine).

In the particular case that S = Spec Fqn , for some n > 0, the endomorphism
FX(Fqn) : X(Fqn)→ X(Fqn) is endowed with a natural transformation Tn : FX(Fqn)n →
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idX(Fqn ). Let us abbreviate notation to Tn : Fn → id. Now let n,m > 0 be such

that n | m and m = kn. We have the natural transformation

Tn ◦ F
n(Tn) ◦ . . . ◦ F (k−1)n(Tn) : Fm → id

between endomorphism of X(Fqn). The compatibility property is that this natu-
ral transformation composed with X(Fqn) → X(Fqm) is equal to X(Fqn) → X(Fqm)
composed with Tm : Fm → id. By abuse of notation, we may write

Tm = Tn ◦ F
n(Tn) ◦ . . . ◦ F (k−1)n(Tn).

Proposition 6.4.1. If x ∈ ob X(Fqn) is an object such that x ∼= F (x) in X(Fqn),
then there exists an object y ∈ ob X(Fq), such that x ∼= y in X(Fqm), for some
multiple m of n.

Proof. Choose an isomorphism α : x→ F (x) in X(Fqn). Then Tn(x) ◦Fn−1(α) ◦ . . . ◦
F (α) ◦α is an automorphism of x, in other words an element of Aut(x)(Fqn). Since
Aut(x) is a group scheme over Fqn of finite type, the group Aut(x)(Fqn) is finite.
So our element Tn(x) ◦ Fn−1(α) ◦ . . . ◦ F (α) ◦ α has finite order, say k, so that

(Tn(x) ◦ Fn−1(α) ◦ . . . ◦ F (α) ◦ α)k = idx.

We set m = kn. Then we have

(Tn(x) ◦ Fn−1(α) ◦ . . . ◦ F (α) ◦ α)k = Tm(x) ◦ Fm−1(α) ◦ . . . ◦ F (α) ◦ α,

as automorphism of x in X(Fqm). this implies that

Tm(x) ◦ Fm−1(α) ◦ . . . ◦ F (α) ◦ α = idx,

so that we have descent data for the object x of X(Fqm), giving rise to the sought
after object y of X(Fq). 2

Corollary 6.4.2. If X is an algebraic Fq-gerbe of finite type, then X is neutral.

Proof. We need to show that X(Fq) contains objects. By the Proposition, it will
suffice to find an object x of X(Fqn), for some n ≥ 0, such that x ∼= F (x). Since X is
of finite type, there exists an n ≥ 0 and an object x of X(Fqn). Since X is a gerbe,
the objects x and F (x) are locally isomorphic, i.e. there exists a multiple m of n
such that x ∼= F (x) in X(Fqm). 2

Let X be an algebraic Fq-gerbe of finite type. Choose an object x of X(Fq), and
let G = Aut(x). Then G is a group scheme over Fq of finite type and X ∼= BG.
Hence X(Fqn) is isomorphic to the groupoid of GFqn -torsors. If G is connected, by a
theorem of S. Lang, these torsors are trivial. Thus X(Fqn) is a connected groupoid,
for every n. We have #X(Fqn) = 1

#G(Fqn ) . (Recall from Definition 3.2.1 of [3] that

#X(Fqn) =
∑

ξ∈[X(Fqn)]

1

# Aut ξ
,

the sum being taken over the isomorphism classes of the category X(Fqn).)
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Trace of Frobenius. Let us fix an embedding ι : Qℓ → C.
Let (M,Φ) be an object of D+

aq0
(circ,Qℓ). (See Definition 6.2.3.) Then if q0 < 1

the series
∑

i(−1)iι(tr Φ|hiM) is an absolutely convergent series of complex num-
bers. We denote the sum by

trι Φ|M =
∑

i

(−1)iι(tr Φ|hiM).

Proposition 6.4.3. Let

(M ′′,Φ)
ւ տ

(M ′,Φ) −→ (M,Φ)

be a distinguished triangle in D+
aq0

(circ,Qℓ), where q0 < 1. Then we have trι Φ|M =

trι Φ|M ′ + trι Φ|M ′′.
Now let M be an object of D+

a (Spec Fq,Qℓ). Considering M as an object of
D+

a1/q
(circ,Qℓ), we denote the corresponding automorphism by Φq and call it the

arithmetic Frobenius of M . Its ι-trace is denoted by

trι Φq|M =
∑

i

(−1)iι(tr Φq|hiM).

It exists because 1/q < 1. We have, for example, trι Φq|Qℓ(n) = qn, for all n ∈ Z.

Definition 6.4.4. More generally, let X be an algebraic Fq-stack of finite type and
M ∈ ob D+

a (X,Qℓ) a convergent Qℓ-complex on X. We define the local term of M
with respect to ι, denoted Lι(M) by

Lι(M) =
∑

x∈[X(Fq)]

1

# Aut(x)
trι Φq|Rx!M,

where the sum is taken over all isomorphism classes of the essentially finite groupoid
X(Fq).

In the following considerations ι is fixed, so that we will drop it from our notation.

Lemma 6.4.5. We have

L(M) =
∑

x∈[X(Fq)]

1

# Aut(x)
L(Rx!M).

Proof. This follows immediately from the fact that for X = SpecFq we have L(M) =
tr Φq|M . 2

Lemma 6.4.6. If i : Z → X is a closed immersion with complement j : U → X we
have

L(M) = L(Ri!M) + L(j∗M).

Proof. This is a formal consequence of Lemma 6.4.5 using the fact that [X(Fq)] is
the disjoint union of [U(Fq)] and [Z(Fq)]. 2

Lemma 6.4.7. If
M ′′

ւ տ
M ′ −→ M

is a distinguished triangle in D+
a (X,Qℓ) then we have L(M) = L(M ′) + L(M ′′).
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Proof. This follows immediately from Proposition 6.4.3. 2

Lemma 6.4.8. Let X be smooth of dimension d ∈ Z over Fq, and assume that
M ∈ ob D+

a (X,Qℓ) is lisse. Then we have

qdL(M) =
∑

x∈[X(Fq)]

1

# Aut(x)
L(x∗M).

Proof. This follows from Proposition 5.8.11. 2

Theorem 6.4.9. Let f : X → Y be a morphism of finite type algebraic Fq-stacks.
Then for every convergent Qℓ-complex M ∈ ob D+

a (X,Qℓ) we have

L(Rf∗M) = L(M).

Proof. We have

L(Rf∗M) =
∑

y∈[Y(Fq)]

1

# Aut(y)
L(Ry!Rf∗M)

=
∑

y∈[Y(Fq)]

1

# Aut(y)
L(Rfy∗Ru

!
yM),

where the notations are taken from the 2-cartesian diagram

Xy
fy−→ SpecFq

uy ↓ ↓ y

X
f−→ Y.

Assuming for the moment that the theorem holds for fy, we get

L(Rf∗M) =
∑

y∈[Y(Fq)]

1

# Aut(y)
L(Ru!

yM)

=
∑

y∈[Y(Fq)]

1

# Aut(y)

∑

x∈[Xy(Fq)]

1

# Aut(x)
L(Rx!Ru!

yM).

Now the category Xy(Fq) has objects (x, α), where x is an object of X(Fq) and
α : f(x) → y is an isomorphism in Y(Fq). A morphism φ : (x, α) → (x′, α′) is a
morphism φ : x → x′ in X(Fq) such that α′ ◦ f(φ) = α. So a more accurate way of
writing our equation is

L(Rf∗M) =
∑

y∈[Y(Fq)]

1

# Aut(y)

∑

(x,α)∈[Xy(Fq)]

1

# Aut(x, α)
L(Rx!M).

Now we have an action of Aut(y) on [Xy(Fq)], given by β · (x, α) = (x, βα), for
β ∈ Aut(y) and (x, α) ∈ [Xy(Fq)]. This action has the property that (x, α) and
(x′, α′) are in the same orbit, if and only if x ∼= x′ in X(Fq). The isotropy group of
an element (x, α) of [Xy(Fq)] is the image of Aut(x) in Aut(y), hence isomorphic to
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Aut(x)/Aut(x, α). So we have

L(Rf∗M)

=
∑

y∈[Y(Fq)]

1

# Aut(y)

∑

x∈[X(Fq)]
x 7→y




∑

(x,α)∈[Xy(Fq)]

(x,α) 7→x

1

# Aut(x, α)


L(Rx!M)

=
∑

y∈[Y(Fq)]

1

# Aut(y)

∑

x∈[X(Fq)]
x 7→y

1

# Aut(x)




∑

(x,α)∈[Xy(Fq)]

(x,α) 7→x

# Aut(x)

# Aut(x, α)


L(Rx!M)

=
∑

y∈[Y(Fq)]

1

# Aut(y)

∑

x∈[X(Fq)]
x 7→y

1

# Aut(x)
# Aut(y)L(Rx!M)

=
∑

y∈[Y(Fq)]

∑

x∈[X(Fq)]
x 7→y

1

# Aut(x)
L(Rx!M)

=
∑

x∈[X(Fq)]

1

# Aut(x)
L(Rx!M)

= L(M),

which is what we wanted to prove. It remains to prove the theorem for the various
fy. So without loss of generality we may assume that Y = SpecFq.

But let us still consider the general case. Assume that X is the disjoint union of
a closed substack i : Z→ X and an open substack j : U→ X. Assuming the theorem
to hold for f ◦ i and f ◦ j we get

L(Rf∗M) = L(R(f ◦ i)∗Ri
!M) + L(R(f ◦ j)∗j

∗M)

= L(Ri!M) + L(j∗M)

= L(M).

Thus we may pass to the strata of any stratification of X in proving our theorem.
So we have reduced to the case Y = Spec Fq, X is either a smooth Fq-variety or an
Fq-gerbe, and M ∈ ob D+

a (X,Qℓ) is lisse.
From the inequalities (15) and (16) it follows that

∑
n L(Rf∗h

nM) is absolutely
convergent and that limn→∞ L(Rf∗τ≥nM) = 0. By the distinguished triangle

τ≥n+1M
ւ տ

hn(M) −→ τ≥nM

this implies that

L(Rf∗M) =
∑

n

L(Rf∗h
nM)

=
∑

n

L(hnM)

= L(M),

if we assume the truth of the theorem for lisse Qℓ-sheaves. So without loss of
generality M is a lisse Qℓ-sheaf on X.
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Let us first consider the case that X = X is a smooth Fq-variety of dimension d.
We need to show that

qd
2d∑

i=1

(−1)i tr Φq|H i(X ét,M) =
∑

x∈X(Fq)

tr Φq|x∗M.

Now from Poincaré duality we have

qd
2d∑

i=1

(−1)i tr Φq|H i(X ét,M) =
2d∑

i=1

(−1)i tr Φq|H i(X ét,M(d))

=

2d∑

i=1

(−1)i tr Φ∨q |H i(X ét,M(d))∨

=

2d∑

i=1

(−1)i trFq|H2d−i
c (X ét,M

∨)

=

2d∑

i=1

(−1)i trFq|H i
c(X ét,M

∨),

where Fq is the geometric Frobenius. The ‘usual’ Lefschetz Trace Formula for the
geometric Frobenius on cohomology with compact supports reads

2d∑

i=1

(−1)i trFq|H i
c(X ét,M

∨) =
∑

x∈X(Fq)

trFq|x∗M∨.

But clearly, trFq|x∗M∨ = tr Φq|x∗M . This finishes the proof in the case that X is
a variety.

So now assume that X is a gerbe. By Corollary 6.4.2 we may assume that X = BG,
where G is an algebraic group over Fq. As in the second devissage lemma, we
may reduce to the case that G is smooth and connected. In this case we have
Modm(BG,Qℓ) = Modm(SpecFq,Qℓ), so we may assume that M = f∗N , for some
mixed Qℓ-vector space N . Then we have

L(Rf∗M) = L(Rf∗f
∗N)

= L(Rf∗Qℓ ⊗N)

= L(Rf∗Qℓ)L(N)

= L(QℓX)L(N),

assuming the theorem holds for QℓX. Now by Lemma 6.4.8 we have

L(M) = L(f∗N)

=
1

qdim X

∑

x∈[X(Fq)]

1

Aut(x)
L(x∗f∗N)

=
1

qdim X

∑

x∈[X(Fq)]

1

Aut(x)
L(N)

= L(QℓX)L(N).
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So we are now reduced to the case that M = Qℓ. We need to prove that
∞∑

i=0

(−1)i tr Φq|H i(BG,Qℓ) =
1

qdimBG

∑

x∈[BG(Fq)]

1

# Aut(x)
,

or in other words that
∞∑

i=0

(−1)i tr Φq|H i(BG,Qℓ) = qdimG 1

#G(Fq)
.

So let us finally assume that G is a smooth group variety over Fq. Let N =
⊕

iN
i

be the transgressive submodule of
⊕

iH
i(G,Qℓ). Then Φq acts on N . Let λ1, . . . , λr

be the eigenvalues of Φq on N . Then we have

tr Φq|ΛN =
r∏

j=1

(1− λj),

since N is concentrated in odd degrees. Similarly,

tr Φq|S(N [−1]) =

r∏

j=1

1

1− λj
.

Now by Theorem 6.1.6 we have

tr Φq|ΛN = tr Φq|H∗(G,Qℓ)

=
1

qdimG
#G(Fq),

by the earlier result about varieties. On the other hand we have

tr Φq|H∗(BG,Qℓ) = tr Φq|S(N [−1])

=
r∏

j=1

1

1− λj

=




r∏

j=1

(1− λj)



−1

= (tr Φq|ΛN)−1

= qdimG 1

#G(Fq)
,

which is what we needed to prove. 2

Corollary 6.4.10. Let X be a smooth algebraic Fq-stack of finite type of dimension
d ∈ Z. Let M ∈ ob D+

a (X,Qℓ) be a lisse convergent Qℓ-complex on X (for example a
bounded mixed lisse Qℓ-complex). Then we have

qdim X tr Φq|H∗(X,M) =
∑

x∈[X(Fq)]

1

# Aut(x)
tr Φq|x∗M.

For example, for M = Qℓ, we get

qdim X tr Φq|H∗(X,Qℓ) = #X(Fq).

This is the result we conjectured in [3].
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An Example. Let us apply our trace formula to the algebraic stack M1, of curves of
genus one.

Proposition 6.4.11. Let p be a prime number. Then we have
∑

k

1

pk+1
trTp|Sk+2 = 1− 1

p3 − p −
∑

E/Fp

1

# Aut(E)#E(Fp)
.

Here Tp is the pth Hecke operator on the space of cusp forms Sk+2 of weight k + 2.
The sum on the right hand side extends over all isomorphism classes of elliptic
curves over Fp.

Proof. Let M1 be the algebraic Z-stack of curves of genus g = 1 and M1,1 the
algebraic Z-stack of elliptic curves. Via the obvious morphism M1,1 → M1 we may
think of M1,1 as the universal curve of genus one. Via the morphism π : M1 →M1,1,
associating with a curve of genus one its Jacobian, we may think of M1 as B(E/M1,1),
the classifying stack of the universal elliptic curve f : E→M1,1. By Corollary 6.4.10
we have

tr Φp|H∗(M1,Qℓ) = #M1(Fp) =
∑

E/Fp

1

# Aut(E)#E(Fp)
,

noting that dim M1 = 3g − 3 = 0. We will show that

tr Φp|H∗(M1,Qℓ) = 1− 1

p3 − p −
∑

k

1

pk+1
trTp|Sk+2.

Let us abbreviate the local system R1f∗Qℓ on M1,1 by H1(E). We claim that

H0(M1,Qℓ) = Qℓ

H2k+1(M1,Qℓ) = H1(M1,1, S
kH1(E)), for all k ≥ 0

H i(M1,Qℓ) = 0, if i is even, i ≥ 2.
(17)

To see this, note that by Remark 6.1.7 we may write the Leray spectral sequence
of π as

H i(M1,1, S
kH1(E)) =⇒ H2k+i(M1,Qℓ). (18)

To analyze the E2-term in this spectral sequence, note that

H i(Man
1,1, S

kH1(E)) = H i(SL2Z,Mk),

where Mk is the natural representation of SL2Z on the homogeneous polynomials
in two variables of degree k. This follows from the fact that Man

1,1 = SL2Z\H, where
H is the complex upper half plane. Now it is well-known (and elementary) that

dimH0(SL2Z,M0) = 1

dimH1(SL2Z,Mk) = k − 1− 2[k4 ]− 2[k6 ], if k is even, k ≥ 2
H i(SL2Z,Mk) = 0, for all other i and k.

This gives the dimensions of the components of the E2-term in the spectral se-
quence (18). We deduce the above Claim (17), and that

dimH2k+1(M1,Qℓ) = k − 1− 2[k4 ]− 2[k6 ], if k is even, k ≥ 2
H2k+1(M1,Qℓ) = 0, otherwise.

So H i(M1,Qℓ) 6= 0 if and only if i ≡ 1 mod (4), except for i = 0, 1.
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Now let Tp,1 be the algebraic Z-stack of isogenies of elliptic curves of degree p. The

stack Tp,1 comes with a pair of morphisms Tp,1

s−→−→
t

M1,1 and is called the Hecke cor-

respondence. We get an induced endomorphism Tp of H1(M1,1Fp
, SkH1(E)) and and

induced endomorphism Tp ofH1(SL2Z,Mk). We will relate Tp|H1(M1,1Fp
, SkH1(E))

to the arithmetic Frobenius Φp and Tp|H1(SL2Z,Mk) to the Hecke operator Tp|Sk+1

on the cusp forms of weight k + 2.
In characteristic p, the isogenies of degree p of elliptic curves are essentially

given by the Frobenius F and its dual V , the Verschiebung. This implies that on
H1(M1,1Fp

, SkH1(E)) we have Tp = F + V . It is easy to check that FV = V F =

pk+1. This implies V = pk+1Φp and Tp = Φ−1
p + pk+1Φp. (See [7] for the details.)

On the other hand, it is a theorem of Shimura, that

H1(SL2Z,Mk ⊗ C) = Sk+2 ⊕ Sk+2 ⊕ Ek+2,

where Ek+2 = CE k+2
2

and E k+2
2

is the Eisenstein series. The Hecke operator corre-

sponds to Tp ⊕ T p ⊕ Tp under this isomorphism.

Now let H̃1(M1,1, S
kH1(E)) be the image ofH1

c (M1,1, S
kH1(E)) inH1(M1,1, S

kH1(E)).

Then H̃1(M1,1, S
kH1(E)) corresponds to Sk+2⊕Sk+2. The vector space H̃1(M1,1, S

kH1(E))
is endowed with an inner product making F and V adjoints of each other. Thus we
have

tr Φp|H̃1 =
1

pk+1
trV |H̃1

=
1

pk+1

1

2
(trV + trF )|H̃1

=
1

pk+1

1

2
trTp|H̃1

=
1

pk+1

1

2
(trTp|S + trT p|S)

=
1

pk+1
trTp|Sk+2.

On the other hand, since Ek+2 is one-dimensional, Tp and Φp act as scalars on

it. We have Tp = σk+1(p) =
∑

d|p d
k+1 = 1 + pk+1 and Tp = Φ−1

p + pk+1Φp, which

implies Φ−1
p +pk+1Φp = 1+pk+1 and hence Φp = 1 or Φp = 1

pk+1 . But by [9] Φp = 1

is impossible, and thus Φp|Ek+2 = 1
pk+1 .
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So, finally, we have

tr Φp|H∗(M1,Qℓ) = 1−
∞∑

k=2
2|k

tr Φp|H1(M1,1, S
kH1(E))

= 1−
∑

k

tr Φp|Ek+2 −
∑

k

tr Φp|H̃1(M1,1, S
kH1(E))

= 1−
∑

k

1

pk+1
−

∑

k

1

pk+1
trTp|Sk+2

= 1− 1

p3 − p −
∑

k

1

pk+1
trTp|Sk+2,

which is what we wanted to prove. 2

Example 6.4.12. For the first three primes we get
∑

k

1

2k+1
tr T2|Sk+2 = − 1

120
,

∑

k

1

3k+1
tr T3|Sk+2 =

1

840
,

∑

k

1

5k+1
tr T5|Sk+2 =

1

10080
.
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[7] P. Deligne. Travaux de Shimura. Séminaire Bourbaki, 23e année(389), 1971.
[8] P. Deligne. Cohomologie Etale, SGA4

1
2
. Lecture Notes in Mathematics No. 569. Springer,

Berlin, Heidelberg, New York, 1977.

[9] P. Deligne. La conjecture de Weil. II. Publications Mathématiques, Institut des Hautes Études
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