is not a semimartingale

by

M.T Barlow

Let \(B \) be a one-dimensional Brownian motion, with \(B_0 = 0 \), and let \(L(a, t), a \in \mathbb{R}, t \geq 0 \) be a continuous version of its local time. We shall show that the process \(Y \), defined by \(Y_t = L(B_t, t) \), is not a semimartingale. The essence of the proof is the remark that whereas the paths of a continuous semimartingale satisfy a Holder condition of order \(\frac{1}{2} - \epsilon \) almost everywhere, for any \(\epsilon > 0 \), the paths of \(Y \) just fail to satisfy a Holder condition of order \(\frac{1}{2} \).

For a process or function \(X \) set

\[
D^\alpha(X) = \{ t \geq 0 : \limsup_{\epsilon \to 0} \epsilon^{-1/\alpha} |X_{t+\epsilon} - X_t| > 0 \} .
\]

Lemma Let \(\alpha > 1 \), and \(f : \mathbb{R}_+ \to \mathbb{R} \) be a function such that \(D^\alpha(f) = \phi \). Let \(\tau(t) \) be an increasing function, and \(g(t) = f(\tau(t)) \). Then \(|D^\alpha(g)| = 0 \).

Proof By Lebesgue's density theorem, \(\tau'(t) \) exists and is finite almost everywhere. For such a \(t \)

\[
\limsup_{\epsilon \to 0} \epsilon^{-1/\alpha} |g(t+\epsilon) - g(t)| = \lim_{\delta \to 0} (\tau'(t))^{1/\alpha} \delta^{-1/\alpha} |f(\tau(t) + \delta) - f(\tau(t))| = 0 ,
\]

so that \(t \notin D^\alpha(g) \).
PROPOSITION Let \(X \) be a continuous semimartingale. Then for \(\alpha > 2 \),
\[
|D^\alpha(X)| = 0 \quad \text{a.s.}
\]

Proof Let \(X = M + A^+ - A^- \) be the decomposition of \(X \) into the sum of a martingale and the difference of two increasing processes. It is plain that \(D^\alpha(X) \subset D^\alpha(M) \cup D^\alpha(A^+) \cup D^\alpha(A^-) \). By the lemma, setting
\[
f(t) = t \quad \text{and} \quad \tau(t) = A^+_t \quad \text{or} \quad A^-_t,
\]
we have \(|D^\alpha(A^+)| = |D^\alpha(A^-)| = 0 \).

Now let \(\tau_t \) be the right-continuous inverse of \(<M> \), and
\[
U_t = \frac{M_{\tau_t}}{\tau_t}.
\]
Then \(U \) is a Brownian motion, and \(M_t = U_{<M>_t} \). By Lévy's Hölder condition on the variation of Brownian paths, for \(\alpha > 2 \),
\[
D^\alpha(U) = \emptyset \quad \text{a.s., and thus, by the lemma,} \quad |D^\alpha(M)| = 0 \quad \text{a.s.}
\]

THEOREM (i) For each \(t > 0 \), \(B_t \in D^2(L(\cdot,t)) \) a.s.

(ii) \(B^\alpha(Y) \) is of full Lebesgue measure a.s.

(iii) \(Y \) is not a semimartingale.

Proof From the results of Ray [1] on Brownian local time,
\[
0 \in D^2(L(\cdot,t)) \quad \text{a.s. Let} \quad t \quad \text{be fixed, and} \quad \tilde{B}_s = B_t - B_{t-s} \quad \text{for} \quad 0 \leq s \leq t.
\]
Then \(\tilde{B} \) is a Brownian motion, and if \(\tilde{L} \) denotes its local time,
\[
\tilde{L}(a,t) = L(B_t - a,t),
\]
so that \(B_t \in D^2(L(\cdot,t)) \) whenever
\[
0 \in D^2(\tilde{L}(\cdot,t)),
\]
establishing (i).

We may restate (i) as follows: there exist \(\mathcal{B}_t \)-measurable random variables \(A_n \) and \(C \) with \(|A_n - B_t| < 1/n \), and \(C > 0 \) a.s., such that
\[
|L(A_n,t) - L(B_t,t)| \geq |A_n - B_t|^{1/2}C \quad \text{for all} \quad n.
\]

If \((a_n) \) is a sequence converging to \(0 \), and
\[
T_n = \inf\{t \geq 0: B_t = a_n\},
\]
then \(P(T_n < a_n^2) = k > 0 \), for some
constant \(k \). Thus \(P(T_n < a_n^2 \text{ for infinitely many } n) = 1 \) by the Borel-Cantelli lemmas, and the Blumenthal 01 law.

Now let \(S_n = \inf \{ u > t: B_u = A_n \} \). By the preceding argument, and the Markov property of \(B \) at \(t \),

\[
S_n - t < (A_n - B_t)^2 \text{ for infinitely many } n, \ a.s.
\]

Thus

\[
\limsup_{n \to \infty} (S_n - t)^{-\frac{1}{2}} |Y_{S_n} - Y_t|
\]

\[
= \limsup_{n \to \infty} (S_n - t)^{-\frac{1}{2}} |L(A_n, t) - L(B_t, t)|
\]

\[
\geq \limsup_{n \to \infty} (S_n - t)^{-\frac{1}{2}} |A_n - B_t|^{\frac{1}{2}} C
\]

\[
\geq C \ a.s.
\]

\[
> 0 \ a.s.
\]

Therefore \(t \in D^2(Y) \ a.s. \), and (ii) follows by a Fubini argument. (iii) is an immediate consequence of (ii) and the proposition.

Reference