Let \mathcal{A} be an algebra. Suppose that whenever $(A_n, n \in \mathbb{N})$ are disjoint sets in \mathcal{A} the set $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Prove that \mathcal{A} is a σ-algebra.

If $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$.

Let (A_n) be set in \mathcal{A}. Set $B_1 = A_1$, $B_n = A_n \setminus \bigcup_{j=1}^{n-1} A_j$.

Then $\bigcup_{j=1}^{n} B_n = \bigcup_{j=1}^{n} A_n$, and so $\bigcup_{j=1}^{n} B_j = \bigcup_{j=1}^{n} A_j$.

The sets B_n are disjoint, since if $j < n$ then $B_j \subseteq \bigcup_{i=1}^{j-1} A_i = \bigcup_{i=1}^{n-1} A_i$.

and $B_n \cap \bigcap_{i=1}^{n-1} A_i = \emptyset$ by the construction of all B_n.

Since \mathcal{A} is an algebra, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. By the property of \mathcal{A}, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{A}$, and so $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Sample Solution
2. (a) Define \sigma-\text{finite measure, semi-finite measure.}

A measure \(\mu \) on a space \((X, \mathcal{M}) \) is \(\sigma-\)finite if

\[
\exists \{A_n\} \text{ such that } A_n \in \mathcal{M}, \quad \mu(A_n) < \infty \quad \forall n \quad \text{and} \quad \bigcup_{n=1}^{\infty} A_n = X.
\]

\(\mu \) is semi-finite if whenever \(F \in \mathcal{M} \) and \(\mu(F) = \infty \) there exists \(E \subseteq F \) with \(\mu(E) < \infty \).

(b) Let \(X \) be a countable set and \(\mu \) be a semi-finite measure on \(\mathcal{P}(X) \). Is \(\mu \) \(\sigma \)-finite? Prove your answer or give a counterexample.

Let \(X = \{x_n, n \in \mathbb{N}\} \). Let \(\mu \) be semi-finite.

Let \(n \geq 1 \). Suppose \(\mu(\{x_n\}) = \infty \). The only subsets of \{x_n\} are \(\emptyset \) and \(\{x_n\} \), and \(\mu(\emptyset) = 0 \) and \(\mu(\{x_n\}) = \infty \).

So \(\mu \) is not semi-finite, a contradiction.

Thus we have \(\mu(\{x_n\}) < \infty \) for each \(n \).

Then \(X = \bigcup_{n=1}^{\infty} \{x_n\} \), and so \(\mu \) is \(\sigma-\)finite.