1. (a) Give an example to show that if F and G are σ-fields of subsets of Ω then $F \cup G$ need not be a σ-field.
(b) Let $(\Omega_i, F_i), i = 1, 2$ be measure spaces. Show that in general
\[\mathcal{E} = \{F_1 \times F_2 : F_i \in F_i\} \]
is not a σ-field.

6. Let $\Omega = \mathbb{N} = \{1, 2, \ldots\}$, and
\[A = \{A \subset \Omega : A \text{ is finite}\} \]
\[B = \{B \subset \Omega : B^c \text{ is finite}\} \]
\[\mathcal{E} = A \cup B. \]

(a) Show that \mathcal{E} is a field but not a σ-field.
(b) Let $P : \mathcal{E} \to [0,1]$ be defined by
\[P(A) = \begin{cases} 0, & \text{if } A \in A, \\ 1, & \text{if } A \in B. \end{cases} \]
Prove that P is finitely additive, but not countably additive.