Last class: Review workshop. Introduction to Euler’s method (Lebl 1.7)

Today: Second order methods, Improved Euler.

Next topic: Systems (Lebl Chapter 3)

Please print the graphs from the homework and staple them to the rest.
Also, there is now a .tex file for the homework on the webpage as well as the Matlab notes.

From last lecture our goal is to have a numerical approximation to
\[\frac{d}{dt} y(t) = f(t, y(t)) \]
\[y(0) = y_0 \]
on \([0, T]\).

In our example,
\[\frac{d}{dt} y(t) = (1 + t^2) y(t) - y(t)^3 \]
\[y(0) = 0.5, \]
and the interval is \([0, 2]\).

First review the definitions
- \(h \) is the step size. In matlab \(tval = 0 : h : 2; \)
- \(\tilde{y}_i^h \) is the approximation with step size \(h \) after \(i \) steps, i.e. at time \(t = ih \). (Not raised to a power). Draw a picture. Graph on Matlab.
- Fix \(t = 2 \), define \(\tilde{y}^n = \tilde{y}_i^h \), for \(h = 2^{-n+1} \) and \(i = 2^n \).

We found that the error was linear in \(h \).
\[|\tilde{y}_i^h - y(t)| \leq \mathcal{C} t h \] for \(t = ih \). In particular,
\[\frac{|\tilde{y}_{i+1}^h - \tilde{y}_i^h|}{|\tilde{y}_i^h - \tilde{y}_{i-1}^h|} \approx \frac{1}{2} \]
and the geometric series shows that the error is about
\[|y(2) - \tilde{y}_i^n| \approx |\tilde{y}_i^n - \tilde{y}_{i-1}^n|. \]

Second-order methods. The goal is to have an approximation with \[|y^h_i - y(t)| \leq \mathcal{C} t h^2. \] This is an improvement by a factor of \(h \). If \(h \) is small this is really good!

Suppose each step for a first order method takes 0.1 s, and 0.5 s for second order method, and in both cases \(\mathcal{C} = t = 1 \). Then to reach an error tolerance of \(10^{-6} \) the first order method requires \(10^5 s = 1667 min = 27.8 hr \). The second order method takes 500 s or 8 min.
Taylor expansion one more term
\[y(t + h) = y(t) + h \frac{dy(t)}{dt} + \frac{h^2}{2} \frac{d^2 y(t)}{dt^2} + C(h)h^3 \]

(4) \[y(t + h) = y(t) + hf(t, y(t)) + \frac{h^2}{2} \left(\frac{\partial}{\partial t} f(t, y(t)) + f(t, y(t)) \frac{\partial}{\partial y} f(t, y(t)) \right) + C(h)h^3 \]

This uses a multivariable chain rule that you can look forward to learning about in multivariable calculus.

The resulting second order method is:
\[\hat{y}_0^h = y_0. \]
\[\hat{y}_{i+1}^h = y_i + hf(t, \hat{y}_i^h) + \frac{h^2}{2} \left(\frac{\partial}{\partial t} f(t, \hat{y}_i^h) + f(t, \hat{y}_i^h) \frac{\partial}{\partial y} f(t, \hat{y}_i^h) \right) \]

for \(t = ih \).

Enter functions (*Lecture6and7Example.m*) and show using *euler_error*.

So halving the timestep with result in \(\frac{1}{4} \) of the error.

Or... be more clever

\[y(t + h) - y(t) = \int_t^{t+h} f(s, y(s)) ds \]
\[= \frac{h}{2} \left[f(t, y(t)) + f(t + h, y(t + h)) \right] + C(h)(h^3) \]
\[= \frac{h}{2} \left[f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))) + C(h)(h^2) \right] + C(h)(h^3) \]
\[= \frac{h}{2} \left[f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))) \right] + C(h)(h^3) \]

The resulting second order method is called Improved Euler:
\[\hat{y}_0^h = y_0. \]
\[\hat{y}_{i+1}^h = y_i + hf(t, \hat{y}_i^h + hf(t, \hat{y}_i^h)) \]

for \(t = ih \).

Introduction to systems.

General first-order system

(5) \[\frac{d}{dt}y(t) = f(t, y(t)) \]

exactly the same except now \(y \) and \(f \) are vector-valued functions (they will be notated with an arrow on the blackboard). If the dim is \(n \) these are \(n \)-equations for \(n \)-dependent
variables. The Euler (first-order) and improved Euler work exactly the same. Also the existence and uniqueness theorems are the same:

Theorem: Suppose f is continuous and all partial derivatives of f with respect to components of y are uniformly bounded (by a constant independent of y). Then there is a unique solution to (5) and it exists for all t.