Today: First order linear equations and integrating factors (Lebl 1.4). Autonomous Equations (Lebl 1.6).

First let’s extend our classification of DE’s.

- **Autonomous Equations**: No independent variable. \(\frac{dy(t)}{dt} = f(y) \). Examples: drag eqn:

 \[f(v) = g - \frac{\kappa}{m} v^2. \]

 Cooling equation for temperature \(T \) and equilibrium \(T_e \),

 \[f(T) = k(T_e - T). \]

 May or may not be linear.

- **Constant coefficient linear equations**. Coefficient to \(y \) does not depend on \(t \).

 \[y' = Ay + h(t) \]

- **Homogeneous linear equations**:

 \[y' = g(t)y(t) \]

 Important fact: if \(y^1 \) and \(y^2 \) solve a homogeneous equation than so do \(ay^1 + by^2 \) for constants \(a, b \).

 Quiz: Does (Constant coefficient linear & Homogeneous) = (Autonomous & Linear)?

 Not quite, (Autonomous & Linear) also includes equations with a constant inhomogeneous term.
Ex:

\[
\frac{d}{dt} y(t) - t y(t) = -t^3
\]

\[
y(0) = 0
\]

First we solve the homogeneous part (any soln works). \(\frac{d}{dt} y^1(t) = ty^1(t) \). Actually we have already done this to get

\[
y^1(t) = e^{\frac{1}{2}t^2}.
\]

To solve for the inhomogeneous part

\[
y(t) = a(t) y^1(t),
\]

\[
\frac{d}{dt} y(t) = \left(\frac{d}{dt} a(t) \right) e^{\frac{1}{2}t^2} + a(t) \frac{d}{dt} y^1(t)
\]

\[
= \left(\frac{d}{dt} a(t) \right) e^{\frac{1}{2}t^2} + a(t) t y^1(t)
\]

\[
\frac{d}{dt} y(t) - t y(t) = \left(\frac{d}{dt} a(t) \right) e^{\frac{1}{2}t^2}
\]

so we want to solve for

\[
\left(\frac{d}{dt} a(t) \right) e^{\frac{1}{2}t^2} = -t^3
\]

\[
\left(\frac{d}{dt} a(t) \right) = -t^3 e^{-\frac{1}{2}t^2}
\]

\[
= t^2 \frac{d}{dt} (e^{-\frac{1}{2}t^2})
\]

\[
= \frac{d}{dt} \left(t^2 e^{-\frac{1}{2}t^2} \right) - 2te^{-\frac{1}{2}t^2}
\]

\[
a(t) = t^2 e^{-\frac{1}{2}t^2} + 2e^{-\frac{1}{2}t^2} + C.
\]

Plug it back in to get

\[
y(t) = t^2 + 2 + Ce^{\frac{1}{2}t^2}
\]

For the initial condition we get \(C = -2 \).

Double check

\[
\frac{d}{dt} y(t) = 2t + Cte^{\frac{1}{2}t^2}
\]

\[
ty - t^3 = t^3 + 2t + tCe^{\frac{1}{2}t^2} - t^3.
\]

General form of first order linear equation:

(1) \[
\frac{d}{dt} y(t) = g(t)y(t) + h(t)
\]
For the first part we solve to get
\[y^1(t) = C e^{\int_0^t g(s) ds} \]
(2)

Then we guess
\[y(t) = a(t) y^1(t), \]

\[
\frac{d}{dt} y(t) - g(t) y(t) = \left(\frac{d}{dt} a(t) \right) y^1(t) + a(t) \frac{d}{dt} y(t) - g(t) a(t) y^1(t) \\
= \left(\frac{d}{dt} a(t) \right) y^1(t) = h(t)
\]

(3)
\[a(t) = \int_0^t \frac{h(s)}{y^1(s)} ds + C \]

To check that \(a(t) y^1(t) \) solves the equation
\[
\left(\frac{d}{dt} a(t) \right) y^1(t) + a(t) \frac{d}{dt} y^1(t) = \frac{h(t)}{y^1(t)} y^1(t) + a(t) g(t) y^1(t) \\
= h(t) + g(t) y(t).
\]

The book uses a slightly different integrating factor \(r \). It does not solve the homogeneous equation but it solves a closely related equation. If you are confused, try to find the equation and the relation between \(r \) from Lebl and \(y^1 \), \(a \) above.

Autonomous equations.

\[\frac{d}{dt} y(t) = f(y(t)). \]
(4)

The slope field is constant in \(t \).

We can classify the qualitative behavior of solutions by looking at the critical points, where \(f(y) = 0 \). Example: logistic eqn for population growth. \(\frac{d}{dy} = ky(M - y) \). Draw slope field. Find critical points. Easy, \(y = 0 \) or \(y = M \).

\(y = M \) is stable. If \(y > M \) slightly or \(0 < y < M \) then \(y(t) \) approaches \(M \) for large \(t \). For \(-y \), the population grows negatively. Thus 0 is unstable. If \(y = 0 \) it says 0 but if \(y > 0 \) or \(y < 0 \) it goes away from 0. This qualitatively describes all the behavior of the solution.