1. Applications of Constant-Coefficient Second Order

1.1. Mass on a Damped Spring (review). The displacement of the spring is \(x(t) \) and the mass is \(m \).

Newton's second law: force equals mass times acceleration. The acceleration is \(x''(t) \).

Hooke's Law: force from spring is negatively proportional to displacement: \(-kx(t)\). Friction is another force that is negatively proportional velocity, \(-\alpha x'(t)\). The resulting 'balance of forces' equation is

\[
xm''(t) + \alpha x'(t) + kx(t) = 0.
\]

The constants satisfy \(k > 0, m > 0 \) and \(\alpha \geq 0 \).

1.2. LCR circuit. Inductor, \(L \), Capacitor, \(C \), and Resistor \(R \). The current is \(I(t) \) (charge/s) and the charge on the capacitor is \(Q(t) \). The voltage is, \(L \frac{dI}{dt} \) for the inductor, \(\frac{Q}{C} \) for the capacitor and \(IR \) for the resistor. Kirchoff's law states that the sum of the voltages should equal the applied voltage (from a battery or outlet). The differential equation is

\[
L \frac{d^2Q}{dt^2} + R \frac{dQ}{dt} + \frac{1}{C}Q(t) = V(t)
\]

where \(V(t) \) is the forcing term, may be alternating (sine) or direct (constant). Despite being a very different physical application, the structure and solutions are very similar to the spring!

1.3. Linear Pendulum. Consider a pendulum that is away from vertical with angle \(\theta(t) \) and has a mass \(m \) at the end of the length \(L \). The force from gravity is \(mg \) in the down
direction, but we only care about the projection on the line perpendicular to the pendulum, which is \(-\sin(\theta)mg\). The velocity is \(L\theta'\), so Newton’s law is
\[
mL\theta''(t) = -mg \sin(\theta(t)).
\]
This equation is nonlinear. If we only care about very small angles, we can approximate \(\sin(\theta) \approx \theta\), and the linear pendulum equation is
\[
(1) \quad mL\theta''(t) + mg\theta(t) = 0.
\]
Again very similar to the spring, we could add friction with a term proportional to \(\theta'(t)\).

2. General Solution for these equations

Let’s just put the equations in the form
\[
x''(t) + bx'(t) + cx(t) = f(t).
\]
Let’s try to write down the general solution operator. We can form a system with \(y_1 = x\) and \(y_2 = x'\) and
\[
\frac{d}{dt} y(t) = \begin{bmatrix} 0 & 1 \\ -c & -b \end{bmatrix} y(t) + \begin{bmatrix} 0 \\ f(t) \end{bmatrix}
\]
The first step is to find the eigenvalues. The characteristic polynomial is
\[
-\lambda(-b - \lambda) + c = 0
\]
\[
\lambda^2 + b\lambda + c = 0
\]
\[
\lambda = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
\]
We assume \(b, c \geq 0\). There are three cases.

(1) If \(b^2 > 4c\), then there are 2 negative real eigenvalues. This is called overdamped. We don’t have to find the eigenvectors because we can work with \(x(t) = c_1e^{\lambda_1 t} + c_2e^{\lambda_2 t}\). You can check that
\[
\begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix}
\]
is actually the eigenvector. The solutions will approach zero with no oscillation.

(2) If \(b^2 = 4c\) this is the critically damped case. In this case the matrix has repeated negative eigenvalues \(\lambda = \frac{-b}{2}\) and is defective. The general solution is \(x(t) = c_1e^{\lambda t} + c_2te^{\lambda t}\). The solutions approach the 0 without oscillating but more slowly.

(3) If \(b^2 < 4c\). Underdamped. Then the eigenvalues are complex. Let’s do some more calculations for this case.
2.1. **Underdamped.** Let $A = \frac{b}{2}$ and $\mu = \frac{\sqrt{4c-b^2}}{2}$. The general solution for $x(t)$ is

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

$$= c_1 e^{-At} (\cos(\mu t) + i \sin(\mu t)) + c_2 e^{-At} (\cos(-\mu t) + i \sin(-\mu t))$$

$$= (c_1 + c_2) e^{-At} \cos(\mu t) + i(c_1 - c_2) e^{-At} \sin(\sqrt{\mu} t).$$

To have a real solution, $c_2 = \overline{c_1}$ so $c_1 + c_2$ is real and $c_1 - c_2$ is purely imaginary. We can instead use real constants $a = c_1 + c_2$ and $b = c_1 - c_2$ and

$$x(t) = ae^{-At} \cos(\mu t) + be^{-At} \sin(\mu t).$$

The period of the sin and cos is $\frac{2\pi}{\mu}$ (seconds) and the frequency if $\frac{\mu}{2\pi}$ (Hz). As the damping increases, the period tends to ∞ and the solutions approach the critically damped case.