1. DEFECTIVE MATRICES

Consider
\[A = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}, \]
and we want to be able to solve
\begin{align*}
\frac{d}{dt} y(t) &= Ay(t), \\
y(0) &= y_0
\end{align*}
(1)
for any \(y_0 \). The eigenvalues of \(A \) are \(\lambda_1 = \lambda \) and \(\lambda_2 = \lambda \). To find the eigenvector we look at
\[A - \lambda I = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}. \]
One eigenvector is
\[v_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \]
This corresponding solution
\[y(t) = c_1 e^{\lambda t} v_1. \]
Hopefully, \(y_0 = c_1 v_1 \) and we are done.
If not, let
\[y(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}. \]
Equation (1) becomes
\begin{align*}
\frac{d}{dt} a(t) &= \lambda a(t) \\
\frac{d}{dt} b(t) &= a(t) + \lambda b(t).
\end{align*}
For the first equation \(a(t) = c_2 e^{\lambda t} \). Then the second equation is
\[\frac{d}{dt} b(t) = c_2 e^{\lambda t} + \lambda b(t). \]
We use integrating factors to put this in the form
\[\frac{d}{dt}(e^{-\lambda t}b(t)) = c_2 e^{\lambda t} e^{-\lambda t} = c_2. \]
So \(b(t) = c_2 t e^{\lambda t} + c_1 e^{\lambda t} \). The general solution is
\[
y(t) = \begin{bmatrix} c_2 e^{\lambda t} \\ c_1 e^{\lambda t} + c_2 t e^{\lambda t} \end{bmatrix} = c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} (tv_1 + v_2),
\]
For
\[v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \]
This is solution works whenever \(v_1 \) is an eigenvector and
\[A v_2 = \lambda v_2 + v_1. \]
So our method is
(1) Find one eigenvalue.
(2) If there is not a second, then instead we can find \(v_2 \) with \((A - \lambda I)v_2 = v_1\).
(3) Equation (2) gives a general solution.

What if the eigenvalue has multiplicity 3 and only 1 eigenvector? It could be worse, but we will only get higher powers of \(t \) in the solution. For example suppose \(A \) has an eigen value of multiplicity three and only one eigenvectors. Then we can find independent vectors \(v_1, v_2, v_3 \) with \(v_1 \) and eigenvector,
\[
A v_1 = \lambda v_1,
A v_2 = \lambda v_2 + v_1,
A v_3 = \lambda v_3 + v_2.
\]
Then a general solution is
\[
y(t) = c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} (tv_1 + v_2) + c_3 e^{\lambda t} \left(\frac{t^2}{2} v_1 + tv_2 + v_3 \right).
\]
Check this as an exercise.

2. **Linear Inhomogeneous equations**

General form:
\[
\frac{d}{dt} y(t) = Ay(t) + g(t),
y(0) = y_0.
\]
Suppose we know a particular solution \(y_p(t) \) to
\[
\frac{d}{dt} y_p(t) = Ay_p(t) + g(t),
\]
but \(y_p \) has the wrong initial condition? We can decompose our solution as

\[
y(t) = y_h(t) + y_p(t)
\]

and

\[
\frac{d}{dt}y_h(t) + \frac{d}{dt}y_p(t) = A y_h(t) + A y_p(t) + g(t),
\]

\[
\frac{d}{dt}y(t) = A y(t).
\]

The problem becomes solve the homogeneous problem for \(y_h \) with

\[
y_h(0) = y_0 - y_p(0).
\]

We know how to do that, so all we have to do is find the particular solution.

2.1. **Example with defective matrix.** Two populations with same growth rate. Population 1 eats population 2. But population 2 increasing from a second immigration rate.

\[
\frac{d}{dt}y(t) = \begin{bmatrix}
1 & 0 \\
-1 & 5 & 1
\end{bmatrix} + \begin{bmatrix}
0 \\
t
\end{bmatrix},
\]

\[
y(0) = \begin{bmatrix}
1 \\
1
\end{bmatrix}.
\]

For a particular solution, we can assume population 1 is zero and just solve for

(4) \[
\frac{d}{dt}b(t) = b(t) + t.
\]

The solution by integrating factors is

\[
b(t) = e^t \int e^{-s}sd\bar{s}
\]

\[
= e^t \int \frac{d}{ds}(-e^{-s}t) + e^{-s}d\bar{s}
\]

\[
= e^t (te^{-t} - e^{-t})
\]

\[
= -t - 1.
\]

So

\[
y_p(t) = \begin{bmatrix}
0 \\
-t - 1
\end{bmatrix}
\]

\[
y_p(0) = \begin{bmatrix}
0 \\
-1
\end{bmatrix}
\]

\[
y_h(0) = y_0 - y_p(0) = \begin{bmatrix}
1 \\
2
\end{bmatrix}.
\]

For the general solution to the homogeneous part we need to find \(v_1 \) and \(v_2 \). The eigenvector is still

\[
v_1 = \begin{bmatrix}
0 \\
1
\end{bmatrix}
\]
Next we solve for $\mathbf{A}\mathbf{v}_2 = \mathbf{v}_2 + \mathbf{v}_1$, this is

\begin{equation}
\begin{bmatrix}
0 & 0 \\
-\frac{1}{5} & 0
\end{bmatrix}
\mathbf{v}_2 =
\begin{bmatrix}
0 \\
1
\end{bmatrix}.
\end{equation}

There are more than one solution, but the simplest is

\begin{equation}
\mathbf{v}_2 =
\begin{bmatrix}
-5 \\
0
\end{bmatrix}.
\end{equation}

Now, we express $y_h(0) = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$, we need $c_1 = 2$ and $c_2 = -\frac{1}{5}$. The solution is

\begin{equation}
y(t) = 2e^t\mathbf{v}_1 - \frac{1}{5}(e^t\mathbf{v}_2 + e^t\mathbf{v}_1) + (-t - 1)\mathbf{v}_1,
\end{equation}

\begin{equation}
= \begin{bmatrix}
2e^t - \frac{1}{5}te^t - t - 1
\end{bmatrix}.
\end{equation}