Last week:

- Functions: vertical line test
- One-to-one functions: horizontal line test
- Inverse functions: algebra, graph

Warning about notations

\[f^{-1}(x) \neq f(x)^{-1} = \frac{1}{f(x)} \]

\[\text{Inverse function} \quad \text{reciprocal} \]
Figure 1.45

Larger values of b produce greater rates of increase in b^x if $b > 1$.
Figure 1.46

Smaller values of b produce greater rates of decrease in b^x if $0 < b < 1$.

The graph shows three exponential functions:

- $y = 0.1^x$
- $y = 0.5^x$
- $y = 0.9^x$

As b decreases from 1 to 0, the rate at which y approaches 0 increases.
Figure 1.47

Tangent line has slope 1 at (0, 1).
Exponential functions:

\[b > 0 \quad f(x) = b^x \quad \text{x any real number} \]

\[0 < b < 1 \]

Special value \(b \):

\[e = 2.718281828459045... \]

\[2 < e < 3 \]
Exponent rules

1. \(b^x \cdot b^y = b^{x+y} \)

2. \(\frac{b^x}{b^y} = b^{x-y} \)

 In particular, \(\frac{1}{b^x} = b^{-x} \)

3. \((b^x)^y = b^{x\cdot y} \)

4. \(b^x > 0 \) for all \(x \)

Example

\[2^3 \cdot 2^{\frac{1}{2}} = 2^{3\frac{1}{2}} = 2^\frac{7}{2} \]

\[\frac{2^3}{2^{\frac{1}{2}}} = 2^{\frac{3}{2} - \frac{1}{2}} = 2^1 \]

\[(2^3)^{\frac{1}{2}} = 2^{\frac{3}{2} \cdot \frac{1}{2}} = 2^{\frac{3}{4}} \]

Fact: \(f(x) = b^x \) is one-to-one.

And so it has an inverse \(f^{-1}(x) = \log_b(x) \)

\[\log_b(b^x) = x \quad b^{\log_b(x)} = x \]

1. If \(b = e \) we denote \(\log_b(x) = \ln(x) = \log_e(x) = \log(x) = \ln(x) \)

\[\log_e(e^x) = x \quad e^{\log(x)} = x \]
Figure 1.58

Graphs of b^x and $\log_b x$ are symmetric about $y = x$.

$y = b^x, \ b > 1$
$y = \log_b x$
$x = x$
$(0, 1)$
$(1, 0)$
The domain of \(f(x) = b^x \) is: any \(x \)
The range is: any \(y > 0 \).

The domain of \(\log_b(x) \) is any \(x > 0 \).
The range of \(\log_b(x) \) is any \(y \).

Logarithmic rules

1. \(\log_b(x \cdot y) = \log_b(x) + \log_b(y) \)

 \[\log(6) = \log(2) + \log(3) \]

2. \(\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y) \)

 \[\log_b \left(\frac{1}{x} \right) = -\log_b(x) \]

 \[\log_b \left(\frac{3}{2} \right) = \log(3) - \log(2) \]

3. \(\log_b(x^y) = y \cdot \log_b(x) \)

 \[\log(8) = 3 \cdot \log(2) \]

4. \(\log_b(b) = 1 \)

 \[\log(e) = 1 \]
Two extra rules:

1. \(b^x = \left(b^{\log(b)} \right)^x = e^{x \cdot \log(b)} \)

2. \(\log_b(x) = \frac{\log(x)}{\log(b)} \)
Figure 1.59

\[y = \log_b x \]

- \[y = \log_2 x \]
- \[y = \ln x \]
- \[y = \log_5 x \]
- \[y = \log_{10} x \]

\[\log_b x \text{ increases on the interval } x > 0 \text{ when } b > 1. \]

\[\log_b 1 = 0 \text{ for any base } b > 0, b \neq 1. \]
Warm up problem:

Solve $2^x = 3^x$ for x. Put your answer in a calculator-ready form.

Solution: 1. $2^0 = 1$, $3^0 = 1$ so $x = 0$ is a solution.

How do we know that this is the only solution?

2. If $2^x = 3^x$ then $\log(2^x) = \log(3^x)$ (by log is a function)

$x \cdot \log(2) = x \cdot \log(3)$

and hence $x \cdot \log(2) - x \cdot \log(3) = 0$

and $x \left(\log(2) - \log(3) \right) = 0$

so $x \cdot \log(\frac{2}{3}) = 0$ and $\log(\frac{2}{3}) = 0$ then $x = 0$.

3. \(2^x = 3^x\) so \(\frac{2^x}{3^x} = 1\)

\[\frac{b^1}{c^x} = \left(\frac{b}{c}\right)^x\]

hence \((\frac{2}{3})^x = 1\)

so \(\log\left((\frac{2}{3})^x\right) = \log(1)\)

\(x \cdot \log\left(\frac{2}{3}\right) = 0\) \(\Rightarrow x = 0\)
Some business words:

* The revenue is the amount of money \(R \) that we make by selling \(q \) items at a set price \(p \).

\[R = p \cdot q \]

\(q = 10 \) pens
\(p = 81.50 \)
\(R = 815 \)

* The cost is the amount of money \(C \) that a company spends to make/sell \(q \) items.

\[C(q) = F + V(q) \]

- Fixed costs
 - Salaries
 - Rent
 - etc.
- Variable costs
 - Material
 - Overtime
 - etc.
The profit is the amount of money P that the company is left with after all products were sold and all costs were paid.

$$P = R - C.$$
Basic Business problem:
- \(p \) - price of each item (in $)
- \(q \) - number of items sold in a week/month/year
- \((p, q)\) is called a data point
- The connection between \(p \) & \(q \) is called law of demand. If \(p \) increases then \(q \) decreases and visa versa.

- Revenue: \(R = p \cdot q \)
- Cost function: \(C(q) = F + V(q) \)

\[C(q) = F + A \cdot q \]

Profit: \(P = R - C \)

Today: \(V(q) \) is linear.

Today: The demand is linear: \(q = B \cdot p + D \)
Linear function: \(f(x) = Ax + B \)

\(A, B, \) constants

The line passing through \((0, B)\) and having slope \(A\).

\[
\begin{align*}
A + B &= 0 \\
x &= -\frac{B}{A}
\end{align*}
\]
The story:
We were hired by BChalk Inc. They are selling a chalk box for $2 and sell 3,000 boxes a month. Last April, they had a chalk sale (the chalk-fest) and, at a discount of $10 a box, they sold 100 more boxes than other months.

Talking with BChalk's accountant we found that their fixed cost is $3,250 a month and it costs an extra $75 to make a box of chalk, so now their monthly profit is $500 and they would wish to increase it.

1. Find the linear demand equation for a box of chalk. Use the notation \(p \) for the unit price and \(q \) for the monthly demand.

2. Find the monthly cost function, \(C=C(q) \), for producing \(q \) boxes of chalk per month. Note that \(C(q) \) is a linear function.

3. Find the monthly revenue function, \(R=R(q) \). Note that \(R(q) \) is a quadratic function.

4. The break-even points are where Cost equals Revenue; that is, where \(C(q)=R(q) \). Find the break-even points for the product.

5. On the same set of axes, sketch graphs of \(C=C(q) \) and \(R=R(q) \) and use these graphs to help you explain why there are two break-even points.

6. Find the profit function \(P(q)=R(q)-C(q) \). Note that it is a quadratic function.

7. Graph \(P=P(q) \) on the same axes as you sketched the graphs of \(C(q) \) and \(R(q) \). On this graph, indicate the regions of profit \((P(q)>0) \) and loss \((P(q)<0) \).

8. How should BChalk Inc. operate in order to maximize the weekly profit \(P=P(q) \)? Use mathematics in your explanation.
\[q = Bp + D \]

Two data points:

- \((P, q)\) \((2.8, 3,000)\)
- \((1.90, 3,100)\)

\[\text{Slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3,000 - 3,100}{2.8 - 1.90} = -\frac{100}{0.9} = -1,000 \]

\[B = \text{Slope} = \frac{+100}{-0.1} = -1,000 \]

Plug in \((2, 3,000)\) into the eq. \(q = -1,000 \cdot p + D\):

\[3,000 = -1,000 \cdot 2 + D \Rightarrow D = 5,000 \]

\[q = -1,000 \cdot p + 5,000 \]
\[q^* = -1,000p + 5,000 \]

\[q - 5,000 = -1,000p \]

\[\frac{-q}{1,000} + 5 = p \]

2. \(F = \$3,250 \)

\[V(q) = 80.75 - q \]

\[C(q) = 3,250 + 0.75q \quad \text{[\$/month]} \]

3. \(R = p \cdot q \)

\[R(q) = p \cdot q = \left(-\frac{q}{1,000} + 5 \right) \cdot q \]

\[a \quad \text{quadratic function!} \]

4. \(P(q) = R(q) - C(q) \)

\[= \left(-\frac{q}{1,000} + 5 \right) \cdot q - \left(3,250 + 0.75q \right) \]

\[a \quad \text{quadratic function!} \]
\[P(q) = -\frac{q^2}{1,000} + 4.25q - 3.250 \]

Demand equations:

\[q = -1,000 \cdot p + 5,000 \]

\[p = \frac{-q}{\frac{1}{1,000}} + 5 \]
\[A \cdot x^2 + Bx + C = 0 \]

\[
X_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}
\]

\[
X_{\text{max}} = -\frac{B}{2A}
\]

\[
-\frac{q^2}{1000} + 4.25q - 3,250 = 0
\]

\[
\frac{q^2}{1000} - 4.25q + 3,250 = 0
\]

\[
A = 1, \quad B = -4,250, \quad C = 3,250,000
\]

\[
q_{1,2} = \frac{4,250 \pm \sqrt{(-4,250)^2 - 4 \cdot 3,250,000}}{2}
\]

\[
q_{1,2} = \frac{4,250 \pm \sqrt{17,562,500 - 12,400,000}}{2}
\]

\[
q_{1,2} = \frac{4,250 \pm 1,100}{2}
\]

\[
q_{1,2} = \frac{5,350}{2}, \quad \frac{-3,150}{2}
\]

\[
q_{\text{max}} = \frac{q_1 + q_2}{2}
\]

\[
q_{\text{max}} = 2,125
\]
\(q_{\text{max}} = 2,125 \)

\[P_{\text{max}} = - \frac{q_{\text{max}}}{1,000} + 5 = - \frac{2,125}{1,000} + 5 = 2.875 \text{ ℓ} \]

\[P(2,125) = 1,265.625 \text{ ℓ} \]

The maximal profit is:

\[= - \frac{2,125^2}{10,000} + 4.25 \cdot 2,125 - 3,250 \]
Introduction to limits:

We threw a stone into the air at a velocity of 30 meters/sec

\[h(t) = -5 \cdot t^2 + 30 \cdot t \]

How fast is the stone going up after 2 seconds?

\[h(2) = -5 \cdot 2^2 + 30 \cdot 2 = -20 + 60 = 40 \text{ meters} \]

Average velocity:

\[\text{Avg } v(t) = \frac{h(2) - h(t)}{2 - t} \quad t \neq 2 \]
<table>
<thead>
<tr>
<th>Interval</th>
<th>$\text{Var}(I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0, 2]$</td>
<td>20</td>
</tr>
<tr>
<td>$[1, 2]$</td>
<td>15</td>
</tr>
<tr>
<td>$[1.5, 2]$</td>
<td>12.5</td>
</tr>
<tr>
<td>$[1.9, 2]$</td>
<td>10.5</td>
</tr>
<tr>
<td>$[1.99, 2]$</td>
<td>10.05</td>
</tr>
<tr>
<td>$[1.99999, 2]$</td>
<td>10.00005</td>
</tr>
<tr>
<td>$[2, 3]$</td>
<td>5</td>
</tr>
<tr>
<td>$[2, 2.2]$</td>
<td>9.5</td>
</tr>
<tr>
<td>$[2, 2.00]$</td>
<td>9.95</td>
</tr>
<tr>
<td>$[2, 2.000]$</td>
<td>9.995</td>
</tr>
</tbody>
</table>
We want to say that the velocity of the stone at \(t = 2 \text{ sec.} \) is 10 meters/second.

Definition: Suppose the function \(f \) is defined for all \(x \) near \(a \) except possibly at \(a \). If \(f(x) \) is arbitrarily close to \(L \) (as close to \(L \) as we like) for all \(x \) sufficiently close (but not equal) to \(a \), we write
\[
\lim_{x \to a} f(x) = L
\]
and say that the limit of \(f(x) \) as \(x \) approaches \(a \) equals \(L \).

\[
f(t) = \frac{h(t) - h(2)}{2 - t}, \quad L = 10, \quad a = 2
\]
The instantaneous velocity is \(\lim_{t \to 2} \frac{h(t) - h(2)}{2 - t} = 10 \).