Very short answer questions

1. (a) **3 marks** What is the worth, after 9 months, of an investment of $200 with a nominal interest rate of 15% compounded quarterly?

 Answer: \(200 \cdot (1.0375)^{3}\)

 Solution: We use the compounded interest formula

 \[FV = PV \cdot \left(1 + \frac{i}{n}\right)^{nt} \]

 We plug in

 \[PV = 200, \quad n = 4, \quad t = \frac{3}{4}, \quad i = 0.15\]

 to get

 \[FV = 200 \cdot \left(1 + \frac{0.15}{4}\right)^{4 \cdot \frac{3}{4}} = 200 \cdot (1.0375)^{3}.\]

 (b) **2 marks** How fast is the investment (from part (a)) growing after 9 months?

 Answer: \(800 \cdot (1.0375)^{3} \cdot \log(1.0375)\)

 Solution: We have

 \[FV(t) = 200 \cdot \left(1 + \frac{0.15}{4}\right)^{4t} \]

 Deriving it we get

 \[FV'(t) = 200 \cdot \left(1 + \frac{0.15}{4}\right)^{4t} \cdot 4 \cdot \log\left(1 + \frac{0.15}{4}\right).\]

 And by plugging in \(t = \frac{3}{4}\) we find that the rate in which the investment was growing after 9 months was

 \[FV'\left(\frac{3}{4}\right) = 200 \cdot \left(1 + \frac{0.15}{4}\right)^{4 \cdot \frac{3}{4}} \cdot 4 \cdot \log\left(1 + \frac{0.15}{4}\right) = 800 \cdot (1.0375)^{3} \cdot \log(1.0375).\]

Long answer questions - You must show your work

2. **7 marks** Find the absolute maximum and minimum of \(f(x) = x^{2/3} + x\) on \([-1, 1]\) (value and point).

 Answer: Max 2, Min 0
Solution: We derive the function
\[f'(x) = \frac{2}{3x^{1/3}} + 1, \]
this is true for any \(x \neq 0 \). Solving the equation \(f'(c) = 0 \) for \(c \) yields one solution \(c = -\left(\frac{2}{3}\right)^3 \) which is in the interval. We have two critical points 0 and \(-\left(\frac{2}{3}\right)^3\). We plug the edges and critical points into the function
\[f(-1) = 0, \quad f(0) = 0, \quad f\left(-\left(\frac{2}{3}\right)^3\right) = \frac{4}{27}, \quad f(1) = 2 \]
The absolute maximum is 2 at 1 and the absolute minimum is 0 at \(-1\) and 0.

3. **8 marks** A kite is flying 40 meters above the ground when the wind starts to blow it away in a direction parallel to the ground at the rate of \(4 \text{ m} \text{ sec}^{-1} \). At what rate must the string be let out when the length of string already let out is 80 meters?

Answer: \(\frac{\sqrt{4800}}{20} \text{ m} \text{ sec}^{-1} \)

Solution: We denote the horizontal distance between the kite and the person operating it by \(x(t) \) (measured in meters) and the actual distance by \(s(t) \). We have \(s(t_0) = 80 \). We already know that \(\frac{ds}{dt}(t_0) = 4 \text{ m} \text{ sec}^{-1} \).

By the Pythagorean theorem we have \(x(t)^2 + 40^2 = s(t)^2 \). Differentiating this with respect to \(t \) yields \(2x(t)\frac{dx}{dt} = 2s(t)\frac{ds}{dt} \). We note that \(x(t_0)^2 + 40^2 = s(t_0)^2 = 100^2 \) and hence \(x(t_0) = \sqrt{80^2 - 40^2} = \sqrt{4800} \). Plugging everything into \(2x(t)\frac{dx}{dt} = 2s(t)\frac{ds}{dt} \) yields \(\frac{ds}{dt}(t_0) = \frac{x(t_0)}{s(t_0)} \frac{dx}{dt}(t_0) = \frac{\sqrt{4800}}{80} \frac{4}{20} = \frac{\sqrt{4800}}{20} \text{ m} \text{ sec}^{-1} \).