Introductory Example - How to price your merchandise?

Let's define a few terms:

- The **revenue** is the amount of money \(R \) that a company receives by selling \(q \) items at a set price \(p \).

\[
R = p \cdot q
\]

- The point \((p,q)\) in the plane is called a **data point**.

- The **cost** is the amount of money \(C \) a company spends to make \(q \) items.

\[
C(q) = F + V(q)
\]

 - \(F \) stands for the fixed costs: Salaries, rent, commercials, etc.
 - \(V(q) \) stands for the variable costs: Materials, over-time, etc.

- The **profit** is the amount of money \(P \) the company is left with after all products were sold and all costs are paid.

\[
P = R - C
\]

- **Demand** is the relation between the price \(p \) of an item and the quantity \(q \) of items to be sold at that price. A basic principle of economy is that an increase in price leads to a decrease in demand.

Today: We assume that the demand is a linear function, i.e.

\[
q = A \cdot p + B
\]

What is the **main** goal of a good business?

1. Maximize revenue.
2. Minimize cost.
3. Maximize profit.
The story:
We were hired by BChalk Inc. They are selling a chalk box for $2 and sell 3,000 boxes a month.
Last April, they had a chalk sale (the chalk-fest) and, at a discount of 10 cents a box, they sold 100 more boxes than other months.

Talking with BChalk's accountant we found that their fixed cost is $3,250 a month and it costs an extra 75 cents to make a box of chalk, so now their monthly profit is $500 and they would wish to increase it.

1. Find the linear demand equation for a box of chalk. Use the notation \(p \) for the unit price and \(q \) for the weekly demand.
2. Find the monthly cost function, \(C=C(q) \), for producing \(q \) boxes of chalk per month. Note that \(C(q) \) is a linear function.
3. Find the monthly revenue function, \(R=R(q) \). Note that \(R(q) \) is a quadratic function.
4. The break-even points are where Cost equals Revenue; that is, where \(C(q)=R(q) \). Find the break-even points for the product.
5. On the same set of axes, sketch graphs of \(C=C(q) \) and \(R=R(q) \) and use these graphs to help you explain why there are two break-even points.
6. Find the profit function \(P(q)=R(q)-C(q) \). Note that it is a quadratic function.
7. Graph \(P=P(q) \) on the same axes as you sketched the graphs of \(C(q) \) and \(R(q) \). On this graph, indicate the regions of profit \((P(q)>0) \) and loss \((P(q)<0) \).
8. How should BChalk Inc. operate in order to maximize the weekly profit \(P=P(q) \)? Use mathematics in your explanation.