Very short answer questions

1. Calculate the derivatives $f'(x)$ for the following functions:

(a) **2 marks** Compute $\frac{dy}{dz}$ where $\cos(yz) = 3yz$.

Solution: We have

\[
\frac{d}{dz} \cos(yz) = -\sin(yz) \frac{d(yz)}{dz} = -\sin(yz) (y + zy')
\]

And so

\[-\sin(yz) (y + zy') = 3y + 3y'z.
\]

Solving for y' gives:

\[y' = \frac{-3y + y \sin(yz)}{z \sin(yz) + 3}
\]

(b) **2 marks** $f(x) = \frac{(x-3)\sqrt{x^2+2x}}{(x^4-4) \log(x)}$ DO NOT SIMPLIFY

Solution: Write

\[
\log(f(x)) = \log \left(\frac{(x-3)\sqrt{x^2+2x}}{(x^4-4) \log(x)} \right)
\]

\[= \log(x-3) + \log \sqrt{x^2+2x} - \log(x^4-4) - \log(\log(x))
\]

\[= \log(x-3) + \frac{1}{2} \log(x^2+2x) - \log(x^4-4) - \log(\log(x))
\]

Deriving both sides yields

\[
\frac{f'(x)}{f(x)} = \frac{1}{x-3} + \frac{1}{3} \frac{2x+2}{x^2+2x} - \frac{4x^3}{x^4-4} - \frac{1}{x \log(x)}.
\]

So

\[f'(x) = \left(\frac{1}{x-3} + \frac{1}{3} \frac{2x+2}{x^2+2x} - \frac{4x^3}{x^4-4} - \frac{1}{x \log(x)} \right) f(x).
\]

(c) **2 marks** Evaluate $f'(x)$, where $f(x) = \sin \left(e^{x^2} \right)$.
Solution: We apply the chain rule twice to get:

\[f'(x) = \cos(e^{x^2}) \cdot \frac{d}{dx}(e^{x^2})' \]
\[= \cos(e^{x^2}) \cdot e^{x^2} \cdot (x^2)' \]
\[= \cos(e^{x^2}) \cdot e^{x^2} \cdot 2x \]

Long answer questions - You must show your work

2. [4 marks] A kite is flying 30 meters above the ground when the wind starts to blow it away in a direction parallel to the ground at the rate of 3 \(\frac{m}{sec} \). At what rate must the string be let out when the length of string already let out is 60 meters?

Answer: \(\frac{\sqrt{2700}}{20} \) \(\frac{m}{sec} \)

Solution: We denote the horizontal distance between the kite and the person operating it by \(x(t) \) (measured in meters) and the actual distance by \(s(t) \). We have \(s(t_0) = 60 \). We already know that \(\frac{dx}{dt} = 3 \frac{m}{sec} \).

By the Pythagorean theorem we have \(x(t)^2 + 30^2 = s(t)^2 \). Differentiating this with respect to \(t \) yields \(2x(t) \frac{dx}{dt} = 2s(t) \frac{ds}{dt} \). We note that \(x(t_0)^2 + 30^2 = s(t_0)^2 = 60^2 \) and hence \(x(t_0) = \sqrt{60^2 - 30^2} = \sqrt{2700} \). Plugging everything into \(2x(t) \frac{dx}{dt} = 2s(t) \frac{ds}{dt} \) yields \(\frac{dx}{dt}(t_0) = \frac{x(t_0)}{s(t_0)} \frac{ds}{dt}(t_0) = \frac{\sqrt{2700}}{60} \cdot 3 = \frac{\sqrt{2700}}{20} \frac{m}{sec} \).