1. (20 marks)
 (a) (5 marks) Find the derivative \(\frac{dF}{dx} \) of the function:
 \[
 F(x) = \int_{\cos(x)}^{x} \sin(t) \, dt.
 \]
 (b) (5 marks) Use the Trapezoidal Rule to approximate
 \[
 \int_{0}^{6} (x - 2)^2 \, dx
 \]
 with \(n = 3 \) equal subintervals. **Simplify your answer.**
 (c) (5 marks) Evaluate the indefinite integral:
 \[
 \int \cos^5(x) \, dx.
 \]
 (d) (5 marks) Compute the Midpoint Riemann sum for the function \(f(x) = x^2 \) on the interval \([-5, 5]\) using \(n = 5 \) equal subintervals. **Simplify your answer.**

2. (10 marks) Evaluate the following indefinite integral:
 \[
 \int \frac{\sqrt{x^2 - 2x - 8}}{x - 1} \, dx.
 \]

3. (10 marks) Find the solution of the initial value problem:
 \[
 \frac{dy}{dt} e^{-y} - \frac{\ln(t)}{t} = 0, \quad y(1) = 0.
 \]
 You may leave the answer in its implicit form.

4. (10 marks) Evaluate the definite integral:
 \[
 \int_{0}^{8} \frac{x^3 - 6x^2 - 2x - 11}{x^2 - 6x - 7} \, dx.
 \]