Recurrences

Richard Anstee, UBC, Vancouver

February 1, 2022
MATH 444

Some notation

We can obtain an integer sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ from recurrence which gives certain initial values explicitly and the remaining values are a function of previous values in the sequences.

Proposition. Assume for each $n>k, a_{n}=f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Assume $a_{1}, a_{2}, \ldots, a_{k}$ are given. Then this uniquely determines a_{n} for all $n>0$.

Examples

Fibonacci numbers
They are determined by the recurrence

$$
f_{n}=f_{n-1}+f_{n-2} \quad f_{1}=f_{2}=1
$$

There is an explicit formula for f_{n}

$$
f_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Derivation using generating functions

We form a generating function for the fibonacci numbers as follows

$$
F(x)=f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}+\cdots
$$

where $f_{1}=1$ and $f_{2}=1$. Thus we have transformed the sequence $f_{1}, f_{2}, f_{3}, \ldots$ into a function(?) $F(x)$.

$F(x)$		$f_{1} x$	$+f_{2} x^{2}$	$+f_{3} x^{3}$	$+f_{4} x^{4}$	
$x F(x)$	$=$		$+f_{1} x^{2}$	$+f_{2} x^{3}$	$+f_{3} x^{4}$	+...
$x^{2} F(x)$	$=$			$+f_{1} x^{3}$	$+f_{2} x^{4}$	+
$\left(1-x-x^{2}\right) F(x)$		$f_{1} x$	$\left.f_{1}\right) x^{2}$	$+0 x^{3}$	$+0 x^{4}$	

using $f_{3}-f_{2}-f_{1}=0, f_{4}-f_{3}-f_{2}=0$ etc. We have

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

We have

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

Then using the method of partial fractions we have

$$
\begin{gathered}
F(x)=\frac{A}{\left(1-\left(\frac{1+\sqrt{5}}{2}\right)\right.}+\frac{B}{\left(1-\left(\frac{1-\sqrt{5}}{2}\right)\right.} \\
\left.=A\left(1+\left(\frac{1+\sqrt{5}}{2}\right) x+\left(\frac{1+\sqrt{5}}{2}\right)\right)^{2} x^{2}+\cdots\right) \\
\left.+B\left(1+\left(\frac{1-\sqrt{5}}{2}\right) x+\left(\frac{1-\sqrt{5}}{2}\right)\right)^{2} x^{2}+\cdots\right)
\end{gathered}
$$

Thus

$$
f_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Catalan Numbers

They are detemined by the recurrence

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i} \quad C_{0}=1
$$

There is an explicit formula for C_{n}

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

We can use recurrences in a variety of ways. The typical way is to obtain a recurrence and then use what we already know to solve the recurrence. Or use generating functions to solve.

Thank you for listening

