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Introduction

There is a marvellous result about a decomposition of a rectangle
into a (finite) number of rectangles. Some call this a tiling. I first
heard this in a lecture of Stan Wagon. A paper by Stan Wagon
explores some proofs of the result . It is titled ‘Fourteen Proofs of
a Result about Tiling a Rectangle’. Some use complex integration!
I remember this proof some decades later (I occasionaly forget the
details).
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Theorem 1. Consider a rectangle R with height a and width b.
Assume there is a decomposition of R into smaller rectangles for
which each smaller rectangle has at least one dimension (height or
width) being an integer. Then at least one of a, b is an integer.

This theorem seems quite peculiar. It takes a while to see that it is
saying something quite interesting. It is not ‘obvious’. Doesn’t
really help to draw pictures but you can try.
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Assume the (big) rectangle is placed in the integral grid where the
rectangle is oriented so the height and width are parallel to the two
axes. This will be inherited by the smaller rectangles.
Now imagine the integral grid divided up on the lines x = i + 1/2
for all i ∈ Z and y = j + 1/2 for all j ∈ Z. Now apply the
checkerboard colouring to this grid so that the 1/2× 1/2 squares
are coloured either black or white and the square next to origin in
the first quadrant is coloured white. For each rectangle (whose
sides are parallel to the axes) we can easily compute the area of
white and black in the rectangle.
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Lemma 2. Assume we have a rectangle R whose sides are parallel
to the axes and at least one of the height or the width is an
integer. Then the area of white and the area of black in the
rectangle are equal.
Proof: Assume the height is an integer. Let us consider a small
rectangle R ′ of the same height as R but which lies between two
vertical lines x = i + 1/2 for x = i , i + 1 for all i ∈ Z. Then the
regions of R ′ cut by the grid lines y = j for j ∈ Z are alternately
black and white of sizes b1,w1, b2,w2, . . . , bk ,wk . Assume b1 6= 0
(if not, flip black and white). Assume bk 6= 0 (we are allowing
wk = 0 or wk 6= 0). Then w1 = b2 = w2 = · · · = wk−1 = 1/2
because of alternating stripes. Since the height is an integer, we
have b1 + bk = 1/2 and wk = 0. Then the black heights are equal
to the white heights (b1 + b2 + · · ·+ bk = w1 + w2 + · · ·+ wk)
and so the area of white and the area of black in the strip are
equal. Our original rectangle can be split it a number of such
strips and hence the area of white and the area of black in the
entire rectangle are equal.
By transposing the axes (or rotating by 90◦), the result follows
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Lemma 3 Assume we have a rectangle whose sides are parallel to
the axes and whose bottom left corner is placed at the origin If the
area of white and the area of black in the rectangle are equal then
at least one of the height or the width is an integer.
Proof: Note the need to place the rectangle at the origin. The
idea is we can reduce to a rectangle of dimensions a× b where
a, b < 1. Say the rectangle is of size c × d where c = a + k and
d = b + ` where k , ` are integers. Then by chopping off the k × d
rectangle (which has an equal amount of black and white since k is
an integer) and then chopping of the a× ` rectangle (which has an
equal amount of black and white since ` is an integer) we are left
with an a× b rectangle which has an equal amount of black and
white and a, b < 1.

Richard Anstee UBC, Vancouver Rectangles with one integer side



We are done if a = b = 0. Now let a = a′ + a′′ and b = b′ + b′′

where a′′ = max{a′ − 1/2, 0} and b′′ = max{b′ − 1/2, 0}. Note
that a′ > a′′ and b′ > b′′. This splits the a× b rectangle into 4
parts, some of which may be empty, where the amount of white is
a′ · b′ + a′′ · b′′ and the amount of black is a′ · b′′ + a′′ · b′. Given
that a′ > a′′ and b′ > b′′, we readily (I might lose marks for this)
conclude that the amount of white exceeds the amount of black, a
contradiction. Let us be more careful so that I don’t lose marks.
We do have a′ · b′ > a′ · b′′. We are done if a′′ · b′′ ≥ a′′ · b′ and so
may assume the contrary a′′ · b′′ < a′′ · b′ so that a′′ > 0 hence
a′ = 1/2. We can also assume b′′ > 0 and b′ = 1/2, since if
b′′ = 0 then the amount of white is a′ · b′ + a′′ · b′′ = a′ · b′ and the
amount of black is a′ · b′′+ a′′ · b′ = a′′ · b′ < a′ · b′. Then by a < 1
and a′′ < a′ (from the definition of a′′) , we have more white than
black, a contradiction.
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Now we can prove the main result:

Proof of Theorem 1. We start by considering the rectangle R
with bottom left placed at origin and the plane coloured
black/white as described above. Then since each subrectangle has
either an integer width or integer height, then by Lemma 2 each
such rectangle has an equal amount of white and black. Thus the
large rectangle R has an equal amount of white and black. We
now use Lemma 3 to deduce that one side of R has an integer
side. This finishes the proof.

Note that there is some care in Lemma 3 required to place
rectangle at the origin. Still it is a relatively easy proof to
remember.
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Thanks for listening.
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