MATH 443 Various Notations

In this course, a graph \(G \) consists of a finite set \(V(G) = V \) of vertices and a finite set \(E(G) = E \) of edges such that each edge \(e = uv \) has associated with it two endpoints \(u, v \in V \) which need not be distinct. A loop is an edge with both endpoints the same e.g. \(e = vv \).

A simple graph \(G \) (or just a graph \(G \)) has no multiple edges or loops. We refer to a multigraph if we allow multiple edges and a general graph is we also allow loops.

A walk of length \(k \) is a sequence \(v_0e_1v_1e_2v_2\cdots e_kv_k \) such that \(v_i \in V(G) \), \(e_i \in E(G) \) and the endpoints of \(e_i \) are \(v_{i-1}, v_i \) or in other words \(e_i = v_{i-1}v_i \). We say that \(W \) is a \(v_0-v_k \)-walk.

A trail is a walk with no repeated edges.

A path is a walk with no repeated vertices.

A \(u-v \)-walk (respectively trail or path) is a walk (respectively trail or path) with first vertex \(u \) and last vertex \(v \).

A walk (respectively trail) is closed if it has at least one edge and the first and last vertices of the walk (resp. trail) are the same. In our example \(v_0 = v_k \).

A graph is connected if each pair of vertices are joined by a walk. A component of a graph is a maximal (with respect to vertices) connected subgraph of \(G \). We can think of a component as an equivalence class of vertices where we have an equivalence relation that says that \(x \) is related to \(y \) if there is an \(x-y \)-walk in \(G \). For a connected graph \(G \), a cut edge is an edge \(e \) for which \(G \setminus e \) is disconnected.

A directed graph is strongly connected if for each pair of vertices \(x, y \) there is both a directed \(x-y \)-path as well as a directed \(y-x \)-path.

An eulerian circuit is a closed trail in which each edge of \(G \) is used. We typically allow a general graph in this problem.

A cycle is a closed trail in which the only pair of repeated vertices is the first and last vertices of the trail. Our definition of \(C_n \) refers to the isomorphism class of cycles of \(n \) edges. Note that a loop is a cycle and is of course a closed walk or trail. Also if we have two vertices \(x, y \) joined by an edge \(e \) then \(xeyex \) is a closed walk but not a cycle. If we have two edges \(e, f \) with endpoints \(x, y \) then we get a cycle \(xeyfx \). A chord of a cycle is an edge joining two vertices of the cycle not already joined by edges of the cycle.

A graph is bipartite if the vertices \(V(G) \) can be partitioned into \(X, Y (X \cup Y = V(G), X \cap Y = \emptyset) \) so that for each edge \(e \in E(G) \), one endpoint is in \(X \) and one endpoint is in \(Y \).

A subgraph \(H \) of \(G \) is a graph for which \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \). Of course in order for \(H \) to be a graph, for each edge \(e \in E(H) \) we must have both endpoints in \(V(H) \).

An induced subgraph \(H = (V(H), E(H)) \) is a subgraph for which each edge \(e \) of \(G \) where both endpoints are in \(V(H) \) is also in \(E(H) \). We use the notation \(H = G[V(H)] \). We refer to a subgraph as induced even if we haven’t specified \(V(H) \) and in that case are asserting the existence of an appropriate \(V(H) \).

A subgraph \(H \) of \(G \) is called a spanning subgraph if \(V(H) = V(G) \). A spanning cycle is called a hamiltonian cycle.

A tree is a subgraph which is connected and has no cycles. We had alternate definitions in class. Note that a tree on more than one vertex must have a vertex of degree one.

A spanning tree is a spanning subgraph which is a tree and is also spanning.

A matching is a set \(M \subseteq E(G) \) of edges no two of which are incident. A perfect matching is a matching so for each vertex \(v \in V(G) \) there is an edge of \(M \) which is incident to \(v \). A spanning 1-regular subgraph is called a 1-factor and the edges form a perfect matching and this is then the same as a perfect matching. If we have a vector \(f = (f(v) : v \in V) \), then an \(f \)-factor is a spanning subgraph of \(G \) with degree at vertex \(v \) equal to \(f(v) \) for each \(v \in V \).
A clique is a set of vertices for which each pair are joined by edges; i.e. a set S is a clique in G if the subgraph induced by S is $K_{|S|}$.

An independent set of vertices is a set S of vertices for which no pair are joined by edges. Thus an independent set corresponds to a clique in G^c.

The Line Graph $L(G)$ is a graph obtained from G with $L(G) = (E(G), E')$ where for $e_1, e_2 \in E(G)$, $e_1 e_2 \in E'$ if they have a vertex in common.

Graph parameters

1. The degree $d_G(v)$ (or just $d(v)$) of a vertex v is the number of endpoints of edges equal to v, hence the number of incidences of edges with v noting that we count a loop for two incidences. The degree sequence d_1, d_2, \ldots of a graph (with $d_i = d_G(i)$), typically has $d_1 \geq d_2 \geq \cdots$.

2. A graph is cubic if every degree is 3. A graph is r-regular if every degree is r. If a vector $f = (f_1, f_2, \ldots, f_n)$ is given, then an f-factor is a subgraph $x = (x(e) : e \in E(G))$ of G satisfying $x(e) \in \{0, 1\}$ with $d_x(i) = \sum e \text{ hits}_i x(e)$ being the associated degree. A fractional f-factor is a vector $x = (x(e) : e \in E(G))$ of G satisfying $x(e) \in [0, 1]$ with $d_x(i) = \sum e \text{ hits}_i x(e)$.

3. We define $\delta(G) = \min_{v \in V} d(v)$, $\Delta(G) = \max_{v \in V} d(v)$

4. We have distance function $d_G(x, y) = d(x, y)$ being the length of shortest $x-y$-path

5. The diameter $\text{diam}(G) = \max_{x, y \in V} d(x, y)$.

6. $\kappa(G)$ is the (vertex) connectivity of G and is the minimum number of vertices that must be deleted from G to either disconnect the graph or leave a single vertex. A graph is k-connected if $\kappa(G) \geq k$. A cut in a graph is a set of vertices S such that $G - S$ is disconnected.

7. $\kappa'(G)$ is the edge connectivity of G and is the minimum number of edges that must be deleted from G to disconnect the graph. A graph is k-edge-connected if $\kappa'(G) \geq k$. An edge cut in a graph is a set of edges of the form $[S, V \setminus S]$ where S is a set of vertices $S \neq \emptyset, V(G)$. Then $G \setminus [S, V(G) \setminus S]$ is disconnected.

Special Graphs

1. K_n denotes the simple graph on n vertices with every pair of vertices joined by an edge. It is called the complete graph.

2. C_n denotes the simple graph on n vertices $\{1, 2, \ldots, n\}$ with $E(C_n) = \{12, 23, \ldots (n-1)n, n1\}$. It is called the cycle of length n.

3. P_n denotes the simple graph on n vertices $\{1, 2, \ldots, n\}$ with $E(P_n) = \{12, 23, \ldots (n-1)n\}$. It is called the path of length $n - 1$ since it has $n - 1$ edges.

4. $K_{r,s}$ denotes the simple graph on $r + s$ vertices where $|X| = r$ and $|Y| = s$ and for each choice $x \in X$ and $y \in Y$ we have $xy \in E(K_{r,s})$. It is called the complete bipartite graph on parts of size r and s.

5. Q_k is the k-dimensional hypercube consisting of 2^k vertices, each vertex corresponding to a different $(0,1)$-string of length k and we join two vertices if their associated strings differ in exactly one position.
6. The *Petersen graph* (which has no special symbol) is the graph on 10 vertices with the property that each vertex has degree 3 and each pair of vertices is either joined by an edge or there is a path of length two (i.e. two edges) joining them.

7. W_n is *wheel graph* on n vertices with a central vertex joined to all others and $n - 1$ vertices whose induced subgraph is C_{n-1}.