1. Let G be a connected simple graph with $\Delta(G) = 3$ and $\delta(G) < 3$. Show that every subgraph of G has a vertex of degree less than 3.

2. Let G be a graph with exactly two vertices x, y of odd degree and rest of even degree. Let C be a cycle in G. Show that $G \setminus E(C)$ has an x-y-path.

3. Let D be a directed graph on n nodes with no directed cycles and with the property that for every pair of nodes i, j we have either $i \to j$ or $j \to i$. Show that the nodes may be labelled $1, 2, \ldots, n$ so that $i \to j$ if and only if $i < j$.

4. Let T be a tree. Let ℓ be the number of vertices of degree 1. Show that ℓ can be computed from the number of vertices of other degrees as follows:

$$\ell = 2 + \sum_{v : d(v) \geq 2} (d(v) - 2).$$

(The sum is over all v such that $d(v) \geq 2$.)

5. Let G be a bipartite graph with all vertices having even degree. Show that G has a spanning subgraph H with the property that for all $v \in V(G)$,

$$d_H(v) = \frac{1}{2} d_G(v).$$

6. Let G be a bipartite graph with parts X, Y. Assume for each $A \subseteq X$, we have $|A| \leq |N(A)| - 1$. Show that G has a matching of at least $|X| - 1$ edges.