34. Let \(W_n \) be the wheel graph on \(n \) vertices. Show that \(\chi(W_n; k) = k(k - 2)^{n-1} + (-1)^{n-1}k(k-2) \).

35. A graph \(G \) is said to be uniquely \(k \)-edge colourable if any two proper edge colourings of \(G \) result in the same partition of \(E(G) \). Show the every uniquely 3-edge colourable 3-regular graph has a hamiltonian cycle.

36. Let \(G \) be a graph with degree sequence \(d_1, d_2, \ldots, d_n \) where \(d_1 \geq d_2 \geq \cdots \geq d_n \) and \(n = |V(G)| \). Then

\[
\chi(G) \leq \max_{1 \leq i \leq n} \min\{d_i + 1, i\}.
\]

37. Let \(G \) be 2-connected. A planar drawing of a graph is 2-face colourable if and only if \(G \) is eulerian.

38. Let \(D = (N, A) \) be a directed graph corresponding to a tournament, namely for each pair of nodes \(x, y \) either \(x \to y \) or \(y \to x \) (but not both). Assume \(D \) is strongly connected. Show that \(D \) has a Hamilton Directed cycle (a spanning directed cycle).