problems are for classroom presentations and some fraction of them may be final exam questions.

23. Let G be a simple connected planar graph with all faces of even size. Show that G is bipartite.

24. Classify which choices of m and n have the property that $K_{m,n} - e$ is planar (for any edge e of $K_{m,n}$). Assume $m \geq n \geq 1$.

25. Let G be a cubic simple connected planar map with 3 faces of size 4, s faces of size 6 and t faces of size 10. Determine t.

26. Let G be a planar graph. Show that we can find a planar drawing in which all but the outer face is a convex polygon. (recall our proof of Kuratowski’s Theorem)

27.
 a) Let G be a simple graph with $\chi(G) = 3$. Show that there is a subset S of the vertices with $|S| \geq (2/3)|V(G)|$ such that the subgraph of G induced by the vertices of S is bipartite.
 b) Extend this to graphs with $\chi(G) = k$ and determine a large fraction of the vertices which induce a bipartite subgraph of G. Show the result is best possible for $G = K_n$.